

# A Beam Spin Asymmetry Studies using RGA Pass-2 Fall-18 Data

**CLAS12** Collaboration Meeting

November 14, 2024

Veronique Ziegler

# Motivation

- Beam Spin Asymmetry is a tool to understand hadronization.
  - Exclusive and semi-exclusive processes ep  $\rightarrow$  e'  $\Lambda$  X (X=K<sup>(\*)+</sup>, K<sup>0</sup> $\pi$ <sup>+</sup>, ...) to separate:
    - kinematical regions (Target and Current Fragmentation Regions)
    - dynamical contributions
  - Results for various exclusive channels such as ep→e'p(n, Δ)π (S.Diehl) and ep → e' Λ(Σ) K<sup>+</sup> (D.Carman) and semi-inclusive ep→e'p X (F.Benmokhtar<sup>\*</sup>)

\*https://indico.jlab.org/event/910/contributions/15545/attachments/11958/18774/Benmokhtar-epX-Analysis-Collaboration-Nov-24.pdf

- Comparison of these results with BSA for ep → e' Λ X can add another piece to the puzzle of production mechanism off a polarized quark inside an unpolarized proton
- Exclusive  $\Lambda \rightarrow p\pi^-$  reconstruction advantages:
  - More accurate reconstruction of the azimuthal angle
  - Less background than using missing mass method, narrower  $\Lambda$  signal
  - Allows to study contributions above ground-state K production



TFR: struck quark in X CFR: struck quark in  $\Lambda$ 

# $\Lambda$ Candidate Selection

- Selection of ep  $\rightarrow$  e (p $\pi^{-}$ ) X events using Fall18 (in- and out-bending) Pass-2 RGA data
- Skim these events using detached vertex reconstruction algorithm
  - Creates analysis bank with vertex and momenta of each track and track pair candidate at the reconstructed detached vertex
  - Topology: p &  $\pi^-$  in FD: improved resolution and signal-to-background ratio (study documented in  $\Lambda$  skim CLAS note)
  - PID ( $|\chi^2_{PID}|$ <15) selection criteria for p and  $\pi^-$
  - Require the vertex between p and  $\pi^-$  to be reconstructed with doca<5 cm
  - Require  $\Lambda$  vertex to be downstream of the e- vertex
  - Require the cosine of the angle between the proton and pion computed assuming the  $\Lambda$  PDG mass between +/- 1
  - Subsequent vertex displacement (wrt e- vtx) optimization



# BSA for 1<Q<sup>2</sup><10 GeV<sup>2</sup>, 2<W<4.5 GeV



- 4

# BSA as a Function of x<sub>F</sub>

• Obtain BSA as a function of  $x_F$  to study  $\Lambda$  polarization behavior in the Target, Center, and Current Fragmentation Regions

Selected range: 1 < Q<sup>2</sup> < 4 GeV<sup>2</sup>;
2 < W < 4 GeV</li>

~uniform Q<sup>2</sup>,W bins



SR = Soft Region

 $x_{F_{\Lambda}} = 2P_{\parallel \Lambda}^{*} / W$ 

#### BSA as a Function of x<sub>F</sub>



6

# BSA as a Function of x<sub>F</sub> and x<sub>B</sub>



#### BSA as a Function of x<sub>B</sub>

Selected range :  $1 < Q^2 < 10 \text{ GeV}^2$ ; 2 < W < 4.5 GeV



Likely effect from  $ep \rightarrow e' \Lambda K^+$  where angular distribution has dips near +/-180 deg. due to  $\cos\phi$ ,  $\cos 2\phi$  interference convoluted with acceptance

# BSA as a Function of x<sub>F</sub> for x<sub>B</sub> < 0.15



# BSA as a Function of $x_F for x_B > 0.15$



# BSA as a Function of x<sub>F</sub> for MM>1.2 GeV



# Contamination from e p $\rightarrow$ e' ( $\Sigma \rightarrow \Lambda \gamma$ ) X Events

- The selected  $\Lambda \rightarrow p\pi$  can be produced in the reaction e p $\rightarrow$ e' ( $\Sigma \rightarrow \Lambda \gamma$ ) X
- This is a background to the reaction e p $\rightarrow$ e'  $\Lambda$  X
- To reduce the contribution from this background a veto on the  $\boldsymbol{\gamma}$  is imposed :

•  $\Sigma \rightarrow \Lambda \gamma$  candidate selection

- Missing mass against e<sup>-</sup> pπ<sup>-</sup> for selected Λ → pπ<sup>-</sup> events
- m(pπ<sup>-</sup>)<1.135 GeV

Observed  $\Sigma^0 \rightarrow \Lambda \gamma$  signal from 4-momentum addition of a  $\gamma$  with the selected  $\Lambda$ 



