Al-powered calorimeter clustering with coatjava integration

Gregory Matousek 11-12-2024

CLAS Collaboration Meeting Nov. 2024

Presentation Outline

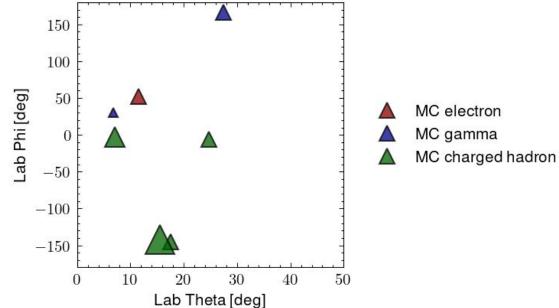
- 1. Why do we need to improve neutral clustering at CLAS12 (γ 's vs. n's)?
- 2. How does COATJAVA reconstruct clusters and what are its flaws?
- 3. Introduce ★ Object Condensation ★ a *grid-free* machine learning approach to object clustering
- 4. GravNet nearest-neighbor model architecture training parameters/features
- 5. Training metrics on Monte Carlo How well does the model perform?
- 6. Custom COATJAVA pipeline for this project

Model Evaluation (COATJAVA vs. Object Condensation)

- A. Neutron Gun events
- B. Incoherent J/Psi production off deuterium (with the help of Richard Tyson)
- C. Monte Carlo DIS events

Neutral Clustering at CLAS12

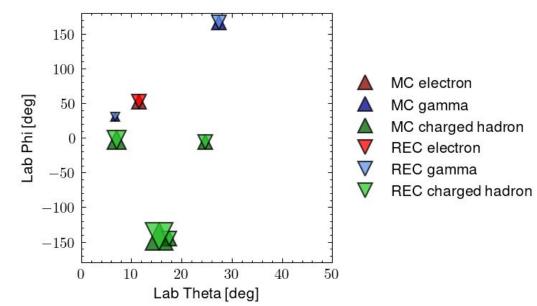
Shown is the (θ,φ) distribution
 of Monte Carlo particles from
 a sample SIDIS event (upwards facing triangles)



Neutral Clustering at CLAS12

Shown is the (θ, ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

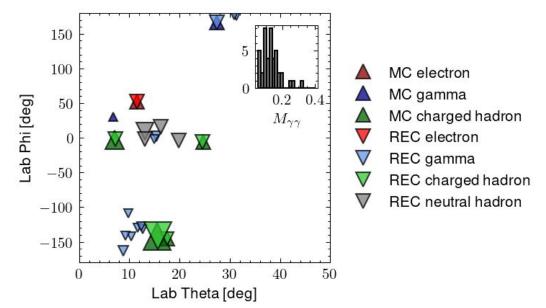
In an ideal world, the
 Reconstructed particles
 (downwards facing triangles)
 would be exactly on top of the
 thrown MC particles



Neutral Clustering at CLAS12

Shown is the (θ, ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

However, issues in neutral particle clustering lead to many false neutrals being reconstructed



Non-combinatorial backgrounds emerge for π^0 studies for instance, where one of the photons in the pair is <u>fake</u>

