

Moments of Angular Distribution in K⁺K⁻ Electroproduction at CLAS12

Charlie Velasquez (charlie.velasquez@york.ac.uk)

Overview

- Meson Spectroscopy
- MesonEx
- Moments of Angular Distribution
- Reaction of Interest
- Event Reconstruction
- Simulations
- Extraction of Moments
- Outlook

A meson can be classified using a set of quantum numbers J^{PC}:

- J is the spin
- P is the parity
- C is the charge conjugation parity (c-parity)

J = L + S $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Allowed J^{PC} in quark model:

$$J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 1^{++}, \dots$$

Exotic J^{PC} forbidden in the quark model:

$$J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots,$$

Meson Spectroscopy

Meson	M (Exp)	Meson	M (Exp)
$\pi^+[u\overline{d}]_{J^{pc}=0^{-+}}$	139.57039 ± 0.00018	$\overline{K^+[u\overline{s}]}_{J^{pc}=0^{-+}}$	493.677 ± 0.016
$\pi^{-}[d\bar{u}]_{J^{pc}=0^{-+}}$	139.57039 ± 0.00018	$K^{-}[s\overline{u}]_{J^{pc}=0^{-+}}$	493.677 ± 0.016
$\pi^{0}[(u\overline{u} - d\overline{d})/\sqrt{2}]_{J^{pc}=0^{-+}}$	134.9768 ± 0.0005	$K^0[d\overline{s}]_{J^{pc}=0^{-+}}$	497.611 ± 0.013
$\rho^+[u\overline{d}]_{J^{pc}=1^{}}$	775.4 ± 0.4	$\overline{K}^0[s\overline{d}]_{J^{pc}=0^{-+}}$	497.611 ± 0.013
$\rho^{-}[d\overline{u}]_{J^{pc}=1^{}}$	775.4 ± 0.4	$K^{*+}[u\overline{s}]_{J^{pc}=1^{}}$	891.67 ± 0.026
$\rho^0[(u\overline{u}-d\overline{d})/\sqrt{2}]_{J^{pc}=1^{}}$	775.26 ± 0.23	$K^{*-}[s\overline{u}]_{J^{pc}=1^{}}$	891.67 ± 0.026
$\omega[(u\overline{u}+d\overline{d})/\sqrt{2}]_{J^{pc}=1}$	782.66 ± 0.13	$K^{*0}[d\overline{s}]_{J^{pc}=1^{}}$	896.00 ± 0.025
entralise en en en en angle and en angle en		$\overline{K}^{*0}[s\overline{d}]_{L^{pc}=1^{}}$	896.00 ± 0.025

MesonEx

The purpose of MesonEx is to conduct a meson spectrum study using quasi-real photoproduction with CLAS12 to observe rare mesons including those with exotic quantum numbers.

Why MesonEx?

- Exotics more likely in photoproduction than in hadroproduction
- Exotics produced via photoproduction and ordinary mesons have comparable cross sections

MesonEx

MesonEx requirements:

- Low virtuality (Q²) electron beam
- Full determination of the four-momenta of the the initial state and final state
- Large acceptance and good resolution

Moments of Angular Distribution

The moments of angular distribution in terms of the experimental intensity are defined as:

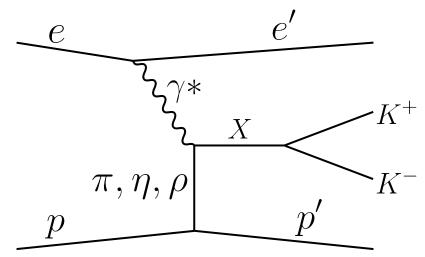
 $H^{0}(LM) = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{-1}^{1} I(\Omega, \Phi) d_{M0}^{L}(\theta) \cos M\phi \, \mathrm{d}(\cos\theta) \mathrm{d}\phi \mathrm{d}\Phi$

$$H^{1}(LM) = \frac{1}{P_{\gamma}\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{-1}^{1} I(\Omega, \Phi) d_{M0}^{L}(\theta) \cos M\phi \cos 2\Phi d(\cos\theta) d\phi d\Phi$$

