Measurements of the Cos ϕ and Cos2 ϕ Moments of the Unpolarized SIDIS π^+ Cross-section at CLAS12

Motivation

- Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments allow us to address questions about the 3D structure of nucleons
- Azimuthal modulations in unpolarized SIDIS cross-section for charged pion electroproduction can give access to the Cahn and Boer-Mulders effects
 - **Boer-Mulders Effect:** Sensitive to the correlation between the quark's transverse momentum and intrinsic transverse spin in an unpolarized nucleon
 - Cahn Effect: Sensitive to the transverse motion of quarks inside the nucleon
- A non-zero Boer-Mulders requires quark orbital angular momentum contributions to the proton spin (aspect of the proton missing spin puzzle)

SIDIS Cross-Section and Boer-Mulders

The lepton-hadron Unpolarized SIDIS Cross-Section:

The Boer-Mulders and Cahn effects are present in the Structure Functions:

Reaction Studied: $ep \rightarrow e\pi^+(X)$

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π⁺) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (β) and momentum

Analysis Cuts:

• SIDIS Cuts:

• W > 2 GeV

 $\circ \quad Q^2 > 2 \text{ GeV}^2$

• Other Analysis Cuts:

- $\circ \quad p_{\pi^+} \, Cut: 1.25 \; GeV < p_{\pi^+} < 5 \; GeV$
- \circ θ -angle Cut: 5° < $\theta_{particle}$ < 35°
- y < 0.75 (minimize other background processes)
- \circ x_F > 0 (minimize contributions from target fragmentations)
- $\circ~$ Missing Mass Cut: M_x > 1.5 GeV (limit on exclusive events)
- Fiducial Cuts (e.g., accounts for bad channels present in data) UCONN | UNIVERSITY OF Argonne 4

Using Data from RG-A Fall 2018 (Pass 2)

10.6 GeV Polarized Beam Unpolarized Liquid Hydrogen Target Inbending Forward Tracking Only

Analysis Procedure

Experimental extraction of cross-section

- N_0 = Life-time corrected incident electron flux
- BC = factor which evolves bin-averaged differential cross-section

SIDIS MC are generated with LEPTO event generator

Science Jefferson Lab

Office of

MC HIPO files available here:

(1.4T) /lustre24/expphy/volatile/clas12/sdiehl/osg_out/clasdis/inb-clasdis_*.hipo

UCONN | UNIVERSITY OF Argonne

(5.8T) /cache/clas12/rg-a/production/montecarlo/clasdis_pass2/fa18_inb/clasdis_rga_fa18_inb_50nA_10604MeV-0*.hipo

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

UCONN | UNIVERSITY OF Argonne

Office of Jefferson Lab C

Acceptance Corrections and Bin Migration Study

Acceptance Matrix: A_(i, j) describes both Acceptance (including geometric acceptance and detector efficiency) and Bin Migration

 $A_{(i, j)} = \frac{\text{Number of Events Generated in bin } j \text{ but Reconstructed in bin } i}{\text{Total Number of Events Generated in the } j \text{th bin}}$

• Acceptance Unfolding:
$$Y_i = A_{(i,j)}X_j + \beta_i \Leftrightarrow X_j = A_{(i,j)}^{-1}(Y_i - \beta_i)$$

where:

- Y_i = Number of events experimentally measured in the *i*-th bin
- X_j = Number of acceptance-corrected events in the *j*-th bin
- β_i = Number of events from outside the signal region measured in the *i*-th bin

Using the Multidimensional Kinematic Bin from prior example

Multi-Dimensional Unfolding

UCONN | UNIVERSITY OF CONNECTICUT Argonne

<u>Sector Dependence in ϕ_h Distributions</u>

Refinement of Fiducial Cuts (on the Electron)

FIG. 10. χ^2 weighted drift chamber occupancy in the x and y detector variables for the three layers (R1, R2, R3) and six sectors. The black lines correspond to the DC fiducial cuts.

