Measurement of the coherent J/ψ electroproduction off ⁴He with the ALERT at 11 GeV

Whitney Armstrong CLAS Collaboration Meeting Sangbaek Lee

Nov. 15 2024

Physics Motivation: QCD in Nuclei

- The Gravitational Form Factors (GFFs) parametrize matrix elements of the Energy Tensor (EMT)
- GFFs related to mechanical properties of hadrons
 - Interpretations of the mass radii, pressure and shear forces densities
 - Gluon GFFs encode matter distribution \rightarrow Does it mimic the charge in Nuclei?
 - Is it possible to determine the gluon gravitational form factors of ⁴He?
 - Main goal of new beamtime proposal

Gravitational Form Factors

$$\begin{split} \left\langle p',s'|T^{a}_{\mu\nu}|p,s\right\rangle = &\bar{u}(p') \Big[\frac{1}{2}\gamma_{\{\mu}P_{\nu\}}A_{a}(t) + \frac{iP_{\{\mu}\sigma_{\nu\}\rho}q^{\rho}}{4M_{N}}B_{a}(t) \\ &+ \frac{q_{\mu}q_{\nu} - g_{\mu\nu}q^{2}}{M_{N}}C_{a}(t) + M_{N}\bar{C}_{a}(t)g_{\mu\nu}\Big]u(p), \qquad \sum_{a}\bar{C}_{a}(t) = 0, \ a = g, u, d, \dots \end{split}$$

Druck-term D(t)=4C(t) is related to the pressure distribution.

For example, in the Breit Frame,

$$p(r) = \frac{1}{6M} \int \frac{d\mathbf{\Delta}}{(2\pi)^3} e^{i\mathbf{\Delta}\cdot\mathbf{r}} t D(t)$$

The related radii are (Hatta,et.al. 2023)

$$\left\langle r^2 \right\rangle_s = 6 \frac{dA(t)}{dt} \bigg|_{t=0} - \frac{9D(0)}{2M^2} \quad \left\langle r^2 \right\rangle_m = 6 \frac{dA(t)}{dt} \bigg|_{t=0} - \frac{3D(0)}{2M^2} \quad \left\langle r^2 \right\rangle_t = 6 \frac{dA(t)}{dt} \bigg|_{t=0}$$

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

lleo

Nucleon Gravitational Form Factor (GFFs) A recent history

- First extraction of the quarks GFF [D_q(t)] using DVCS. Pressure and shear forces in the Breit frame displayed
- First extraction of the gluonic GFFs $[A_g(t) \text{ and } D_g(t)]$ on the proton using near-threshold J/ ψ photoproduction off the proton
- The theoretical predictions for nuclei GFFs using different models has been recently produced and published
- See earlier talks from Richard Tyson and Mariana Tenorio Pita

Gravitational Form Factor (GFFs)

From nucleon to spin zero nuclei

- ⁴He is
 - a tightly-bound system
 - spin-0 \rightarrow simpler structure for the electromagnetic and gravitational

$$\begin{split} \left\langle p',s'|T^{a}_{\mu\nu}|p,s\right\rangle =&\bar{u}(p') \Big[\frac{1}{2}\gamma_{\{\mu}P_{\nu\}}A_{a}(t) + \frac{iP_{\{\mu}\sigma_{\nu\}\rho}q^{\rho}}{4M_{N}}B_{a}(t) + \frac{q_{\mu}q_{\nu} - g_{\mu\nu}q^{2}}{M_{N}}C_{a}(t) + M_{N}\bar{C}_{a}(t)g_{\mu\nu}\Big]u(p) \\ =&\bar{u}(p') \left[\frac{P_{\mu}P_{\nu}}{M_{N}}A(t) + \frac{iP_{\{\mu}\sigma_{\nu\}\rho}q^{\rho}}{2M_{N}}J(t) + \frac{q_{\mu}q_{\nu} - g_{\mu\nu}q^{2}}{4M_{N}}D(t) + M_{N}\bar{C}^{a}(t)\right]u(p) \\ \longrightarrow \left\langle p'|T^{a}_{\mu\nu}(x)|p\right\rangle = \left[2P_{\mu}P_{\nu}A^{a}(t) + \frac{1}{2}(q_{\mu}q_{\nu} - g_{\mu\nu}q^{2})D^{a}(t) + 2M_{N}^{2}\bar{C}^{a}(t)\right] \\ \sum_{a}\bar{C}_{a}(t) = 0, \ a = g, u, d, \dots \end{split}$$