Moments of Angular Distribution

The H⁰(00) and H¹(00) moments in terms of the S, P and D partial waves are:

$$H^{0}(00) = H^{1}(00) + 2\left[|P_{1}^{(+)}|^{2} + |D_{1}^{(+)}|^{2} + |D_{2}^{(+)}|^{2}\right]$$
$$H^{1}(00) = 2\left[|S_{0}^{(+)}|^{2} + |P_{0}^{(+)}|^{2} + |D_{0}^{(+)}|^{2}\right]$$

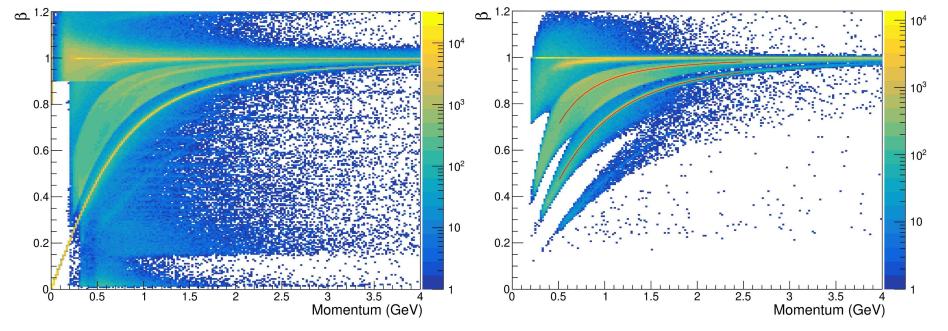

Reaction of Interest

Reaction of interest:

$$ep \to ep'K^+K^-$$

Feynman diagram of reaction:

Event Selection


Event selection requirements:

- Topologies exclusive: ep'K⁺K⁻; other: eK⁺K⁻, ep'K⁻, ep'K⁺
- $|\chi^2_{PID}| < 3.5$
- Scattered electron: $2^{\circ} < \theta < 5^{\circ}$ $0.4 < E_{\gamma} < 5 \text{ GeV}$
- Kaons: 5° < θ < 35°

 $\left|\chi^2_{PID}\right| < 3.5$

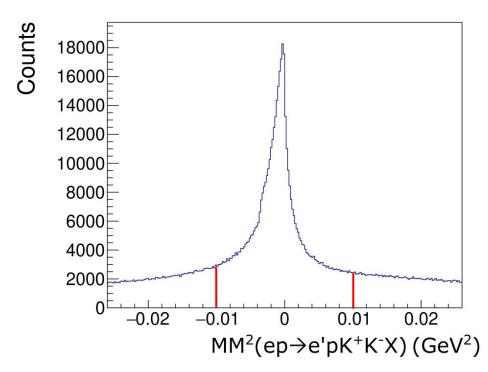
Event Selection

Event selection requirements:

- Topologies exclusive: ep'K⁺K⁻; other: eK⁺K⁻, ep'K⁻, ep'K⁺
- $|\chi^2_{PID}| < 3.5$
- Scattered electron: $2^{\circ} < \theta < 5^{\circ}$ $0.4 < E_{\gamma} < 5 \text{ GeV}$
- Kaons: 5° < θ < 35°

Reaction reconstruction requirements:

- $|MM^{2}(ep \rightarrow ep'K^{+}K^{-}X)| < 0.01 \text{ GeV}^{2}$
- 0.7 < MM(ep→eK⁺K⁻X) < 1.1 GeV
- $0.3 < MM(ep \rightarrow ep'K^{+}X) < 0.7 \text{ GeV}$
- 0.3 < MM(ep→ep'K⁻X) < 0.7 GeV



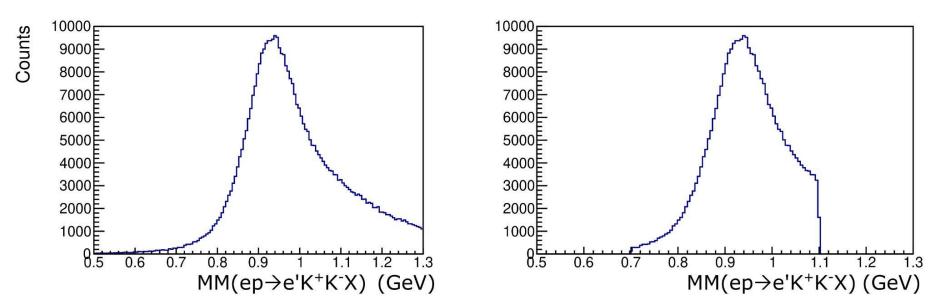
The missing mass squared:

$$\begin{split} MM^2(ep \to e'pK^+K^-X) &= |P_b + P_t|^2 - |P_{e'} + P_p + P_{K^+} + P_{K^-}|^2 \\ &= (E_b + m_t - E_{e'} - E_p - E_{K^+} - E_{K^-})^2 \\ &- |\bar{p}_b - \bar{p}'_e - \bar{p}_p - \bar{p}_{K^+} - \bar{p}_{K^-}|^2 \end{split}$$

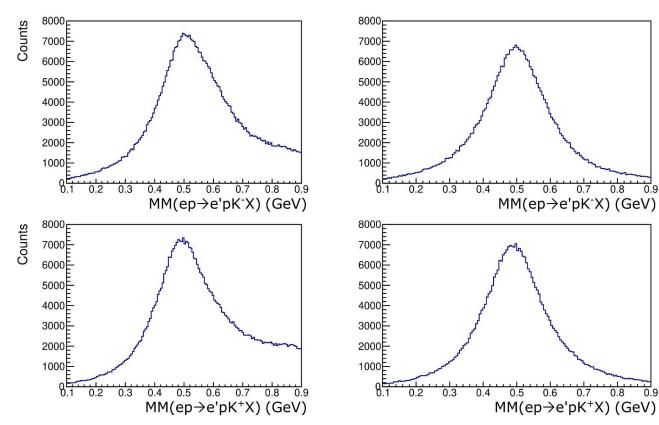
 $|MM^2(ep \rightarrow ep'K^+K^-)| < 0.01 \text{ GeV}^2 \text{ condition}$:

Reaction reconstruction requirements:

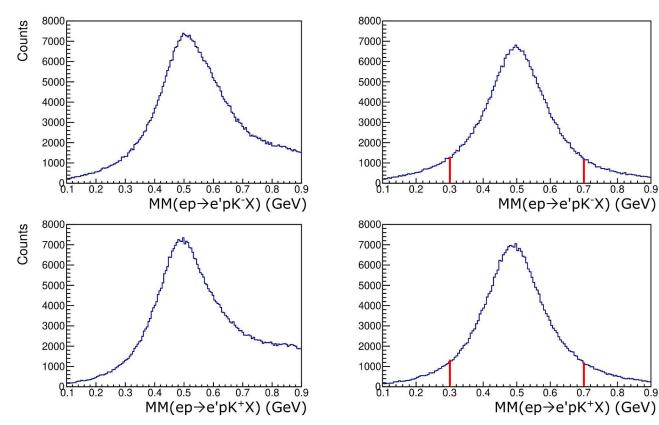
- $|MM^{2}(ep \rightarrow ep'K^{+}K^{-}X)| < 0.01 \text{ GeV}^{2}$
- 0.7 < MM(ep→eK⁺K⁻X) < 1.1 GeV
- $0.3 < MM(ep \rightarrow ep'K^{+}X) < 0.7 \text{ GeV}$
- 0.3 < MM(ep→ep'K⁻X) < 0.7 GeV



The missing proton mass:


$$\begin{split} MM(ep \to e'K^+K^-X) &= \sqrt{|P_b + P_t|^2 - |P_{e'} + P_{K^+} + P_{K^-}|^2} \\ &= \sqrt{(E_b + m_t - E_{e'} - E_{K^+} - E_{K^-})^2 - |\bar{p}_b - \bar{p}_{e'} - \bar{p}_{K^+} - \bar{p}_{K^-}|^2} \end{split}$$

 $0.7 < MM(ep \rightarrow eK^+K^-X) < 1.1 \text{ GeV condition}$:

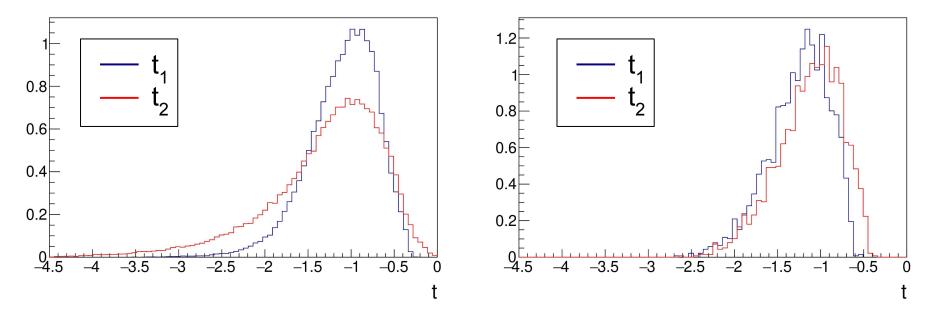


20

21

Reaction reconstruction requirements:

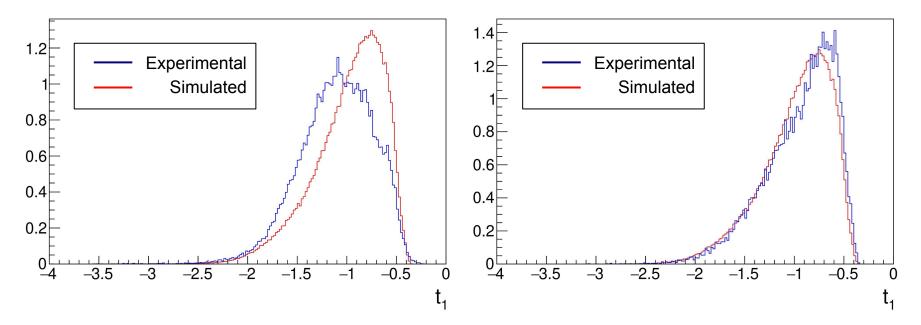
- $|MM^{2}(ep \rightarrow ep'K^{+}K^{-}X)| < 0.01 \text{ GeV}^{2}$
- 0.7 < MM(ep→eK⁺K⁻X) < 1.1 GeV
- $0.3 < MM(ep \rightarrow ep'K^{+}X) < 0.7 \text{ GeV}$
- 0.3 < MM(ep→ep'K⁻X) < 0.7 GeV



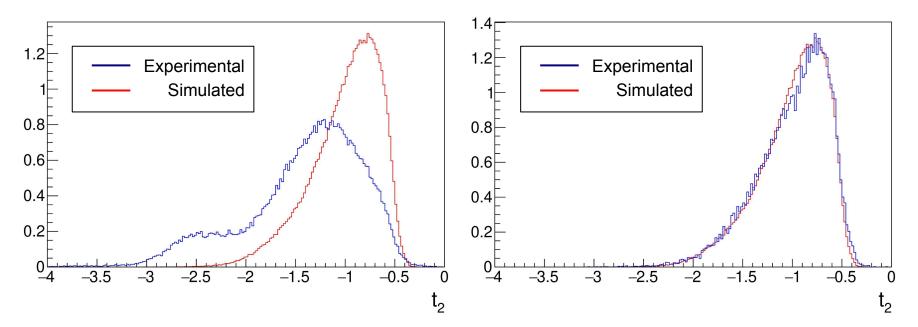
Two independent values of Mandelstam variable t:

$$t_1 = \sqrt{(|P_t - P_p|^2)} = \sqrt{(m_t - E_p)^2 - |\bar{p}_p|^2},$$

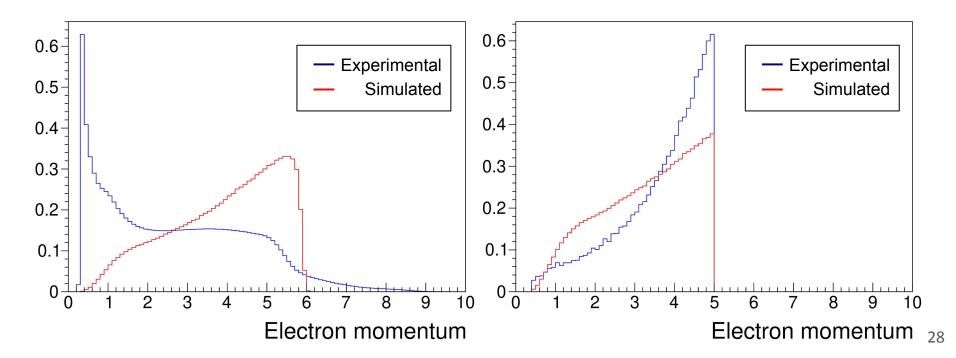
$$t_{2} = \sqrt{|P_{b} - (P_{e'} + P_{K^{+}} + P_{K^{-}})|^{2}}$$
$$= \sqrt{(E_{b} - (E_{e'} + E_{K^{+}} + E_{K^{-}}))^{2} + |\bar{p}_{e} - (\bar{p}_{e'} + \bar{p}_{K^{+}} + \bar{p}_{K^{-}})|^{2}}$$