*From Valerii Klimenko UCONN UNIVERSITY OF Argonne

Refinement of Fiducial Cuts (on the π^+ pion)

These images show the % Difference between the normalized event counts of where the π + pion hits each layer of the Drift Chamber in the Data and Monte Carlo datasets

12

The Red lines show where the cuts are defined for each DC layer

Impact of New Fiducial Cuts

 χ^2

13

5000

50

200

150

100

250

300

(Smeared)

350

0.006

0.004

0.002

smoother distribution of ϕ_h

(Pion) Sector Correlations with Cos(φ) and Cos(2φ) Measurements

Before Newest Fiducial Cuts

After Newest Fiducial Cuts

Office of Science Jefferson Lab C

The new Fiducial Cuts reduce Sector dependence across many of my kinematic bins, though some dependence still remains

Will plan to account for these dependencies when taking the final measurements

(Pion) Sector Correlations with Cos(φ) and Cos(2φ) Measurements

The shaded regions show the ranges of sector dependence on these measurements

(Pion) Sector Correlations with Cos(φ) and Cos(2φ) Measurements

The shaded regions show the ranges of sector dependence on these measurements

Introduction to Proton Tagging Cuts

- To study contributions from exclusive ρ^0 productions, a cut was developed with Harut Avakian
 - Cut required the proton to be tagged
 - The cut requires $M_x > 1.35$ GeV based on the ep \rightarrow e'p'(X) events within my SIDIS sample
- To demonstrate the effects of this procedure, the following slides will show the Cosine Moments' dependence on Q², x_B, and y in the following regions with/without the Tagged Proton/Cuts
 - Results integrated within $z-P_{T}$ ranges of **z**: 0.23-0.77 and P_{T} : 0.05-0.46

Office of Jefferson Lab

Office of

Cos(ϕ) and Cos(2 ϕ) as functions of Q² and y - Tagged Proton

nerimental Data: Q² vs v (lepton energy

Science Jefferson

Magnitude of $Cos(\phi)$ decreases as a function of Q^2 for fixed y

Impact of <u>Just Tagging the Proton</u> on the Moment Measurements:

- Magnitude of Cos(φ) at lower Q² increases with the Tagged Proton (converges back to more similar values at higher Q²)
- Magnitude of Cos(2 ϕ) decreases (especially at lower Q²) with the Tagged Proton
- Behavior of the moments across different y bins seems consistent aside from the shifts in the magnitudes

UCONN UNIVERSITY OF Argonne

$Cos(\phi)$ and $Cos(2\phi)$ as functions of Q^2 and $y - M_x$ Cuts

xperimental Data : Q² vs y (lepton energy loss fraction

Experimental Data: Q² vs x_B

Experimental Data: z vs P.

Magnitude of $Cos(\phi)$ decreases as a function of Q^2 for fixed y

Impact of Proton M_x Cuts on the Moment Measurements:

- Magnitude of $Cos(\phi)$ decreases in some regions of these plots (namely at higher Q^2/y bins)
- Magnitude of Cos(2φ) increases (or at least, becomes more negative)
- All agree within ranges of statistical uncertainty

19

Office of

Science Jefferson

Cos(ϕ) as functions of x_B and Q² - Tagged Proton/M_x Cut

Magnitude of $Cos(\phi)$ decreases with increasing Q² at fixed x_B

Fixed x_B (~0.27): Tagging increases Cos(ϕ) magnitude but Q² dependence is mostly within statistical uncertainty

20

Office of

Science Jefferso

$Cos(\phi)$ as functions of x_{B} and Q^{2} - Tagged Proton/M_x Cut

Magnitude of $Cos(\phi)$ decreases with increasing Q² at fixed x_B

Fixed x_B (~0.27): Tagging increases Cos(φ) magnitude but Q² dependence is mostly within statistical uncertainty **Fixed x_B (~0.32):** Tagging significantly increases Q^2 dependence of Cos(ϕ)

The points with the Proton M_x cut are within the statistical uncertainties of the Untagged Proton measurements

Office of

Science Jefferso

Cos(2 ϕ) as functions of x_B and Q² - Tagged Proton/M_X Cut

22

Magnitude of Cos(2 ϕ) becomes more negative with increasing x_B at fixed Q²

Fixed x_B (~0.27): The M_X cut increases Cos(2 ϕ) magnitude and increases Q² dependence (and uncertainty...) Tagging slightly increases the magnitude, but this increase and the Q² dependence are within statistical uncertainty

Office of Science Jefferso

xperimental Data : Q² vs v (lepton energy loss fr

Experimental Data : Q² vs x_n

Cos(2 ϕ) as functions of x_B and Q² - Tagged Proton/M_x Cut

perimental Data : Q² vs v (lepton energy loss fr

Experimental Data : Q² vs x_n

Magnitude of Cos(2ϕ) becomes more negative with increasing x_B at fixed Q²

Fixed x_B (~0.27): The M_x cut increases Cos(2ϕ) magnitude and increases Q² dependence (and uncertainty...) Tagging slightly increases the magnitude, but this increase and the Q² dependence are within statistical uncertainty **Fixed x_B (~0.32):** Both are mostly within statistical uncertainty, with a single exception for low Q^2 with the M_x cut