- Helium has a comparable mass to the J/psi
 - ⁴He: 3.73 GeV, J/ψ: 3.1 GeV

Proposed Measurement

- Coherent J/ψ production on ⁴He with CLAS12 and ALERT.
 - ALERT will run at high luminosity $L > 10^{35}$ cm⁻²s⁻¹ with a gas target
 - Kinematics will center in |t| around the first minimum of the charge form factor
 - Determine the existence and position of a minimum for the gluonic form factor for ⁴He.
 - **Measure** the |t| and E_{γ} dependence of the J/ ψ production cross section at low Q^2

- Hall A charge form factor
 - Phys. Rev. Lett. 112, 132503 (2014)

Objectives of Experiment

- 1. Determination of the diffraction minimum.
- Charge form factor has the first diffraction minimum at $|t| \sim 0.4-0.5 \text{ GeV}^2$.
- Does the matter distribution of the ⁴He follow the charge distribution?
- 2. Measurement of *t*-dependent cross sections
- Extract the GFFs of ⁴He.
- We separate the A and D form factor to achieve the pressure distribution using the D form factor.
- First extraction of GFFs of the light nuclei

Why ALERT?

ALERT offers

- 1. Large detector acceptance
- 2. PID to reject the incoherent background
- 3. Reconstruction of recoil momentum to determine |*t*|
- ALERT-CLAS12 coincidence trigger is essential component of this measurement.

Detector Acceptance

Topology	Particle	Detector	Condition	
1	e'	Forward Tagger	<i>p</i> > 0.5 GeV/c 2.5°<θ<4.5°	
		Forward Detectors	<i>p</i> > 1 GeV/c CLAS12 FastMC	
	⁴He	ALERT	<i>r</i> > 8 cm (ATOF)	
2	<i>l</i> + <i>l</i> -	Forward Detectors	<i>p</i> > 1 GeV/c CLAS12 FastMC	
	⁴ He	ALERT	<i>r</i> > 8 cm (ATOF)	

CLAS12

0.9

e

- ⁴He p was smeared out with 5% resolution.
- Topology 2 has higher geometrical acceptance

8

Caveat) BR($J/\psi \rightarrow e^+e^-$) = 5.971% $BR(J/\psi \rightarrow \mu^{+}\mu^{-}) = 5.961\%$

Background Channel

- Sources of main background
 - Topology 1: Accidental coincidence of any e' in FT and radiative tail ⁴He

Looking towards ALERT Run Group (RG-L)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Using ALERT Data (RG-L)

Is there a minimum in $\frac{d\sigma}{dt}$?

- ALERT uses the gaseous 4He target
- RG-L approved beam time:
 - ~26 fb⁻¹ integrated luminosity for the nuclei (coherent process)
- Enough to rule out a minimum with a few t-bins?

Does the charge distribution follow the gluon distribution?

Lessons from the RG-L

- With the ALERT Run Group Data
 - Verify and/or update estimates of cross section
 - Tune the proposal beam request with updated estimates
 - Possibly identify a minimum in differential cross section (or hints therein)?
- The ALERT run will provide important feedback for improvements to the new proposal
 - Efficiencies, acceptance, etc.

IERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- Possible detector changes for improved kinematic coverage
- Refine projected statistical and systematic uncertainties

12

New beam time proposal

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Estimated Signal/Background and Requested Beamtime

Topology	Particle	Detector	Condition	
1	e'	Forward Tagger	p > 0.5 GeV/c 2.5°<θ<4.5°	
		Forward Detectors	<i>p</i> > 1 GeV/c CLAS12 FastMC	
	⁴He	ALERT	<i>r</i> > 8 cm (ATOF)	
2	<i>l</i> + <i>l</i> -	Forward Detectors	<i>p</i> > 1 GeV/c CLAS12 FastMC	
	⁴ He	ALERT	<i>r</i> > 8 cm (ATOF)	

Signal (blue) is copious compared to Background (orange) for both Topology 1 (top) and Topology 2 (bottom).

