Di-Hadron Correlations in Nuclei

UC RIVERSIDE

Dr. Sebouh Paul UC Riverside 11/13/2024

How are the various hadrons produced in a single scattering process correlated with one another...

... and how does hadronization change in a dense partonic environment?

And what are the timescales of color neutralization and hadron formation?

Event topologies

Di-pion:

• High energy π + and low energy π -

Phys. Rev. Lett. 129, 182501

https://arxiv.org/abs/2406.14387, in review at PRC

Pion+proton

 High energy π+ and knocked-out proton (or proton from fragmentation)

Analysis note in review since XXX

Earlier results ... **Discovery of back-to-back pion suppression in eA scattering**

How are the various hadrons produced in a scattering process correlated with one another ? Leading π^+ , subleading π^-

Our observable: correlation function

$$C(\Delta \phi) = C_0 rac{1}{N_{eh}} rac{dN_{ehh}}{d\Delta \phi}$$

- N_{eh} is the number of events with scattered electron and a "leading hadron" (z=E_h/v>0.5)
- N_{ehh} is the number of "subleading hadrons" in those events

https://arxiv.org/abs/2406.14387

Derived quantities: RMS widths and broadenings

RMS width:

$$\sigma = \sqrt{rac{\int_{0}^{2\pi} d\Delta \phi \, C(\Delta \phi) (\Delta \phi - \pi)^2}{\int_{0}^{2\pi} d\Delta \phi \, C(\Delta \phi)}}$$

Broadening:
$$b=\sqrt{\sigma_A^2-\sigma_D^2}$$

Derived quantities: RMS widths and broadenings

- RMS widths and broadening increase with larger nuclei with weak, log-like A dependence.
- Most of these models are new, developed for the EIC rather than JLab energies, yet predict this trend correctly

p2^T dependence Pb Fe D С Models predict 1.0 different trends in the broadening vs 0.5 p_2^{T} , which demonstrates the discriminating power 0.0 1.0 data Fe Pb [rad] С of these GiBUU measurements 0.8 eHIJING σ_{D}^{2} BeAGLE 0.6 1 σ^2_A 0.4 $1 < Q^2 < 4 \text{ GeV}^2$ 2.3 < v < 4.2 GeV $z_1 > 0.5$ <u>0.2</u> p^{T} > 250 MeV 0.0 e'0.5 0.0 0.5 0.0 0.5 0.0 0.5 (v, \vec{q}) p_2^T [GeV] p_2^T [GeV] p_2^T [GeV] p_2^T [GeV] p_2^T

How does the nucleus react to a fast quark? Protons proxy for "nuclear response"

Pion-proton analysis (in analysis review, round 1)

- Leading π + and a proton
- Two means of proton production:
 - Knockout (requires much less energy than secondary pion production)
 - Fragmentation of struck nucleon
- Correlation function differential in $\Delta\phi$ and ΔY^*

$$egin{aligned} \Delta Y^* &= Y_{\pi^+} - Y_p - (Y_{ ext{cm}} - Y_{ ext{lab}}) \ Y &= rac{1}{2} ext{log} \left(rac{E + p_z}{E - p_z}
ight) \end{aligned}$$

"Slow" knockout protons

- "Slow" knockout protons in this analysis are analogous to "slow neutrons" in planned studies with the EIC's Zero-Degree Calorimeter
 - Slow nucleons from in an event can proxy the path length of the cascade through the nucleus*
 - Measurements of protons at JLab can feed into models used for the EIC, test MC generators.

*Phys. Rev. C 106, 045202, Phys. Rev. C 101, 014617

Pion-Proton correlations

00

protons

e

 (v, \vec{q})

Wider correlation functions for heavier nuclei

00

000

fragmentation

protons

00

e

 (v, \vec{q})

Correlation functions also become wider at larger ΔY*

D

Correlation 10⁻¹

10-3

С

Fe

Pb

·0 < ΔY $R = C_A/C_D$ 10

ò

ċπ

О.5

10⁰

D

С

Ċ

Fe Pb

GiBUU D

GiBUU C

GiBUU Fe

GiBUU Pb

R=C_A/C_D >1 for most bins:

More protons are produced per leading pion in nuclei than in deuterium

Width and broadenings

- $\sigma[\Delta \phi]$ increases a function of rapidity separation
- Broadening at maximum near ∆Y*=0

 (v, \vec{q})

protons

e'

Widths and broadenings

- Both the GiBUU and **BeAGLE** models have decent predictions for these quantities
- Could be further fine-tuned

 (v, \vec{q})

 \cap

protons

e

Follow-up measurements with upgraded CLAS12 (Run Group E)

These di-hadron measurements can be extended using recent measurements with

- Higher luminosity
- Higher beam energy
- Polarized electron beam
 - Can measure beam-spin asymmetries Ο
- Larger variety of targets

Summary

- Di-hadron correlations represents a new tool to explore how hadronization is affected by nuclei
- Current and future analyzes with RGE will seek to answer some of the questions raised in the 2023 LRP
 - How are the various hadrons produced in a single scattering process correlated with one another and how does hadronization change in a dense partonic environment?
 - What are the timescales of color neutralization and hadron formation?