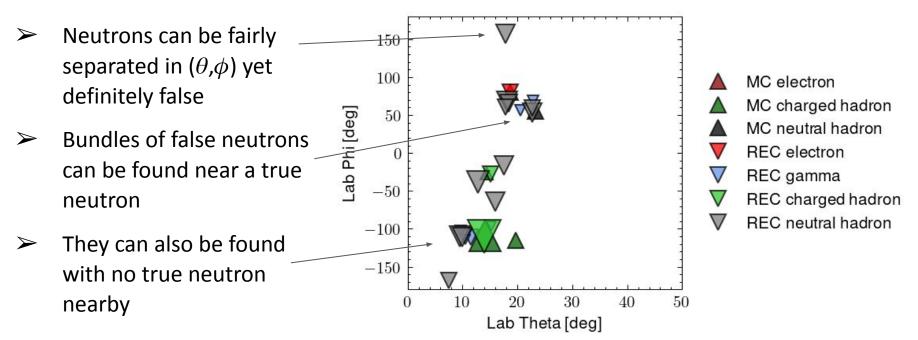
Resolving the Photon Clustering Issue

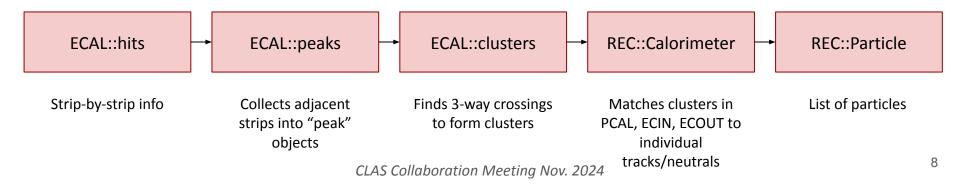
- In turns out the information in REC::Calorimeter and REC::Particle is plenty to address the false photon backgrounds
- Unlikely for false photons \succ 150XX to collect around true 100 MC electron photons MC gamma 0.20.41ab Phi [deg] 50 MC charged hadron $M_{\gamma\gamma}$ More likely for false \succ **REC** electron 0 **REC** gamma photons to collect around -50REC charged hadron many other false photons ∇ **REC** neutral hadron -100 \mathbf{X} A simple Gradient Boosted -150**Tree** model with nearest 10 20 30 40 50 0 Lab Theta [deg] neighbor features cleans up

the photons at CLAS12

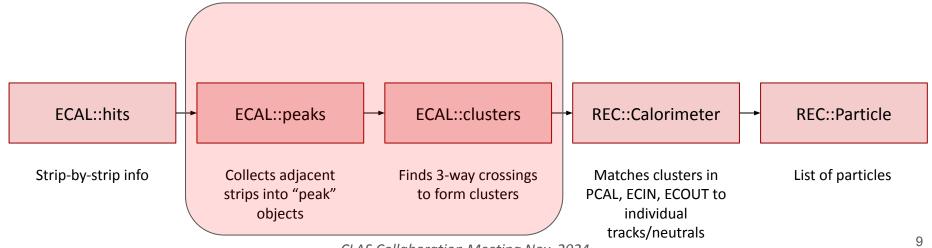
Why Neutrons pose a challenge

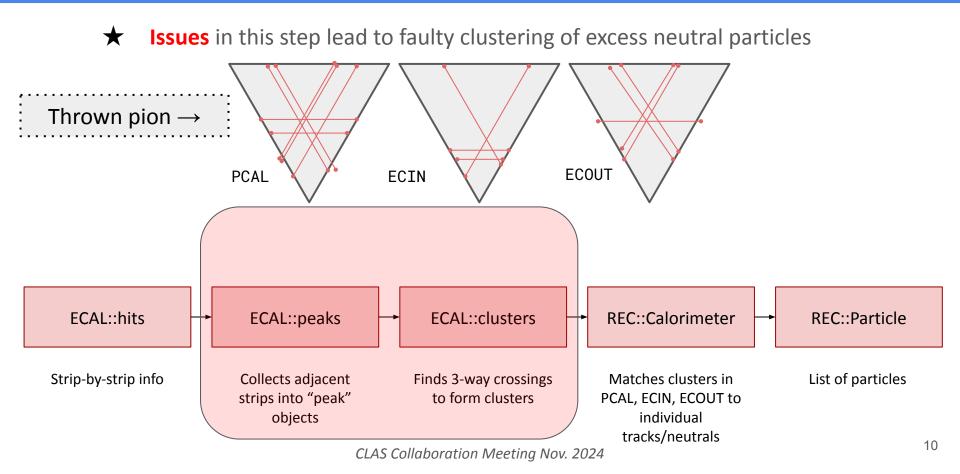
In turns out the information in REC::Calorimeter and REC::Particle is NOT ENOUGH to address the false neutron backgrounds