Projected Results and Requested Beamtime

- To ensure that each bin has more than 10 counts, 450 fb⁻¹ is the nominal integrated luminosity for coherent processes. — RG-L approved: 26 fb⁻¹
- With ALERT and a factor of 2 luminosity upgrade, a luminosity of $L = 5x10^{34} \text{ cm}^{-2}\text{s}^{-1}$ is possible for the coherent process at a beam current 1.16 µA
 - the beam blocker limit: 1.3 µA (R. Paremuzyan, https://indico.ijclab.in2p3.fr/event/9131/contributions/28948/attachments/20755/28907/Paris Workshop 20 23.pdf
- We currently plan to request **100 days of beam** with ALERT and ⁴He target in CLAS12

Responses to the LOI

- We received the collaboration endorsement for the LOI and submitted it to the PAC52.
 - Thank you for the review!
- Well received by JLab theory group, theory report by J.W. Qiu and R. Edwards sent to contact person privately.
 - "Such measurement could address important questions concerning the respective distributions of quarks and gluons inside a nucleus, such as does the gluonic form factor have a similar minimum as the charge form factor?"
- PAC report is public. Assigned reader was F. Yuan (LBNL).
 - Gluon radius measurement is well-received.
 - "The diffraction minimum for light nuclei target is an interesting subject, as it can be compared to the relevant charge form factor measurements."
 - Phenomenological concern about small skewness for GFF extraction and interpretation of the result
 - To be discussed at the full proposal

Impact of this work

- First measurement for the differential cross section of coherent J/ψ production on ⁴He.
 - Top: quote from T. Toll and T. Ullrich, PRC 87 (2013)
- Lots of fruitful theory discussions about nuclear GFF is ongoing with new publications from independent groups, especially this year.
 - F. He and I. Zahed PRC 109, 110 (2024).
 - A. G. Martín-Caro, M. Huidobro, Y. Hatta PRD 110 (2024)
 - R. Wang, C. Hang and X. Chen PRC 109 (2024).
- A partial answer to PAC52's question can be found in F. He and I. Zahed's preprint (arXiv:2407.09991).
 - Careful approach to the interpretation? Yes.
 - No show-stopper for the measurement.

Exclusive diffractive processes in electron-ion collisions

Tobias Toll and Thomas Ullrich Phys. Rev. C **87**, 024913 – Published 26 February 2013

A. Predictions for *e*A collisions

To date, there exist no experimental data on diffractive vector meson production in eA. However, these measurements

Threshold photo-production of J/Ψ off light nuclei

Fangcheng $\mathrm{He}^{1,\,2,\,*}$ and Ismail Zahed $^{1,\,\dagger}$

We note that the value of the center of mass energy used W = 10 GeV implies a low value of the skewness parameter from Fig. 2, suggesting that higher corrections in ξ to (14) maybe needed. However, we recall that for the nucleon case, dual gravity arrives at a similar result (in the large N_c limit) without assuming large skewness [21].

Summary

- We propose to use CLAS12 and ALERT to study QCD in nuclei
 - Coherent J/psi electroproduction on ⁴He at 11 GeV
 - First extraction of GFFs for ⁴He
- Next steps towards the proposal
 - Careful investigation of all backgrounds with simulation
 - Update the projection of the latest cross section models
 - Refine measured cross-section binning for the optimal GFF extraction
 - Perform the impact study on the GFFs using detailed simulation data
- We invite more CLAS collaborators to the full proposal for this high impact experiment

Backup

Allowed Phase Space

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Resolutions in J/ψ Mass

MC Simulation

Event Generator

2M events with Lager ($E_{beam} = 10.6 \text{ GeV}$)

(https://eicweb.phy.anl.gov/monte_carlo/lager/)

Model

Based on T-S. H. Lee's calculation for E_{beam} = 11 GeV

E_{,,*} > 8.5 GeV

Final states

- A. Scattered electron
- B. Recoil He4

C. $J/\psi \rightarrow e^+e^-$

Possible detection scenarios

A-B, A-C, B-C, A-B-C

Total cross sections

$$σ$$
 (E_{γ*} > 8.5 GeV) = 4.7 ×10⁻⁵ nb
 $σ$ (E_{γ*} > 8.5 GeV, J/ψ→e⁺e⁻) = 2.6 ×10⁻⁶ nb

Pro of detecting C) Clear sign of J/ψ Con of detecting C) 6% BR and reduced overall acceptance

Lepton kinematic variables

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Forward Tagger Coverage

p > 500 MeV/c $2.5^{\circ} < \theta < 4.5^{\circ}$

From A. Acker et al, The CLAS12 Forward Tagger (NIM A 959, 163475 (2020))

ALERT - Extend upstream target for low |t|

ALERT Beamtime and Luminosity

Configurations	Proposals	Targets	Beam time request	Beam current	$Luminosity^*$
			days	$\mathbf{n}\mathbf{A}$	$n/cm^2/s$
Commissioning	All^\dagger	1 H, 4 He	5	Various	Various
А	Nuclear GPDs	$^{4}\mathrm{He}$	10	1000	6×10^{34}
В	Tagged EMC & DVCS	$^{2}\mathrm{H}$	20	500	$3 imes 10^{34}$
С	All^\dagger	$^{4}\mathrm{He}$	20	500	3×10^{34}
TOTAL			55		

The beam current is lowered with thicker target

Luminosity remains the same

Total 30 days, 10 days of 60 nb⁻¹/s and 20 days of 30 nb⁻¹/s for the nucleon.