Backup

• GiBUU

- Final-state interactions
- Absorption
- Hadron production mechanisms
- Pre-hadron degrees of freedom
- Color transparency
- Nuclear shadowing

https://doi.org/10.1016/j.physrep.20 11.12.001

• BeAGLE

- Mixture of components from multiple generators
 - Primary interaction (Pythia6)
 - Nuclear remnant decay/de-excitation (FLUKA)
 - Intranuclear cascade (DPMJet)
 - Geometric density of nucleons (PyQM)
 - Nuclear parton distribution functions (LHAPDF5)

https://doi.org/10.1103/PhysRevD.106.012007

We are using BeAGLE (Benchmark eA Generator for LEptoproduction) package for the e+A event simulation.

Multidimensional measurements

Correlation functions can be measured in bins of multiple variables, such

as

- rapidity difference, 0 $\Delta Y = Y_1 - Y_2$
- 0 the leading hadron, p_{τ}^{1}
- Ο

 $-0.50 < \Delta Y < 0.50$

 $0.50 < \Delta Y < 1.50$

Multidimensional measurements

Multidimensional measurements

 Correlation functions get narrower as p₁^T gets larger

Multidimensional measurements

p2^T dependence Pb D Fe С Models predict 1.0 different trends in the broadening vs 0.5 p_2^{T} , which demonstrates the discriminating power 0.0 1.0 data Fe Pb [rad] С of these GiBUU measurements 0.8 eHIJING σ_{D}^{2} BeAGLE 0.6 1 σ^2_A 0.4 $1 < Q^2 < 4 \text{ GeV}^2$ 2.3 < v < 4.2 GeV $z_1 > 0.5$ <u>0.2</u> p^{T} > 250 MeV 0.8 e'0.5 0.0 0.5 0.0 0.5 0.0 0.5 (v, \vec{q}) p_2^T [GeV] p_2^T [GeV] p_2^T [GeV] p_2^T [GeV] p_2^T

Di-Pion Event Selection

- Electron with DIS kinematics
 - \circ Q²>1 GeV²
 - W>2 GeV
 - 2.3<v<4.2 GeV
- Leading π+
 - z=E_h/v>0.5
 - Identified with
 - TOF only (P<2.7 GeV)
 - TOF+Cerenkov (P>2.7 GeV)
- Sub-leading π-
 - TOF cuts for identification
 - P>350 MeV
- Both hadrons:
 - pT>250 MeV

Pion-Proton Event selection

- Electron with DIS kinematics
 - \circ Q²>1 GeV²
 - W>2 GeV
 - 2.3<v<4.2 GeV
- Leading π +
 - z=E_h/v>0.5
 - Identified with
 - TOF only (P<2.7 GeV)
 - TOF+Cerenkov (P>2.7 GeV)
- Proton
 - TOF cuts
 - 0.2<P<2.8 GeV
- Both hadrons:
 - o pT>70 MeV

Event Generators

GiBUU model

- State-of-the-art transport model which includes the following ingredients:
 - Final-state interactions
 - Absorption
 - Hadron production mechanisms
 - Pre-hadron degrees of freedom
 - Color transparency
 - Nuclear shadowing

eHIJING model

- Built on Pythia 8
- Interaction between hadrons and the nuclear medium proportional to the nuclear TMD PDF of gluons.

BeAGLE model

- Mixture of components from multiple generators
 - Primary interaction (Pythia6)
 - Nuclear remnant decay/de-excitation (FLUKA)
 - Intranuclear cascade (DPMJet)
 - Geometric density of nucleons (PyQM)
 - Nuclear parton distribution functions (LHAPDF5)

• GiBUU

- Final-state interactions
- Absorption
- Hadron production mechanisms
- Pre-hadron degrees of freedom
- Color transparency
- Nuclear shadowing

• eHIJING

- Based on Pythia8
- Interaction between hadrons and the nuclear medium proportional to the nuclear TMD PDF of gluons.

• BeAGLE

- Mixture of components from multiple generators
 - Primary interaction (Pythia6)
 - Nuclear remnant decay/de-excitation (FLUKA)
 - Intranuclear cascade (DPMJet)
 - Geometric density of nucleons (PyQM)
 - Nuclear parton distribution functions (LHAPDF5)

