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Micro-resistive Well (µRWELL) Detector

• µRWELL is a Micro-Pattern Gaseous Detector

• Amplification in wells

• Spark protection due to resistive layer


• Advantages

• Intrinsic low-mass (low material budget)

• Good spatial and timing resolution 

• Low production costs

• No frames needed in active area


• Disadvantages

• Operability under high particle fluxes > 1MHz/cm2


• Relative new detector technology
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Micro-resistive Well (µRWELL) Detector

• µRWELL is a Micro-Pattern Gaseous Detector

• Amplification in wells

• Spark protection due to resistive layer (DLC)


• Advantages

• Intrinsic low-mass (low material budget)

• Good spatial and timing resolution 

• Low production costs

• No frames needed in active area


• Disadvantages

• Operability under high particle fluxes > 1MHz/cm2


• Relative new detector technology
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High-rate Layouts with DLC Segmentation
G. Bencivenni et al., The μ-RWELL layouts for high particle rate, 2019 JINST 14 P05014 

Double Resistive Layer

• 3D current evacuation

• Complex manufacturing

• Rates > 10 MHz/cm2
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High-rate Layouts with DLC Segmentation
G. Bencivenni et al., The μ-RWELL layouts for high particle rate, 2019 JINST 14 P05014 

Double Resistive Layer

• 3D current evacuation

• Complex manufacturing

• Rates > 10 MHz/cm2

Silver Grid

• Single DLC layer

• 2D current evacuation through conductive grid 

on DLC

• Complex Cu+DLC sputtering and alignment

• Rates > 10 MHz/cm2



6

High-rate Layouts with DLC Segmentation
G. Bencivenni et al., The μ-RWELL layouts for high particle rate, 2019 JINST 14 P05014 

Double Resistive Layer

• 3D current evacuation

• Complex manufacturing

• Rates > 10 MHz/cm2

Silver Grid

• Single DLC layer

• 2D current evacuation through conductive grid 

on DLC

• Complex Cu+DLC sputtering and alignment

• Rates > 10 MHz/cm2

PEP (Patterning - Etching - Plating

• Single DLC layer

• 2D current evacuation through conductive grid etched 

from the top of the Kapton foil to the DLC

• No alignment issues and easily engineered

• Rates > 10 MHz/cm2
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PEP Designs
G. Bencivienni, Talk RD51 Meeting 2024 
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PEP Designs

DLC Design for CLAS12

 large prototype

DLC Design for LDRD

high-rate prototypes
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PEP Designs

DLC Design for CLAS12

 large prototype

DLC Design for LDRD

high-rate prototypes
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CLAS12 FD Upgrade µRWELL Prototype
• Largest µRWELL build so far 
• PEP-groove DLC 
• 2D-U/V strip readout with 10 deg stereo angle 
• pitch 1mm 
• various strip widths (to find optimum) 

• Capacitive sharing 
• Electronics APV25 and SRS  

146cm

50
cm
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CLAS12 Prototype - Detector Structures

Cross section of  
prototype

µRWELL foil 
HV lines

Split in two  
separate halfs

4mm

Cathode

Capacitive sharing layers + readout

Honeycomb
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CLAS12 Prototype - Readout Structures

U-strips widths: 
• 350µm 
• 262µm 
• 175µm

Capacitive sharing

K. Gnanvo, NIM A1047, 167782 (2023)

Readout Structures

V-strips widths: 
• 335µm 
• 500µm 
• 650µm
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2D Hit Distribution - Detector works!

• µRWELL at 570V, cathode at 1020V, Ar:CO2 (80:20) 
• Substructure from strips, HV segmentation and APVs visible
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2D Hit Distribution - Detector works!

• µRWELL at 570V, cathode at 1020V, Ar:CO2 (80:20) 
• Substructure from strips, HV segmentation and APVs visible

But: Issues with cathode and connections required us to replace cathode 
—> done in cleanroom at UVA together with Nilanga Liyanage’s group
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Leakage seen after Cathode Replacement

Current [uA]

Voltage (left side) [V]

• CO2 gas 
• Leakage current proportional to voltage up to 600V 
• both sides have leakage 
• decided to keep running with leakage and take data since current just 

increases linearly with voltage
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Currents and Voltages with Ar:CO2 (80:20)
left side voltage = 550 V

right side voltage = 550 V

cathode voltage = 1150 V

left side current ~ 4.8 uA

left side current ~ 10.5 uA

cathode current = 0 uA
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Still good data under these conditions
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Still good data under these conditions

Most likely areas with dust and leakage
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1D X-Distribution - HV sections visible!

• Dip structure from gaps in foil 
between HV sections 

• Width of gaps follow drawings
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Efficiency Results with Cosmics
Ar:CO2 (80:20)

• Reaching plateau 

• Similar efficiency for U and V 


• HV is very high and current 
unstable
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Efficiency Results with Cosmics
Ar:Isobutane (90:10)

• Reaching plateau at lower HV

• Similar efficiency for U and V at 

highest HV

• HV rather stable


• Prefer Ar:Isobutane gas over 
Ar:CO2
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Efficiency Results with Cosmics
Ar:Isobutane (90:10)

• Reaching plateau at lower HV

• Similar efficiency for U and V at 

highest HV

• HV rather stable


• Prefer Ar:Isobutane gas over 
Ar:CO2


But: Signals in V smaller than U due to low amplification 
—> next prototypes with 1D readouts
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Next Plans for CLAS12 FD µRWELL

• Measurement with VMM3 instead of APV 
• initial tests under way 

• Measurements with new hodoscopes 
• first tests done 
• some debugging in progress

• Another test with beam (maybe) 

• Design of new prototype with 1D readout structures 
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Next Prototype Design

• 2 µRWELL in one combined frame  
• Separate 1D readout strips (U and V) with same strip width  
• Separate Cathode foils on shared honeycomb support 

Drawings by Bob and Chris
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PEP Designs

DLC Design for CLAS12

 large prototype

DLC Design for LDRD

high-rate prototypes
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LDRD Project for µRWELLs at 1037cm-2 s-1 Luminosities

• Goal: Development of µRWELL design suitable for high luminosity experiments 
at JLab for e.g DDVCS (see Rafos talk) 

• Methods:

• Build and test small 10cm x 10cm prototypes with different designs and study 

“high-rate” capabilities 

• Use successful design and build larger prototype (30cm x 30cm) to test the 

scaling of design

• Design variations

• Density of PEP-dots

• more dots —> higher rate capability but larger dead area


• Well pitch

• less pitch —> more amplification per surface area —> more gain and 

improved spatial resolution and stability under high-rates

• XY versus XYU readout

• XYU better to resolve ambiguities under high-rates
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Readout Structures
XY Readout

PEP dots: conductive vias from DLC through
backside of PCB (first of its kind prototype)

Cross section of prototypes

(for XYU the top of µRWELL foil is 
connected to readout)
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What do we want to study
• Rate capability


• Stability of operation

• When does gain drop?


• Efficiency dependence on HV and rate

• When does efficiency reach plateau?

• What is the behavior when rates increase?


• Spatial resolution 

• Dependence on HV and rate

• XYU readout better than XY at high rates due to hit 

ambiguities?

• Worse resolution at high rates?


• Dependence on gas mixtures

• Ar:CO2 (80:20)

• Ar:Isobutane (90:10)

• Ar:Isobutane:CO2 (93:2:5)

• What is the optimal gas?


from CLAS12 µRWELL

K. Gnanvo, NIM A1047 (2023)

M. Giovanetti’s Talk
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Initial Testing for Leakage Currents in Oven

• Detector need to hold 600V with less than 
1nA leakage at 50 deg in oven


• If leakage current is larger could be dust or 
humidity depending on HV behavior. Need to 
be addressed first before detectors can be 
used further


• Note: one prototype had to be put back in 
oven due to humidity
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Prototypes Testing with Cosmic

• Test stand

• GEM reference detectors

• Scintillators for triggering

• APV25/SRS readout

• Gas panel
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First Results from Cosmic Testing
• Prototype 1: Ar:CO2 80/20, 550V µRWELL

• similar cluster size in X and Y as expected
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Comparison Prototype 1 and 2: Cluster size
• same WELL pitch and XY readout, different PEP-dot pitch
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• similar cluster size as expected
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Comparison Prototype 1 and 2: XY distribution
• same WELL pitch and XY readout, different PEP-dot pitch

1 2

• PEP-dots nicely visible as inefficiency area

• Density doubled for prototype 2 as expected
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Next Plans for LDRD µRWELLs

• Complete cosmic measurements for efficiency and resolution 
• HV dependence 
• Gas mixture dependence 

• Measurements with beam in hall 
• large angle = kHz/cm particle rate 
• establish stable operation conditions 
• repeat HV scan and gas mixture study 

• move to smaller angles = MHz/cm particle rates  
• repeat measurement from larger angles 
• determine limitations for stability, gain drop etc. 

• Design and build larger (30cm x 30cm) prototype 
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Backup Slides
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Previous Studies of High-Rate µRWELL Resistive Layers

G. Bencivenni et al., JINST 14, P05014 (2019)

DRL

SG

• High-rate layouts tested with pion beams at CERN

• >5 MHz/cm2 rate capability with maximum 10% gain loss

• SG layout easier to fabricate than DRL
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Cluster Size (Ar:CO2) - Large Prototype
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Efficiency Results (before Cathode change)
Ar:CO2 80:20, Drift voltage 450V over µRWELL for each point

• Increase of efficiency with voltage as expected 
• More events have U and V cluster with 5𝝈 cut 
• Efficiency caps at around 80%, more events with U clusters only

3𝝈, cluster with at least 2 hits 5𝝈, cluster with at least 1 hit
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Efficiency Results (before Cathode change)

• Cleaner events with 5𝝈 and at least 2 hits 
• But much lower efficiency (as expected)

5𝝈, cluster with at least 1 hit 5𝝈, cluster with at least 2 hit

Ar:CO2 80:20, Drift voltage 450V over µRWELL for each point
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