Open-charm production near

Dr. Sebouh Paul UC Riverside 11/15/2024

 (v, \vec{q})

Motivation

- Open charm production is when c and c are produced and end up in different hadrons in the final state.
- The lightest open-charm final state that can be produced in γp (or $\gamma^* p$) scattering is $\overline{D}^0 \Lambda_c^{+}$.
 - Could take place in free or bound proton
- Measuring open-charm production in ep scattering near-threshold can reveal information about J/ψ (closed-charm) production
- This open-charm production mechanism can also be used to probe the diquark part of the proton wavefunction

(b)

*Phys.Lett.B498:23-28,2001

Enhanced cross-section due to di-quarks

- The presence of diquark+quark in a proton's wavefunction may enhance the cross-section of open charm production due to events where the γ strikes a diquark
- String breaking produces the cc pair.
- This ends up being a simpler process (fewer string breakings) than if a solitary quark (non-diquark state) is struck.

How is open-charm related to closed-charm (J/ψ) ?

Open charm is expected to have larger cross section than J/ψ , based on measurements well above threshold

https://inspirehep.net/literature/553290

Existing measurements and predictions

- Upper limit set by SLAC measurement near threshold
- Closest non-zero measurement to threshold is at >2x the threshold
- Two independent predictions of $\sigma = O(10-100)$ nb near threshold
- For comparison, J/ψ has been measured near threshold by GlueX at JLab.

Possible measurement with CLAS12 detector

- 10.6 GeV e- beam
- Forward tagger can measure electrons as low as 0.5 GeV:
 - Energy transfer in quasi-real photoproduction up to 10.1 GeV, while threshold for γp→ $\overline{D}^0\Lambda_c^+$ is v=8.7 GeV
- Detection strategies:
 - Either \overline{D}^0 or Λ_c^+ decay-product candidates can be detected, with the other charmed hadron inferred from missing mass (H target only)
 - Detect decay product candidates from both charmed hadrons
 - Displaced vertex search (\overline{D}^0 or Λ_c^+ decays downstream of a thin target)

Open-Charm Production (continued)

- Cylindrical Shell Structure (CYSS) With Statistic Way Being Mit data and and and and Morth End-Wheels (EW) Service Barrel (SB)
- To improve the vertex resolution, we wrote a letter of intent to borrow the MVTX detector from sPHENIX:
 - Pixel detector with pitch 27 μm
 - \circ allows vertex resolution of ~5 µm.
 - Boosted lifetimes of charmed hadrons are O(100 μm)
 - Requiring one or more hadrons to have vertices >3σ downstream of target could reduce background by several orders of magnitude.
 - Acceptance as shown: 8.7° 90°

sPHENIX MVTX

CLAS12 SV

CLAS12 momentum and angle resolutions

Most charged particles in CLAS12 have their momentum and angle determined by the drift chambers

These provide sufficient resolution for determining the invariant and missing mass of the charmed hadron's daughter particles.

DC – Tracking Specifications						
PARAMETER	SPECIFICATION					
Angular coverage	5° – 40° (50% φ-coverage at 5°)					
Momentum resolution	dp/p < 1%					
θ Resolution	1 mrad					
	1 mrad/sinθ					
Luminosity	10 ³⁵ cm ⁻² s ⁻¹					

Bump-hunting

- A standard practice to find a resonance signal on top of a background is to fit invariant mass distribution to a gaussian plus polynomial
- Yields or upper-limits can then be extracted from the fit.

Preferred decay channels:

- All daughters are charged
 - Optimizes mass resolution to improve bump-hunt
- Small number of daughter particles
- Relatively large
 branching ratio

Event generator studies

For each event, first determine the electron kinematics*, requiring 8.7 < v < 10.1 GeV and $2.5^{\circ} < \theta < 4.5^{\circ} **$:

$$rac{d\sigma}{dy\,d heta} \propto rac{1-y+y^2/2}{y\sin^2rac{ heta}{2}} \,\, imes \sigma_{\gamma p}^{
m calc}(
u)$$

Next, assume that the γ^*p becomes a \overline{D}^0 and Λ_c^+ pair with uniform probability within the available phase space

Finally, allow $\overline{D}{}^0$ to decay uniformly in phase space to $K^+\pi^-$ and the $\Lambda_c^{\ +}$ to decay to $K^-\pi^+p$