UCONN UNIVERSITY OF Argonne

Office of

Science Jefferso

$Cos(\phi)$ Moments as Functions of z

Unfolded with Bayesian Method Q²-y Bin 5

• The Proton M_x Cut causes more fluctuations but is overall consistent with the untagged measurements (differences most likely due to statistics)

U.S. DEPARTMENT OF Office of Science Jefferson Lab C 24

Experimental Data Q 2 vs. y (lepton energy loss fraction

O²-v Bin: 5 — z-P., Bin: Al

Experimental Data z vs. P

clos

Cos(φ) Moments as Functions of z

• The Proton M_X Cut causes more fluctuations but is overall consistent with the untagged measurements (differences most likely due to statistics)

U.S. DEPARTMENT OF

Office of Science Jefferson Lab C

• z/P_T dependence is consistent in other Q²-y bins for a fixed region of x_B

UCONN UNIVERSITY OF Argonne

Outlook on Radiative Effects with RADGEN

- I've been working on incorporating RADGEN into my Monte Carlo Simulations to help develop Radiative Corrections in this analysis
- Using RADGEN requires me to switch from using 'clasdis' to Pythia for event generation
- The version of Pythia used is a (slightly) modified version of Pythia 6 used by the EIC, with changes having been made to more closely resemble the 'clasdis' and 'claspyth' event generators already available on the OSG

26

Office of Jefferson Lab

Office of

Summary

- Improved the amount of available MC statistics through more file production
- Improved the agreement between Data and MC files and reduced sector-dependent fluctuations in corrected ϕ_h distribution with improved fiducial cuts
- Investigating the impact of vector meson contributions via the Proton M_X cuts
- Investigating potential methods of introducing radiative effect through integrating RADGEN into my event generators
- Will be performing full closure tests to assess the reliability of unfolding procedures and assign systematic uncertainties

Questions?

Acknowledgments and Thanks

- Contributions made by other members of the CLAS Collaboration and researchers at Argonne National Lab
- This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-06CH11357

Backup Slides

Cosine Moments as Functions of z – Tagged Proton

UCONN UNIVERSITY OF Argonne

U.S. DEPARTMENT OF

ENERGY

Office of Science Jefferson Lab C

Cos(ϕ) and Cos(2 ϕ) Measurements as functions of x_B - Tagged Proton

Cos(ϕ) and Cos(2 ϕ) Measurements as functions of x_B – Proton Cuts

Configuration of Pythia with RADGEN

- Mainly used the configurations given by the 'claspyth' steering file: <u>input.10.6gev.with-comments</u>
 - Changes to the configurations detailed below

Ranges/Values used for generating Q², y, x_B, W², and the beam/target proton energies:

- Q²: 0.85 to 20.0 GeV² (changed from the claspyth default of 0.00001 to 15.0 GeV²)
- y: 0.15 to 0.95
- x_B: 0.05 to 0.95 (from clasdis)
- W²: 4 GeV² (min)
- Beam Energy: 10.6 GeV
- Proton Target Energy: 0 GeV (at rest)

Additional changes added to better match clasdis:

- Changed the F2-Model/R-Parametrization from "ALLM,1990" to "F2PY,1998"
- PARJ(33) = <u>0.8</u> changed to <u>0.3</u>
- PARJ(41) = <u>0.3</u> changed to <u>1.2</u>

***PARJ(33)** defines the energy threshold stopping parton fragmentation and forming two hadrons. ***PARJ(41)** gives the 'a' parameter of the symmetric Lund fragmentation function

Office of Jefferson Lab

Event Selection (Full PID)

The RG-A Analysis Overview and Procedures note goes into detail about the common particle identification scheme used for RG-A

(See: <u>https://clas12-docdb.jlab.org/DocDB/0009/000949/001/RGA_Analysis_Overview_and_Procedures-08172020.pdf</u>)

Electron PID Criteria:

- Detected in Forward Detector
- > 2 photoelectrons detected in the HTCC
- > 0.07 GeV energy deposited in the PCAL
- Sector dependent sampling fraction cut

UCONN | UNIVERSITY OF CONNECTICUT Argonne

- "Diagonal cut" for electrons above 4.5 GeV (HTCC threshold)
- y < 0.75, not strictly an "electron cut", but sets the min electron energy approximately > 2.4 GeV