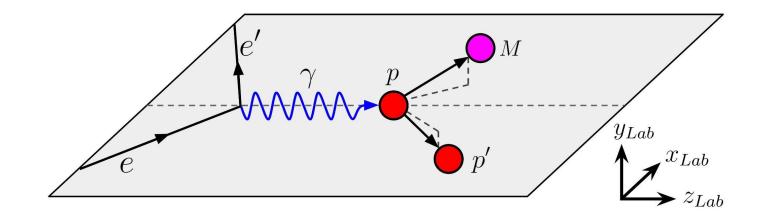


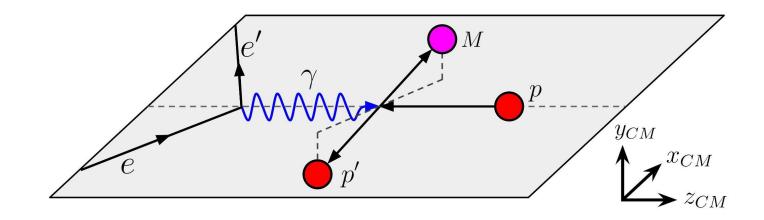
Simulations of the reaction of interest are vital to moments extraction. CLAS12-elSpectro was used for event generation.


Simulations were used to obtain information on the detector that could not be extracted from experimental data such as:

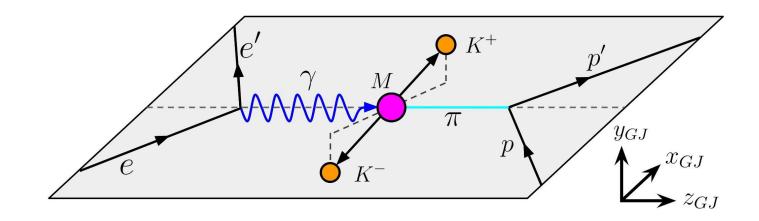
- Detector acceptance
- Detector efficiencies



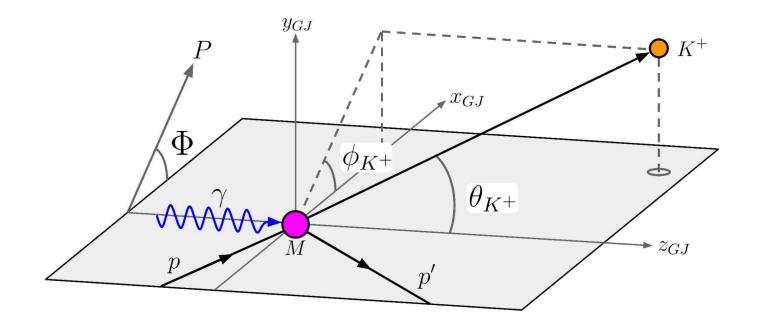




Lab frame:

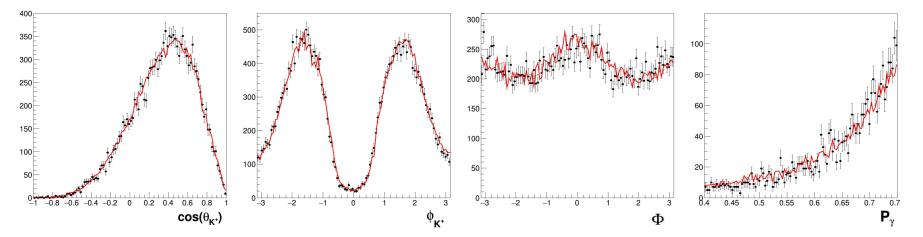


Centre-of-mass frame:



Gottfried-Jackson (GJ) frame:

Gottfried-Jackson frame important angles:

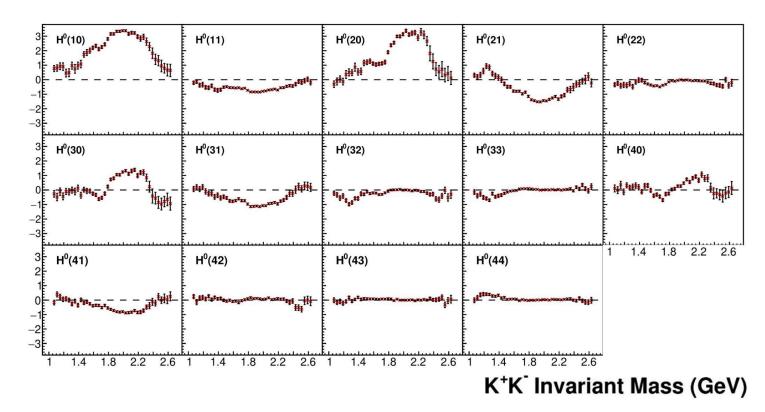


Angular distributions

Brufit was used for event-by-event maximum likelihood fitting to the angular distributions.

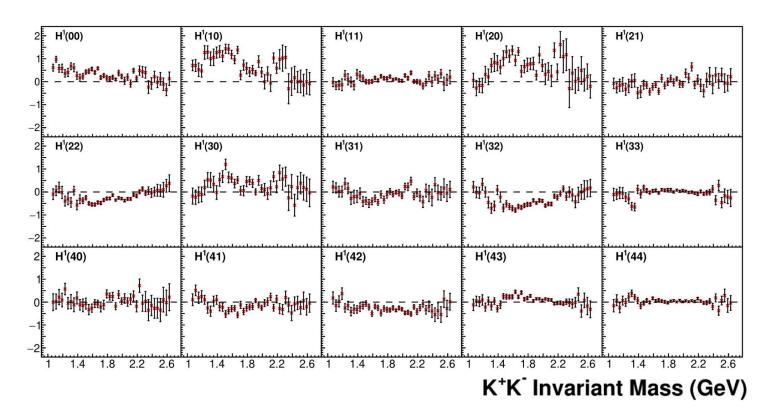
Fitting simulated (red) to experimental (black) data:

Grouping data

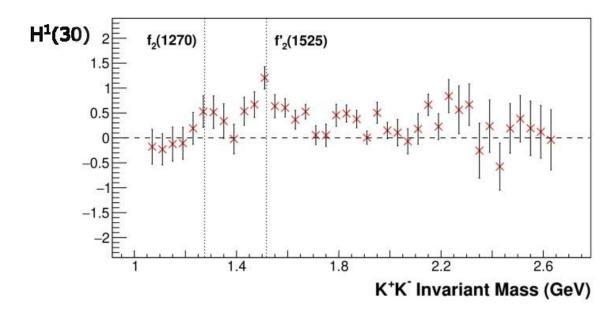

Experimental and simulated data were split into 40 group based on K+K- invariant mass.

Invariant mass of K⁺K⁻:

$$IM(K^+K^-) = M_M = |P_{K^+} + P_{K^-}| = \sqrt{(E_{K^+} + E_{K^-})^2 - |\bar{p}_{K^+} + \bar{p}_{K^-}|^2}$$



H⁰ moments


H¹ moments

H¹ moments

$$H^{1}(30) = \frac{12}{7}\sqrt{\frac{3}{5}}\operatorname{Re}(P_{0}^{(+)}D_{0}^{(+)*})$$

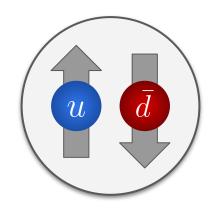
Outlook

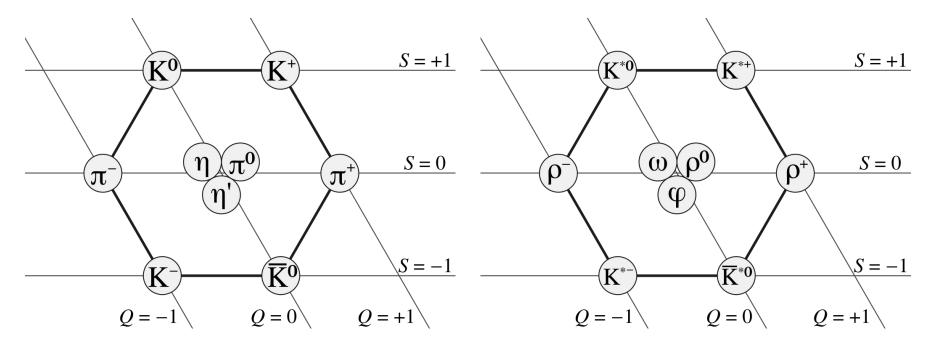
Topics of future research:

- Statistical studies on all the reaction reconstruction conditions
- Extraction of partial waves from moments
- Study of other reactions such as $ep \rightarrow ep'K^+K^-\pi^0$

Thanks for listening

Charlie Velasquez (charlie.velasquez@york.ac.uk)

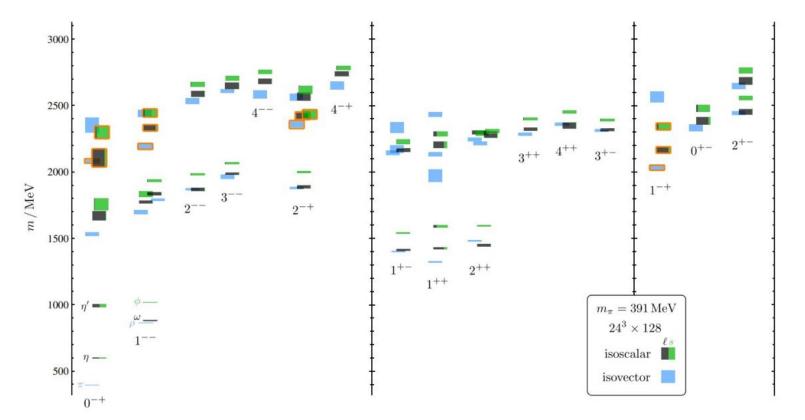


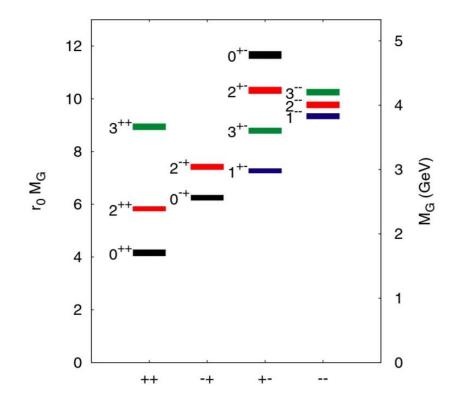

π^+ in the constituent quark model

$$Q = +1 \qquad I_z = +1$$

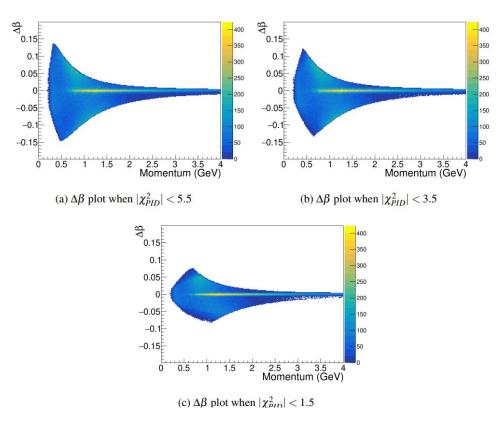
S = +1

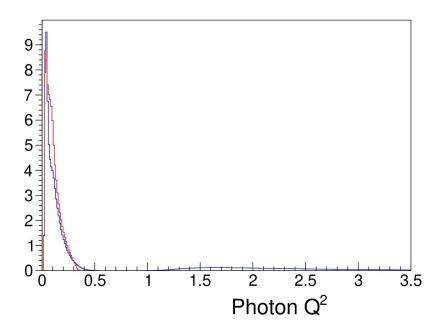
	d	u	8
Q – electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$
I - isospin	$\frac{1}{2}$	$\frac{1}{2}$	0
I_z – isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0
$S - \mathrm{strangeness}$	0	0	-1




Pseudoscalar, J=0

Vector, J=1




Event selection

Event selection

Before (blue) and after (red) angle and energy selection on scattered electron:

