

Λ Beam Spin Asymmetry Studies using RGA Pass-2 Fall-18 Data

CLAS12 Collaboration Meeting

November 14, 2024

Veronique Ziegler

Motivation

- Beam Spin Asymmetry is a tool to understand hadronization.
	- Exclusive and semi-exclusive processes ep \rightarrow e' Λ X (X=K^{(*)+}, K⁰ π ⁺, ...) to separate:
		- kinematical regions (Target and Current Fragmentation Regions)
		- dynamical contributions
	- Results for various exclusive channels such as $ep\rightarrow e'p(n, \Delta)\pi$ (S.Diehl) and ep \rightarrow e' $\Lambda(\Sigma)$ K⁺ (D.Carman) and semi-inclusive ep \rightarrow e'p X (F.Benmokhtar^{*})

*https://indico.jlab.org/event/910/contributions/15545/attachments/11958/18774/Benmokhtar-epX-Analysis-Collaboration-Nov-24.pdf

- Comparison of these results with BSA for ep \rightarrow e' Λ X can add another piece to the puzzle of production mechanism off a polarized quark inside an unpolarized proton
- Exclusive $\Lambda \rightarrow p \pi^-$ reconstruction advantages:
	- More accurate reconstruction of the azimuthal angle
	- Less background than using missing mass method, narrower Λ signal
	- Allows to study contributions above ground-state K production

TFR: struck guark in X CFR : struck quark in Λ

Λ **Candidate Selection**

- Selection of ep \rightarrow e (p π) X events using Fall18 (in- and out-bending) Pass-2 RGA data
- Skim these events using detached vertex reconstruction algorithm
	- Creates analysis bank with vertex and momenta of each track and track pair candidate at the reconstructed detached vertex
	- Topology: p & π^- in FD: improved resolution and signal-to-background ratio (study documented in Λ skim CLAS note)
	- PID ($|\chi^2_{\text{PID}}|$ <15) selection criteria for p and π^-
	- Require the vertex between p and π^- to be reconstructed with doca<5 cm
	- Require Λ vertex to be downstream of the e-vertex
	- Require the cosine of the angle between the proton and pion computed assuming the Λ PDG mass between +/- 1
	- Subsequent vertex displacement (wrt e- vtx) optimization

BSA for 1<Q2<10 GeV2, 2<W<4.5 GeV

BSA as a Function of XF

• Obtain BSA as a function of x_F to study Λ polarization behavior in the Target, Center, and Current Fragmentation Regions

• Selected range: $1 < Q^2 < 4$ GeV²; 2 < W < 4 GeV

~uniform Q^2 , W bins

 $X_{F_A} = 2P_{\parallel A}^* / W$

BSA as a Function of XF

6

BSA as a Function of x_F and x_B

BSA as a Function of x_B

Selected range : $1 < Q^2 < 10$ GeV²; $2 < W < 4.5$ GeV

Likely effect from ep $\rightarrow e^{\prime}\Lambda K^{+}$ where angular distribution has dips near +/-180 deg. due to $cos\phi$, $cos2\phi$ interference convoluted with acceptance

BSA as a Function of x_F **for** $x_B < 0.15$

BSA as a Function of x_F **for** $x_B > 0.15$

BSA as a Function of x_F for MM>1.2 GeV

Contamination from e $p \rightarrow e'$ **(** $\Sigma \rightarrow \Lambda$ γ **) X Events**

- The selected $\Lambda \rightarrow p\pi$ can be produced in the reaction e $p\rightarrow e'$ ($\Sigma \rightarrow \Lambda \gamma$) X
- This is a background to the reaction e $p\rightarrow e' \Lambda X$
- To reduce the contribution from this background a veto on the γ is imposed :
- $\Sigma \rightarrow \Lambda \gamma$ candidate selection
	- Missing mass against $e^- p \pi^$ for selected $\Lambda \rightarrow p \pi^$ events
	- $m(p\pi^{-})$ <1.135 GeV

Observed $\Sigma^0 \rightarrow \Lambda \gamma$ signal from 4-momentum addition of a γ with the selected Λ

rejecting events where there is a photon

spanning an angular cone (cos ζ = 0.6) wrt Λ

12

Study of Σ **Contamination from e** $p \rightarrow e'$ **(** $\Sigma \rightarrow \Lambda$ γ **) X Events**

 Δ Selected e p \Rightarrow e' ($\Sigma \Rightarrow \Lambda \gamma$) X Events Selected e p \rightarrow e' Λ X Events

- Δ With Veto against e p \Rightarrow e' ($\Sigma \rightarrow \Lambda \gamma$) X Events
- Selected e $p\rightarrow e' \Lambda$ X Events

• Little effect of veto on BSA distribution

BSA as a Function of MM with γ **Veto*** * Veto against cos($\Lambda\gamma$)>0.6

Observations

- A BSA (with ϕ computed wrt the Λ) sign flip is observed in the CFR when the contribution to ep \rightarrow e' Λ X from the reaction ep \rightarrow e' Λ K⁺ is negligible:
	- − Region MM > 1.2 GeV
	- Region $x_B < 0.15$
	- − Region W > 3 GeV

• When the reaction ep \rightarrow e' Λ K⁺ is not negligible the BSA as a function of x_F is negative for all values of x_F .