Pion PID Criteria:

- Detected in Forward Detector
- p > 1.25 GeV
- Refined chi2pid cuts

5D Unfolding – Iteration Test

Using Q^2 -y-z- P_T - ϕ_h Multidimensional Bins

Modulated Unfolding Closure Tests

• Modulated the MC distributions using the formula:

Weight = $1 + B \cos(\phi_h) + C \cos(2\phi_h)$

- Gives the weight for each MC event based on generated $\varphi_{\rm h}$
- Parameter values currently being used in this image:

(Same for every z- P_T bin)

- B = -0.05
- C = 0.025

Office of Science Jefferson Lab

- Modulated MC REC is then unfolded using the un-modulated response matrix (in 1D and Multi-Dim examples) and compared with 'MC TRUE'
 - MC TRUE is the modulated MC GEN distribution
 - Also performed a closure test of unfolding the un-modulated MC REC distribution with the un-modulated response matrix to ensure the method was applied properly

Modulated Unfolding Closure Tests

The parameters used for weighing modulations below are:

B = -0.5 and C = 0.025

Results show that an unmodulated Simulation can correct distributions with modulations

Other Unfolding Closure Tests

Other closure tests being used to check that Unfolding is done properly:

- Replace the experimental data with the reconstructed Monte Carlo (no modulations)
 - Should return the generated (i.e., MC TRUE) distribution

Link to more Images:

https://userweb.jlab.org/~richcap/Interactive_Webpage_SIDIS_richcap/Interactive_Unfolding_Page_Updated.html

39

Momentum Corrections from Exclusive Events

- Momentum corrections are developed for the RG-A data being used in this analysis
- Designed to correct for kinematic-dependent reconstruction issues in the experimental data using well-understood reactions
- Use exclusive reactions to correct the particles' momentum as sector-dependent functions of the particles' measured azimuthal angle (ϕ_{lab}) and momentum
 - The primary reaction used for the electron and π^+ pion is $ep \rightarrow e'\pi^+(N)$
 - Elastic scattering process also used to help correct the electron momentum
- Developed from momentum 4-vector conservation to calculate the ideal momentum of a particle from exclusive reactions based on the kinematics of the other particle(s)
 - Correction is taken by plotting the difference between this calculation and the measured momentum as functions of the measured momentum and ϕ_{lab}

ENERGY Office of Jefferson Lab C

Momentum Corrections from Exclusive Events

These plots show Missing Mass vs. particle momentum in 3 ϕ bins for all 6 sectors of the detector before/after momentum corrections – **Corrections are quadratic functions of \phi and momentum**

Monte Carlo Smearing

- Momentum Smearing Corrections are designed to match the resolution effects between MC and Experimental data
- Uses exclusive reactions to compare the widths of distributions from the exclusive reactions in both data sets
 - The primary reaction used for the electron and π^+ pion is $ep \rightarrow e'\pi^+(N)$
 - Follows a similar process as was used for developing Momentum Corrections for the experimental data
 - i.e., use momentum conservation calculations to derive a ΔP value between the predicted and measured momentums of a particle based on the kinematics of the other measured particle
 - Momentum smearing is focused on correcting the widths of the distributions instead of the peaks
 - Smearing functions are based on $\Delta P/P$ vs θ plots

Data and Monte Carlo Comparison (Smearing)

Data and Monte Carlo Comparison (Smearing)

Form of Smearing Function: Smearing for the **Electron** $P_{Smeared} = P_{REC} + gRandom \rightarrow Gaus(0, P_{REC} * \sigma(\theta) * SF)$ Plots of $\Delta P/P$ vs θ for Data, Unsmeared MC, and Smeared MC • $\sigma(\theta)$ is the difference in the widths of $\Delta P/P$ for the Unsmeared MC and Data plots Smeared Monte Carlo **Experimental Data (Corrected)** Reconstructed Monte Carlo ·vs θ ass a Pass • SF is a constant factor that provides more control over the function's strength Difference between widths of Smeared MC and Data σ of the $\Delta P/P_{\text{Electron}} \operatorname{Plots} (Data)$ $\Delta \sigma_{\text{Data-MC}}$ of $\Delta P/$ Pass 2 Pass 2 × 0.04 -0.15Shown with the peak positions and widths of the fitted distributions

PASS 2

UCONN UNIVERSITY OF Argonne

Office of Science Jefferson Lab C

Migrations from Outside Kinematic Regions

Lines drawn here show Missing Mass Cuts in different Q²-y bins

PASS 1

UCONN | UNIVERSITY OF CONNECTICUT Argonne

outside the borders of the signal region are removed with ß vector in the unfolding procedure

