µRWELL detector developments at JLab

Florian Hauenstein CLAS Collaboration Meeting 11/14/24

Micro-resistive Well (µRWELL) Detector

- µRWELL is a Micro-Pattern Gaseous Detector
 - Amplification in wells
 - Spark protection due to resistive layer
- Advantages
 - Intrinsic low-mass (low material budget)
 - Good spatial and timing resolution
 - Low production costs
 - No frames needed in active area
- Disadvantages
 - Operability under high particle fluxes > 1MHz/cm²
 - Relative new detector technology

Micro-resistive Well (µRWELL) Detector

- µRWELL is a Micro-Pattern Gaseous Detector
 - Amplification in wells
 - Spark protection due to resistive layer (DLC)
- Advantages
 - Intrinsic low-mass (low material budget)
 - Good spatial and timing resolution
 - Low production costs
 - No frames needed in active area
- Disadvantages
 - Operability under high particle fluxes > 1MHz/cm²
 - Relative new detector technology

High-rate Layouts with DLC Segmentation

G. Bencivenni et al., The µ-RWELL layouts for high particle rate, 2019 JINST 14 P05014

High-rate Layouts with DLC Segmentation

G. Bencivenni et al., The µ-RWELL layouts for high particle rate, 2019 JINST 14 P05014

• Rates > 10 MHz/cm²

High-rate Layouts with DLC Segmentation

G. Bencivenni et al., The µ-RWELL layouts for high particle rate, 2019 JINST 14 P05014

- Single DLC layer
- 2D current evacuation through conductive grid etched from the top of the Kapton foil to the DLC
- No alignment issues and easily engineered
- Rates > 10 MHz/cm²

- Single DLC layer
- 2D current evacuation through conductive grid on DLC
- Complex Cu+DLC sputtering and alignment
- Rates > 10 MHz/cm²

G. Bencivienni, Talk RD51 Meeting 2024

2022

PEP-Groove:

DLC grounding through conductive groove to ground line

Pad R/O = 9×9mm²

Grounding:

- Groove pitch = 9mm
- width = 1.1mm
- → 84% geometric acceptance

2023

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs Pad R/O = 9×9mm²

Grounding:

- Dot pitch = 9mm
- dot rim = 1.3mm
- \rightarrow 97% geometric acceptance

DOT \rightarrow plated blind vias

2022

PEP-Groove:

DLC grounding through conductive groove to ground line

Pad R/O = $9 \times 9 \text{mm}^2$

Grounding:

- Groove pitch = 9mm
- width = 1.1mm
- → 84% geometric acceptance

DLC Design for CLAS12 large prototype

2023

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs Pad R/O = 9×9mm² Grounding: - Dot pitch = 9mm

- dot rim = 1.3mm
- → 97% geometric acceptance

DOT \rightarrow plated blind vias

DLC Design for LDRD high-rate prototypes

PEP-Groove:

DLC grounding through conductive groove to ground line

Pad R/O = 9×9 mm²

Grounding:

- Groove pitch = 9mm
- width = 1.1mm
- → 84% geometric acceptance

DLC Design for CLAS12 large prototype

2023

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs Pad R/O = 9×9mm²

Grounding:

- Dot pitch = 9mm
- dot rim = 1.3mm
- → 97% geometric acceptance

DOT \rightarrow plated blind vias

DLC Design for LDRD high-rate prototypes

CLAS12 FD Upgrade µRWELL Prototype

- Largest µRWELL build so far
- PEP-groove DLC
- 2D-U/V strip readout with 10 deg stereo angle
 - pitch 1mm
 - various strip widths (to find optimum)
- Capacitive sharing

50cm

Electronics APV25 and SRS

146cm

CLAS12 Prototype - Detector Structures

CLAS12 Prototype - Readout Structures

Capacitive sharing

K. Gnanvo, NIM A1047, 167782 (2023)

Readout Structures

U-strips widths:

- 350µm
- 262µm
- 175µm

V-strips widths:

- 335µm
- 500µm
- 650µm

2D Hit Distribution - Detector works!

- μRWELL at 570V, cathode at 1020V, Ar:CO₂ (80:20)
- Substructure from strips, HV segmentation and APVs visible

2D Hit Distribution - Detector works!

- μRWELL at 570V, cathode at 1020V, Ar:CO₂ (80:20)
- Substructure from strips, HV segmentation and APVs visible

But: Issues with cathode and connections required us to replace cathode —> done in cleanroom at UVA together with Nilanga Liyanage's group 14

Leakage seen after Cathode Replacement

- CO₂ gas
- Leakage current proportional to voltage up to 600V
- both sides have leakage
- decided to keep running with leakage and take data since current just increases linearly with voltage

Currents and Voltages with Ar:CO₂ (80:20)

left side voltage = 550 V

Still good data under these conditions

Still good data under these conditions

1D X-Distribution - HV sections visible!

