Update on RG-D Experiments: Calibration and Analysis Status

Mathieu Ouillon (Mississippi State University)

RG-D is composed of two experiments:

- Study of Color Transparency (CT) in Exclusive Vector Meson Electroproduction off Nuclei (<u>E12-06-106</u>):
 - \circ Spokespeople: W. Armstrong 1 , L. El Fassi 3 , K. Hafidi 1 , M. Holtrop 4 and B. Mustapha 1
- Nuclear Transverse Momentum Distributions (nTMDs) in CLAS12 (E12-06-106A):
 - \circ Spokespeople: R. Dupré 2 , L. El Fassi 3 , Zein-Eddine Meziani 1 , and Holly Szumila-Vance 5

¹: Argonne National Lab (ANL), ²: IJCLAB, Orsay, France ³: Mississippi State U. (MSSate), ⁴: University of New-Hampshire (UNH), ⁵: Jefferson Lab

RG-D: CT Experiment

- E12-06-106, CT the experimental signature of CT is the rise of the nuclear transparency, T_A as a function of Q²:
 - $\circ~T_{\rm A}$ is defined as the ratio of the cross section per nucleon on a bound nucleon to that on a free nucleon

$$T_A = \frac{\sigma_A}{A\sigma_N} \quad \begin{array}{c} \mathbf{\sigma}_{_{\mathrm{A}}} - \text{nuclei cross section} \\ \mathbf{\sigma}_{_{\mathrm{N}}} - \text{free nucleon cross section} \end{array}$$

Coherence length, l_c : the lifetime of the qq-bar pair Formation time, l_f : the time evolution of small size configurations (SSC) to an on-shell ρ^0 meson

RG-D: Nuclear TMDs

- E12-06-106A: nTMDs study uses the same CT running conditions except the beam polarization, and aims to explore:
 - \circ Fragmentation functions in nuclei
 - Nuclear asymmetries at the partonic level
 - Missing part of nuclear effects description

• Goal:

- \circ Measure the cos and sin modulations for $p^2_{\ T}$
- \circ Mesure multiplicity ratios
- \circ For both charged pions and kaons
- Accesses transport coefficient at parton level

RG-D Run Configuration

• RG-D experiments ran with:

- \circ 10.54 GeV polarized beam with <code>I= 5-175 nA</code> for luminosity scans and production
- $\circ\,$ Standard CLAS12 configuration with FT-OFF and three layers of FMT
- Three target configurations, LD2, CxC, and CuSn, used with Inbending and Outbending torus magnet setup
- \circ New cryogenic LD2 and the nuclear-foil flag assembly centered at -5 cm for each configuration
- Main run hiccups:
 - \circ Faraday Cup vacuum contamination
 - \circ Moller cone sagging

RG-D Status: DC Alignment

- Alignment:
 - DC alignment using zero-field run is completed
- Plots show tracks:
 - $\,\circ\,$ Fit residuals (colored points) and vertex residuals (black symbols) vs. θ bin.
 - $\,\circ\,$ Different symbols (circle, square, triangle, etc.) represent different ϕ bins
 - Colors denote different superlayers
 - $\,\circ\,$ Y-axis represents θ bins

Thanks to R. De Vita and M. Maynes

RG-D Status: FMT Alignment

• The final FMT alignment constants were extracted using the zero-field and cosmic runs, and uploaded for layers 2 and 3 (*layer 1 disk was not functional in RG-D*).

Thanks to Y. Gotra

RG-D Status: Calibration Summary

- Beam offsets: transverse X and Y positions for FD and CD were calibrated and CVT z-offset was adjusted
- RF calibration is done
- FTOF and CTOF calibrations are almost finalized depending on the to-be-produced timelines after the latest iterations
- RICH: time calibration is finalized
- LTCC: calibration of the per-sector number of photoelectrons is completed
- ECal: time residual offsets were updated for IB and OB datasets (awaits timelines check)
- CND calibration is almost finalized depending on the to-be-produced timelines after the latest iterations
- HTCC and DC calibrations are in progress

Thanks to the CalCom group support

8

Data Processing Summary

- Timelines monitoring:
 - \circ The first three timelines for RG-D datasets were done online
 - September 4th: Pass0v4 was processed after the final DC alignment, beam offsets, and CVT z-offset adjustment

For more details, please visit the RG-D analysis wikipage

=

Data Processing Summary

• Timelines monitoring:

 October 14th: Pass0v5: Pass0v4 conditions + first-round of FTOF and CTOF, and partial ECal energy calibrations

Timelines are available <u>here</u>

For more details, please visit the RG-D analysis wikipage

Data Processing Summary

• Timelines monitoring:

• October 23th: Pass0v6: Pass0v5 conditions + first round of RF calibration

Timelines are available <u>here</u>

• For more details, please visit the RG-D analysis wikipage

RG-D Vertex Studies

• Goal:

- $\circ~$ Check whether all sectors are well aligned in Vx, Vy and Vz distributions
- $\circ~$ Could sector-independent cuts on Vx, Vy and Vz be applied?
- $\circ~$ Reduce the contamination for the target configuration with two different foils, Cu and Sn

RG-D Vertex Studies: Transverse Components

• Get rid of sector-dependent cuts for Vx

CLAS Collaboration (November 13th, 2024)

13

RG-D Vertex Studies: Transverse Components

• Get rid of sector-dependent cuts for Vy

CLAS Collaboration (November 13th, 2024)

14

RG-D Vertex Studies: z-Vertex

Fits:

- Fit the empty LD2 cell and nuclear-foil regions with double gaussians and first-order polynomial
- Separate the two different foils, Cu and Sn from each other
- $\circ~$ Same study is performed for carbon
- \circ Similar study is underway for hadrons

Target	z-Vertex (cm)
LD2	[-20, 5]
С	[-10.784, 5]
Cu	[-11.463, -6.576]
Sn	[-6.137, 5]

RG-D Analysis Study: Particle IDentification

CLAS Collaboration (November 13th, 2024)

16

RG-D CT Study: Kinematical Cuts

- v = E E': virtual photon(γ^*) energy in the Lab frame,
- $Q^2 = -(P_e P_e)^2 = 4EE'sin^2(\theta/2)$: photon virtuality,
- $t = (P_{v^*} P_v)^2$: momentum transfer square,
- $W^2 = (P_{in} + P_{\gamma^*})^2 = -Q^2 + M_p^2 + 2M_p v$: invariant mass squared in (γ^* , p) center of mass (CM).
- Kinematical cuts:
 - $\circ~$ W> 2 GeV \mapsto avoid resonance region
 - \circ z_h= E_h/ \vee > 0.9 → select elastic channel
 - $~\circ~$ -t > 0.1 GeV^2 \mapsto exclude coherent production
 - $~\circ~$ -t < 0.5 $GeV^2 \, {\mapsto}$ select diffractive process

CT Study: Two-pion Invariant Mass

CT Study: Two-pion Invariant Mass

- Fit the invariant mass shapes for the two-oppositely charged pions with a Breit-Wigner and three-order polynomial function (the latter will be replaced with the simulated background shape)
- Extract ρ^0 yield by integrating the background-subtracted BW within a 3σ range

RG-D Color Transparency Study

• Extract the nuclear transparency:

$$T_A = rac{N^{\,C}_{
ho^0}}{N^{\,LD2}_{
ho^0}} rac{r_{_{LD2}}
ho_{_{LD2}}}{r_{_C}
ho_{_C}}$$

- r_{LD2}= 5 cm: LD2 thickness
- r_{CxC} = 0.4 cm: is CxC thickness
- $\rho_{LD2} = 0.164 \text{ g/cm}^3$: LD2 density
- $\rho_c = 2.2 \text{g/cm}^3$: carbon density

Ongoing analysis by M. Maynes

RG-D nTMDs Studies: Positively-charged Pion

- Ongoing simulation efforts: preliminary results
 - Simulations are produced using modified version of Pythia
 - Comparing experimental data to simulation

Analysis by D. Matamoros

Parallel nTMDs analysis for charged pions by <u>S. Shrestha</u>

RG-D nTMDs Studies: K-short Channel

- First look at the K⁰ channel to extract multiplicity ratios and azimuthal asymmetries:
 - In-progress studies to improve the two-pion invariant mass reconstruction in the mass region of interest

• Kinematical cuts:

W> 2 GeV
 O²>1 GeV²

Summary and Outlook

- Calibration is progressing as planned within the three-month timeframe:
 - $\circ\,$ RF, LTCC, and RICH calibrations are completed
 - DC and HTCC calibrations are underway
 - FTOF, CTOF, ECal, and CND are almost done depending on the to-be-produced timelines
 - $\circ~$ New AI network will be trained after finalizing the DC calibration
- Developing analysis tools for CT and nTMDs studies to
 - improve vertex cuts and corrections, if needed, due to any observed angular dependencies
 - implement fiducial cuts
 - perform background merging
 - $\,\circ\,$ use the $\,\rho^0$ event generator for its two-pion invariant mass background subtraction
 - $\circ~$ extract the CT signal for Cu and Sn in addition to C
 - improve the K⁰ identification method and extract its preliminary asymmetry results
 - obtain the preliminary asymmetry results for charged pions nTMDs studies

CT Study: Two-pion Invariant Mass

• Our event generator incorporates the measured cross sections by Cassel et *al.* for the electroproduction of ρ^0 and the three main background processes