Missing Mass Migration Contributions (Per Q²-y Bin)

Ratio of Missing Mass Bin Migrations to Total MC Events Q^2 -y Bin 14

3000

0.4

0.3

0.2

0.5

0.6

y (lepton energy loss fraction

0.7

from **Missing Mass Migrations** per $z-P_T$ bin in this Q²-y region is **3.29%**

Particle Misidentification

True PID of the MC Events Reconstructed as Electrons/Pions

Meant to model remaining particle misidentification not caught by PID cuts

"Unidentified" Particles are those that had a reconstructed particle that could not be matched to a generated particle within the matching criteria used

Integrating over z-P_T: misidentification rate ranges from 1.5-2.5% (depending on Q²-y bin), the average is ~1.8%

(About 58% of this is from Unidentified Particles on average)

The misidentification rate within individual $z-P_T$ Bins ranges from 0.8-6.5%

47

PASS 2

U.S. DEPARTMENT OF

Office of Science Jefferson Lab C

Background (ß) Vector – Particle Mis-Identification (as functions of ϕ_h)

<u>ß Vector – All Contributions (Per Q²-y Bin)</u>

Q²-y Bin 5: Events from Generated Missing Mass Cuts make up about 0.87% of the 'Background' shown below

Q²-y Bin 14: Events from Generated Missing Mass Cuts make up about 18.8% of the 'Background' shown below

UCONN UNIVERSITY OF Argonne

49

Pass 2 Condition

- Momentum/Energy Loss Corrections in Pass 2 have been implemented
- Monte Carlo statistics are still low (using test sample)
 - Planning to run more files soon
 - Also hope to run using RADGEN to start including radiative effects
 - Working side-by-side with Pass 1 in the meantime for better MC statistics

Pass 2 Comparisons - Acceptances

Cos(ϕ_h) Moment as Functions of z - Pass 2 Comparison

UCONN | UNIVERSITY OF Argonne

52

U.S. DEPARTMENT OF

ENERGY

Office of Science Jefferson Lab C

Cos($2\phi_h$) Moment as Functions of z - Pass 2 Comparison

UCONN | UNIVERSITY OF Argonne

53

U.S. DEPARTMENT OF

ENERGY

Office of Science Jefferson Lab C

Sector Correlations with $Cos(\phi)$ and $Cos(2\phi)$ Measurements

Showing the $Cos(\phi)$ and $Cos(2\phi)$ Moments as functions of the particle sector

These plots show those differences in Pass 1 and Pass 2 for when the Electron (left plots) or π^+ pion (right plots) are restricted to being detected in a single sector

Images are grouped on the left and right based on Pass version of the data being used

Office of Jefferson Lab

Office of

UCONN | UNIVERSITY OF Argonne

54

<u>Sector Correlations with Cos(φ) Measurements – Pass 1 and 2</u>

<u>Sector Dependence of ϕ_h Distributions</u>

UCONN UNIVERSITY OF Argonne

Issue: Some bins seem to have additional modulations AFTER Acceptance Corrections not explained by the $Cos(\phi)$ and $Cos(2\phi)$ moments

• The 6 peak structure is related to the forward detector sectors

PASS 1

Sector Dependence of ϕ_h Distributions

PASS 1

UCONN UNIVERSITY OF Argonne

Issue: Some bins seem to have additional modulations AFTER Acceptance Corrections not explained by the Cos(φ) and Cos(2φ) moments

- The 6 peak structure is related to the forward detector sectors
- Plots show the ϕ_h distributions separated based on which sector the <u> π + pion</u> is detected
- Additional Requirement: Electron in Sector 1
- This suggests that the effect is related to mismatching in sector acceptance between Data and Monte Carlo

J.S. DEPARTMENT OF

Office of Science Jefferson Lab C

<u>Sector Dependence of ϕ_h Distributions – Pass 2 Comparison</u>

Issue: Some bins seem to have additional modulations AFTER Acceptance Corrections not explained by the $Cos(\phi)$ and $Cos(2\phi)$ moments

- The 6 peak structure is related to the forward detector sectors
- Plots show the ϕ_h distributions separated based on which sector the π + pion is detected
- Additional Requirement: Electron in Sector 1
- This suggests that the effect is related to mismatching in sector acceptance between Data and Monte Carlo

Office of Science Jefferson Lab C

Also present in Pass 2

Office of