- Dip structure from gaps in foil between HV sections
- Width of gaps follow drawings

Efficiency Results with Cosmics

Ar:CO₂ (80:20)

- Reaching plateau
- Similar efficiency for U and V
- HV is very high and current unstable

Efficiency Results with Cosmics

Ar:Isobutane (90:10)

- Reaching plateau at lower HV
- Similar efficiency for U and V at highest HV
- HV rather stable
- Prefer Ar:Isobutane gas over Ar:CO₂

Efficiency Results with Cosmics

Ar:Isobutane (90:10)

- Reaching plateau at lower HV
- Similar efficiency for U and V at highest HV
- HV rather stable
- Prefer Ar:Isobutane gas over Ar:CO₂

But: Signals in V smaller than U due to low amplification —> next prototypes with 1D readouts

Next Plans for CLAS12 FD µRWELL

- Measurement with VMM3 instead of APV
 - initial tests under way
- Measurements with new hodoscopes
 - first tests done
 - some debugging in progress

- Another test with beam (maybe)
- Design of new prototype with 1D readout structures

Next Prototype Design

Drawings by Bob and Chris

- 2 µRWELL in one combined frame
- Separate 1D readout strips (U and V) with same strip width
- Separate Cathode foils on shared honeycomb support

2022

PEP-Groove: DLC grounding through conductive groove to ground line

Pad R/O = $9 \times 9 \text{mm}^2$

Grounding:

- Groove pitch = 9mm

- width = 1.1mm

→ 84% geometric acceptance

DLC Design for CLAS12 large prototype

2023

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs

Pad R/O = 9×9 mm²

Grounding:

- Dot pitch = 9mm

- dot rim = 1.3mm

→ 97% geometric acceptance

DOT \rightarrow plated blind vias

DLC Design for LDRD high-rate prototypes

LDRD Project for µRWELLs at 10³⁷cm⁻² s⁻¹ Luminosities

- Goal: Development of µRWELL design suitable for high luminosity experiments at JLab for e.g DDVCS (see Rafos talk)
- Methods:
 - Build and test small 10cm x 10cm prototypes with different designs and study "high-rate" capabilities
 - Use successful design and build larger prototype (30cm x 30cm) to test the scaling of design
- Design variations
 - Density of PEP-dots
 - more dots —> higher rate capability but larger dead area
 - Well pitch
 - less pitch —> more amplification per surface area —> more gain and improved spatial resolution and stability under high-rates
 - XY versus XYU readout
 - XYU better to resolve ambiguities under high-rates

Prototype	Dots pitch	Readout	Readout strip pitch	Well pitch
А	2cm	XY	X=Y=800µm	140µm
В	1cm	XY	X=Y=800µm	140µm
С	2cm	XYU	X=Y=800µm, U=1.6mm	140µm
D	2cm	XY	X=Y=800µm	100µm

Readout Structures

PEP dots: conductive vias from DLC through backside of PCB (first of its kind prototype)

Cross section of prototypes

(for XYU the top of µRWELL foil is connected to readout)

What do we want to study

- Rate capability
 - Stability of operation
 - When does gain drop?
- Efficiency dependence on HV and rate
 - When does efficiency reach plateau?
 - What is the behavior when rates increase?
- Spatial resolution
 - Dependence on HV and rate
 - XYU readout better than XY at high rates due to hit ambiguities?
 - Worse resolution at high rates?
- Dependence on gas mixtures
 - Ar:CO₂ (80:20)
 - Ar:Isobutane (90:10)
 - Ar:Isobutane:CO₂ (93:2:5)
 - What is the optimal gas?

M. Giovanetti's Talk

Initial Testing for Leakage Currents in Oven

- Detector need to hold 600V with less than 1nA leakage at 50 deg in oven
- If leakage current is larger could be dust or humidity depending on HV behavior. Need to be addressed first before detectors can be used further
- Note: one prototype had to be put back in oven due to humidity

Prototypes Testing with Cosmic

- Test stand
 - GEM reference detectors
 - Scintillators for triggering
 - APV25/SRS readout
 - Gas panel

First Results from Cosmic Testing

similar cluster size in X and Y as expected

Clst_size Y

Comparison Prototype 1 and 2: Cluster size

• same WELL pitch and XY readout, different PEP-dot pitch

• similar cluster size as expected

Comparison Prototype 1 and 2: XY distribution

• same WELL pitch and XY readout, different PEP-dot pitch

- PEP-dots nicely visible as inefficiency area
- Density doubled for prototype 2 as expected

Next Plans for LDRD µRWELLs

- Complete cosmic measurements for efficiency and resolution
 - HV dependence
 - Gas mixture dependence
- Measurements with beam in hall
 - large angle = kHz/cm particle rate
 - establish stable operation conditions
 - repeat HV scan and gas mixture study
 - move to smaller angles = MHz/cm particle rates
 - repeat measurement from larger angles
 - determine limitations for stability, gain drop etc.
- Design and build larger (30cm x 30cm) prototype

Backup Slides

Previous Studies of High-Rate µRWELL Resistive Layers

G. Bencivenni et al., JINST 14, P05014 (2019)

- High-rate layouts tested with pion beams at CERN
- >5 MHz/cm² rate capability with maximum 10% gain loss
- SG layout easier to fabricate than DRL

Cluster Size (Ar:CO2) - Large Prototype

Efficiency Results (before Cathode change)

Ar:CO₂ 80:20, Drift voltage 450V over µRWELL for each point

- Increase of efficiency with voltage as expected
- More events have U and V cluster with 5σ cut
- Efficiency caps at around 80%, more events with U clusters only

Efficiency Results (before Cathode change)

Ar:CO₂ 80:20, Drift voltage 450V over µRWELL for each point

 5σ , cluster with at least 1 hit 5σ , cluster with at least 2 hit

- Cleaner events with 5 σ and at least 2 hits
- But much lower efficiency (as expected)