• The contamination from the reaction ep \rightarrow e' $\Sigma(\rightarrow \Lambda \gamma)$ X has minimal impact on the BSA behavior as a function of x_F .

Interpretation

- observed for the reaction ep $\rightarrow e'p X$
- Polarized u-quark kicked out likely responsible for sign of BSA in T-
	- Quark dynamics govern s-quark spin orientation for Λ K^{+(*)} final states
	- Polarization of struck quark in the proton shown to be responsible for sign of asymmetry

 $\rlap{-}\, \rlap{-}\, \pi^-\Delta^{++}$

 $+r$ n

 $\bullet \pi^0$ p

 1.2

 \leftarrow γ^* kicks out a longitudinally polarized d quark in reaction ep \rightarrow e' π ^{- Δ ++}

S. Diehl et al. PRL 131, 021901 (2023)

Interpretation ~ "diffractive" kinematics separation

- H. Avakian Behavior for exclusive ρ^0 p final state different from ρ^+ p final state
	- At high $z_h = E_h/v$, effect from "diffractive" ρ^0
	- Difference between quark-exchange and gluon-exchange processes
		- BSA sign flip possibly resulting from gluon-exchange dynamics
		- ep \rightarrow e' Λ K⁺ channel: non-diffractive channel
		- For Λ semi-exclusive channel, BSA sign flip in CFR could come
			- Production mechanism of the K-meson in the Target

Outlook

- Try to identify which reaction is responsible for the BSA sign flip in the CFR
	- A lot more statistics needed
	- Use nuclear target data (RGC), deuteron target data (RGB)
- Analysis combining different datasets
	- Different data sets with different beam energies \rightarrow combining distributions to be taken into consideration

 \rightarrow different targets possibly requiring different background rejection cuts, take Fermi motion* into account

* Fermi motion (not taken into account) affects MM

- RGK analysis consistent with RGA ep \rightarrow e' Λ K⁺ results
	- Dominant kaon contribution

• RGC analysis indicative of possible sign flip evidenced in RGA analysis when kaon contribution is suppressed

BACKUP SLIDES

DIS Variables

Fragmentation Processes

Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering

M. Boglione^a, J. Collins^b, L. Gamberg^c, J. O. Gonzalez-Hernandez^{d,e}, T. C. Rogers^{d,e}, N. Sato^e

Figure 1: Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the central (soft) region. The faded zigzag lines represent non-perturbative and other interactions (e.g. hadronization) between the outgoing parton and the target jet.

BSA as a Function of W and Q2

BSA as a Function of x_B

• BSA as a function of x_B in Target and Current regions

K(*)+ Contributions in the CFR

$1 < Q^2 < 10$ GeV²; $2 < W < 4.5$ GeV; $0 < x_B < 1$

 \cdot Enhanced K $*$ contributions

BSA as in 3 Fragmentation Regions

 $1 < Q² < 10 GeV²$ 2 < W < 4.5 GeV

BSA as in 3 Fragmentation Regions [over all xB]

1.0 1.5 2.0

mm(e p x) (GeV)

2.5

1.0 1.5
mm(e p π) (GeV)
ts:nhiRin 14.0.00

 $1.0 \qquad \qquad 1.5 \qquad \qquad 2.0$ $\text{mm}(e\ p\ \pi^*)(\ \text{GeV})$

2.5

0.5

1.0 1.5
mm(e p π) (GeV)
cuts:phiBin 15.0, 0.0 0.1

1.0 1.5
mm(e p π) (GeV) 2.0 1.0 1.5

 1.0 1.5

 2.0

 0.5

1.0 1.5
 $mm(e p \pi) (GeV)$

 1.0 1.5
mm(e p x) (GeV)

 0.5

1.0 1.5

mm(e p π) (GeV)

ts:phiBin 14.0, 0.0

 $\begin{array}{cc} 1.0 & 1.5 \\ \text{mm(e p }\pi^*) \, (\text{GeV}) \end{array}$

 0.5

2.5

0.5

1.0 1.5
 $mm(e p \pi)$ (GeV)

ts phi $Bin 13.0, 0.0$

 $1.0 \qquad \qquad 1.5 \qquad \qquad 2.0$ $mm(e\ p\ \pi^*)\ (\mathrm{GeV})$

 1.0 1.5 2.0

 $\begin{array}{ll} 1.0 & 1.5 \\ \text{mm(e p x)}\,(\text{GeV} \end{array}$

 $1.0 \qquad \qquad 1.5 \qquad \qquad 2.0$ $\text{mm(e p \pi^*)} \left(\text{GeV} \right)$

2.5

1.0 1.5
 $mm(e p \pi)$ (GeV)

utsphiBin 15.0, 0.0

1.0 1.5
mm(e p π) (GeV) 2.0 2.5 0.5

 1.0 1.5 2.0

2.5

 0.5

 $\begin{array}{ll} 1.0 & 1.5 \\ \hbox{mm(e p x^*) (GeV)} \end{array}$

 $\begin{array}{cc} 1.0 & 1.5 \\ \text{mm(e p \pi^*) (GeV)} \end{array}$