Position of the decays determined by exponential distribution with:

$$\ell = v au \gamma \equiv c au eta \gamma \equiv rac{c au}{m} P$$

*derived from the conversion formula from quasi-photoproduction (Q²~0) to real photoproduction formulas

**8.7 GeV threshold for the open charm production, the other limits due to CLAS12 Forward Tagger acceptance

Momentum distributions

Daughter-particle momentum distributions

Longitudinal vertex-cut efficiency

cutoff was determined as a function of foil thickness

Acceptance studies with GEMC

- Generated 96k events with Λ_c^+ and \overline{D}^0 decaying into $K^-\pi^+p$ and $K^+\pi^-$.
- Run events through GEMC with CLAS12 detector
- Reconstructed the electron in the FT and charged hadrons with the DC.
- Find combinations of charged hadrons
 - \circ Two hadrons with opposite charge, reconstruct invariant mass as if it is $K^{*}\pi^{-}$
 - \circ Three hadrons, with one negative charge, and the other two positive. Reconstruct mass as if it's K⁻π⁺p
- Fit invariant mass distributions as gauss+poly
 - Efficiency (including acceptance) = (Integral of gaussian)/(number of generated events)
 - Mass resolution = sigma of gaussian.

\overline{D}^0 candidates

 Λ_{c}^{+} candidates

2.45

2.40

Expected yields

Quantity	К-π+р	Κ+π-	units	notes						
Free proton xs (lower limit)	0.0082	0.0082	nb	σ_γp calculated by Du et al, evaluated at η=0.5			converted to σ_ep	[Eur. Phys. J. (C 80, 1053 (2020)]	
Free proton xs (upper limit)	0.0328	0.0328		same, evaluated at η=1.0						
Z/A	0.44	0.44		evaluated for 9Be						
Tot luminosity	1.30E+08	1.30E+08	nb^-1	100 days, 50% P	AC eff. 3e34 cm-	-2s-1, with 5-foil	100 μm Be target at 85 nA, per nucleon			
Branching ratio	6.26%	3.88%		PDG						
CLAS12 efficiency including geometric acceptance	3.9%	19.8%		GEMC						
MVTX geometric acceptance	74.4%	91.4%		add cut: 8.7<0<9	7<0<90 deg					
MVTX efficiency (not including acceptance)	51%	64%		assuming 80% reconstruction efficiency per daughter particle						
Vertex cut efficiency	12%	34%		assuming 100 µm per foil 250 µm cut product of the above factors						
Expected signal events	52 - 208	717 - 2867								
				Climax.	/	11	2		\	
Updated since the LOI			$\sigma_{en} =$	$\int_{-\infty}^{9 \max} \frac{\alpha}{-\sigma_{\gamma n}} (\nu$	(1 - y + 1)	$(Q_{max}^{-2} - Q_{max}^{-2})$	2))			
To be refined with future studies				$J_{y_{\min}} \pi y$		vinax vmi	"/J			
expected yields										

Conclusions

- Only an upper limit has been measured for open-charm production near threshold, unlike closed-charm (J/ψ) production
 - May reveal insights regarding J/ψ production processes.
- Open-charm near-threshold cross sections may be enhanced by diquark configurations in proton, and therefore serve as a useful probe for diquark.
- CLAS12 detector at JLab may be well suited for measuring open-charm production
 - Monte-Carlo with GEMC show that the efficiency (including acceptance) is O(20%) for the $\overline{D}^0 \rightarrow K^+\pi^-$ channel
 - Further work:
 - Incorporate MVTX into GEMC, and determine its efficiency and vertex resolution

Backup slides

D0 versus D0*

Kinematics of events in which D0 bar is produced directly (rather than through the decay of a D0* bar) have similar kinematics to those in which a D0* bar is produced

22

Estimates of background from existing CLAS12 data (RGA)

*Note: no cut was made on the missing mass, since missing-mass distribution will be smeared when using a foil (nuclear) target.

Useful for estimating background rates for the experiment with MVTX

Geometric acceptance of the MVTX

- Requiring all three Λ_c⁺ decay products to be detected by MVTX reduces acceptance by factor of ~2
- Requiring at least 2 decay products (of either particle) to be in MVTX has less of an acceptance loss
- Requiring at least 1 particle in MVTX has almost no acceptance loss.

With missing mass cut (RGA)