This is 104/4 = 26 fb⁻¹ for the nuclei.

Resolution in |t|

 ⁴He *p* was smeared out with 5% resolution.

Background channels

Incoherent channel background

- ex) DIS
- Should be suppressed by detecting the ⁴He
- ISR + elastic scattering
 - Distinguished by the missing mass

Accidentals

- Møller background, especially at the Forward Tagger
 - https://www.ge.infn.it/~batta/jlab/ft-tdr.2.2.pdf

Accessing the GFFs and Binning

$$\begin{aligned} \frac{d\sigma}{dt} &= \text{Kinematic Factor}(E_{\gamma}, t) \times |A(t) + \xi^2 D(t)|^2 \\ \xi &= \frac{t - M_{J/\psi}^2}{2M_{^2He}^2 + M_{J/\psi}^2 - 2W^2 - t} \end{aligned}$$

$$\begin{cases} A(t) + \xi_1^2 D(t) = F[\sqrt{\frac{d\sigma}{dt}}_1, \xi_1; t] \\ A(t) + \xi_2^2 D(t) = F[\sqrt{\frac{d\sigma}{dt}}_2, \xi_2; t] \end{cases}$$

- 2 bins in Eγ
 Bin 1: [8.5, 9 .5] GeV
 Bin 2: [9.5, 10.6] GeV
- 9 bins in |t|

Model Dependence

$$\begin{pmatrix} \frac{d\sigma}{dt} \end{pmatrix} = 2 \times \frac{e^2}{64\pi(s - m_N^2)^2} \times \left(\frac{f_V}{M_V}\right)^2 \times \mathbb{V}_{h\gamma V} \times 2\kappa^2 \times \left[A(K,\kappa_T) + \eta^2 D(K,\kappa_T,\kappa_S)\right]^2 \times \tilde{F}(s) \times \frac{8m_N^2}{m_N^2}, \qquad \text{K. Mamo and I. Zahed,} \\ = \mathcal{N}^2 \times \frac{e^2}{64\pi(s - m_N^2)^2} \times \frac{\left[A(K,\kappa_T) + \eta^2 D(K,\kappa_T,\kappa_S)\right]^2}{A^2(0)} \times \tilde{F}(s) \times 8, \qquad \text{(III.31)}$$

- ----- AHe ----- A^N 0.8 ▲ 0.6 0.4 0.2 0.0 L 0.0 0.4 0.6 0.2 0.8 k^2 (GeV²) -10 g -20 -30 DHe ----- D^{He} 16D^A ---- 16D^N ······ 16D 0.0 0.2 0.4 0.6 0.8 k^2 (GeV²)
- FIG. 9: A- and D-form factors for Helium-4 obtained using Woods-Saxon potential.

A. G. Martín-Caro, M. Huidobro, and Y. Hatta, PRD 108, 034014 (2023)

FIG. 3. The *D* gravitational form factor of the skyrmions with B = 4, 5, 6, and 7, normalized by *B*, for the $\lambda = 0$ case.

Model Dependence

Caveat: this is for the EIC kinematics.

FIG. 3. Ratio of the differential cross section for J/ψ coherent production on ⁴He to the same quantity for the nucleon target at t = 0 as a function of -t at $x = 10^{-3}$. Relative errors of 10% and 15% have been considered on the quantities B_0 and σ_2 , respectively (see text and the Supplemental Material [31]).

FIG. 4. Ratio of the differential cross section for J/ψ coherent production on ⁴He to the same quantity at t = 0 as a function of -t: the IA result at x = 0.05 is compared with the full one at $x = 10^{-3}$. Relative errors of 10% and 15% have been considered on the quantities B_0 and σ_2 , respectively (see text and the Supplemental Material [31]).

V. Guzey, M.Rinaldi, S.Scopetta, M. Strikman, and M. Viviani, PRL 129, 242503 (2022)

VMD Model Framework

From the photoproduction to electroproduction,

$$\sigma_{elec.} = \sigma_{photo.} imes \left(\frac{M_V^2}{Q^2 + M_V^2} \right)^m imes (1 + \epsilon R(Q^2))$$

ex) A. Airapetian et al, "Exclusive Leptoproduction of rho0 Mesons on Hydrogen at Intermediate W Values", EPJ C 17 (2000) 389-398