# spanning an angular cone (cos $\zeta$ = 0.6) wrt $\Lambda$ momentum vector

rejecting events where there is a photon

# Study of $\Sigma$ Contamination from e p $\rightarrow$ e' ( $\Sigma \rightarrow \Lambda \gamma$ ) X Events

- △ Selected e p→e' (Σ→Λ γ) X Events
- Selected e p $\rightarrow$ e'  $\Lambda$  X Events



- $\triangle$  With Veto against e p $\rightarrow$ e' ( $\Sigma \rightarrow \Lambda \gamma$ ) X Events
- Selected e p $\rightarrow$ e'  $\Lambda$  X Events



• Little effect of veto on BSA distribution

# BSA as a Function of MM with $\gamma$ Veto\*

\* Veto against  $\cos(\Lambda \gamma) > 0.6$ 



# **Observations**

- A BSA (with φ computed wrt the Λ) sign flip is observed in the CFR when the contribution to ep → e' Λ X from the reaction ep → e' Λ K<sup>+</sup> is negligible:
  - Region MM > 1.2 GeV
  - Region  $x_B < 0.15$
  - Region W > 3 GeV

• When the reaction ep  $\rightarrow$  e'  $\Lambda$  K<sup>+</sup> is not negligible the BSA as a function of x<sub>F</sub> is negative for all values of x<sub>F</sub>.

• The contamination from the reaction ep  $\rightarrow$  e'  $\Sigma(\rightarrow \Lambda \gamma)$  X has minimal impact on the BSA behavior as a function of x<sub>F</sub>.



# Interpretation



- Behavior (in region with minimal K<sup>+</sup> contribution) similar to what is observed for the reaction ep  $\rightarrow$  e'p X
- Polarized u-quark kicked out likely responsible for sign of BSA in T-
  - Quark dynamics govern s-quark spin orientation for  $\Lambda K^{+(*)}$ final states
  - Polarization of struck quark in the proton shown to be responsible for sign of asymmetry

 $\ddagger \pi^{-} \Delta^{++}$ 

**∔**π⁺ n

 $\diamond \pi^0 p$ 

1.2



 $\leftarrow \gamma^*$  kicks out a longitudinally polarized d quark in reaction ep  $\rightarrow$  e'  $\pi^-\Delta^{++}$ 

S. Diehl et al. PRL 131, 021901 (2023)

# Interpretation ~ "diffractive" kinematics separation

#### H. Avakian



- Behavior for exclusive  $\rho^0 p$  final state different from  $\rho^+ p$  final state
- At high  $z_h = E_h/v$ , effect from "diffractive"  $\rho^0$
- Difference between quark-exchange and gluon-exchange processes
  - BSA sign flip possibly resulting from gluon-exchange dynamics
  - $ep \rightarrow e' \Lambda K^+$  channel: non-diffractive channel
  - For  $\Lambda$  semi-exclusive channel, BSA sign flip in CFR could come from excited kaon
    - Production mechanism of the K-meson in the Target



# Outlook

- Try to identify which reaction is responsible for the BSA sign flip in the CFR
  - A lot more statistics needed
  - Use nuclear target data (RGC), deuteron target data (RGB)
- Analysis combining different datasets
  - Different data sets with different beam energies → combining distributions to be taken into consideration

→ different targets possibly requiring different background rejection cuts, take Fermi motion\* into account



<sup>\*</sup> Fermi motion (not taken into account) affects MM

- RGK analysis consistent with RGA ep $\rightarrow$ e' $\Lambda$ K<sup>+</sup> results
  - Dominant kaon contribution

• RGC analysis indicative of possible sign flip evidenced in RGA analysis when kaon contribution is suppressed

# **BACKUP SLIDES**

# **DIS Variables**



#### **Fragmentation Processes**

Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering

M. Boglione<sup>a</sup>, J. Collins<sup>b</sup>, L. Gamberg<sup>c</sup>, J. O. Gonzalez-Hernandez<sup>d,e</sup>, T. C. Rogers<sup>d,e</sup>, N. Sato<sup>e</sup>



Figure 1: Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the central (soft) region. The faded zigzag lines represent non-perturbative and other interactions (e.g. hadronization) between the outgoing parton and the target jet.

#### BSA as a Function of W and $Q^2$





# BSA as a Function of x<sub>B</sub>

• BSA as a function of x<sub>B</sub> in Target and Current regions



# K(\*)<sup>+</sup> Contributions in the CFR

#### $1 < Q^2 < 10 \text{ GeV}^2$ ; 2 < W < 4.5 GeV; $0 < x_B < 1$



• Enhanced K\* contributions

#### **BSA as in 3 Fragmentation Regions**





#### BSA as in 3 Fragmentation Regions [over all x<sub>B</sub>]



MM spectra in 3 fragmentation regions for each bin in  $\phi_\Lambda$  of the BSA distributions