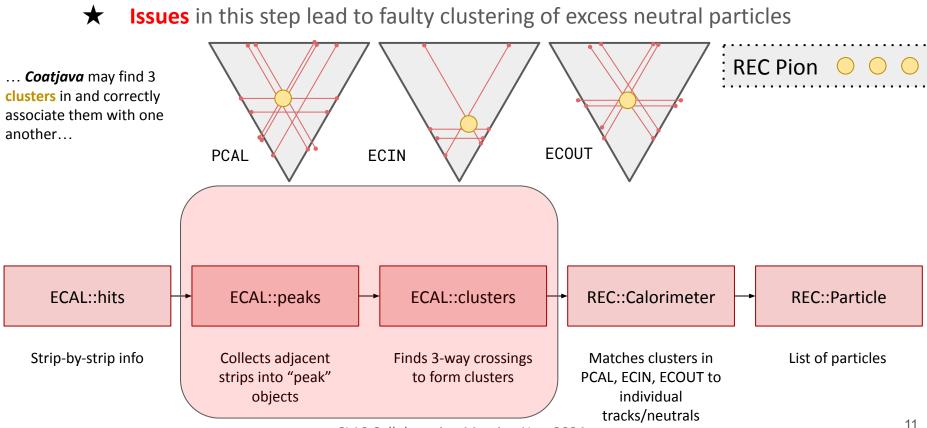




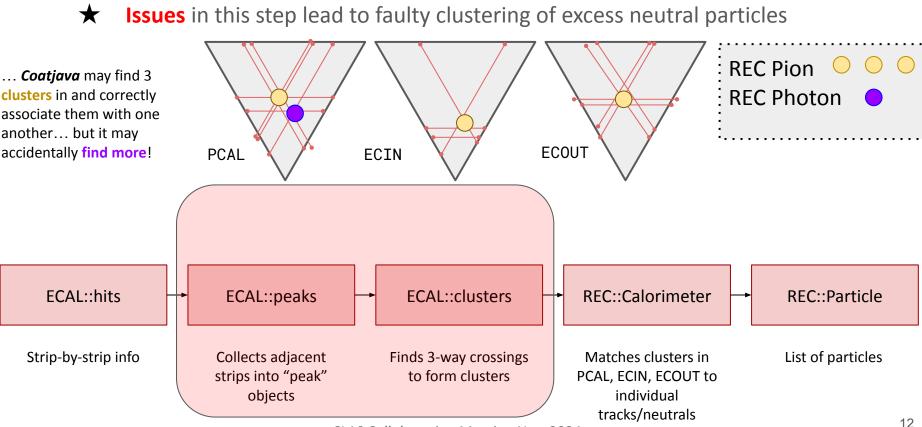
Issues in this step lead to faulty clustering of excess neutral particles \star







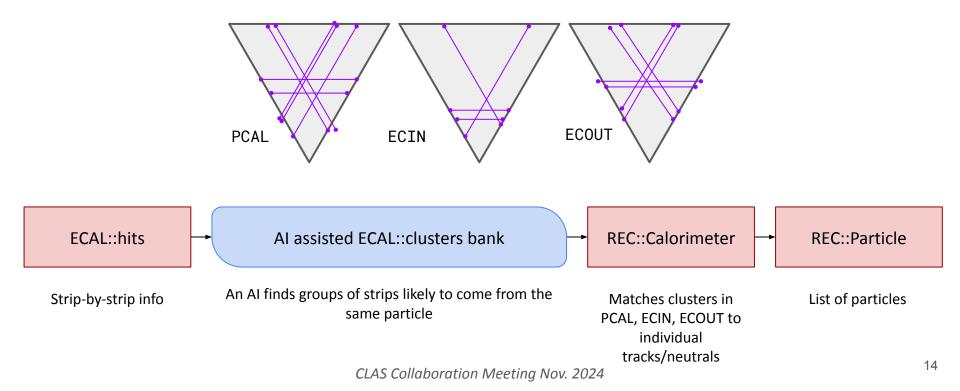
CLAS Collaboration Meeting Nov. 2024



Issues in this step lead to faulty clustering of excess neutral particles \star REC Pion ... Coatjava may find 3 clusters in and correctly **REC** Photon associate them with one REC Neutron another... but it may ECOUT ECIN accidentally find more! PCAL ... The clusters may also fail to be associated! ECAL::clusters **REC::Calorimeter** ECAL::hits ECAL::peaks **REC::**Particle Finds 3-way crossings Matches clusters in Strip-by-strip info **Collects** adjacent List of particles strips into "peak" to form clusters PCAL, ECIN, ECOUT to objects individual tracks/neutrals 13

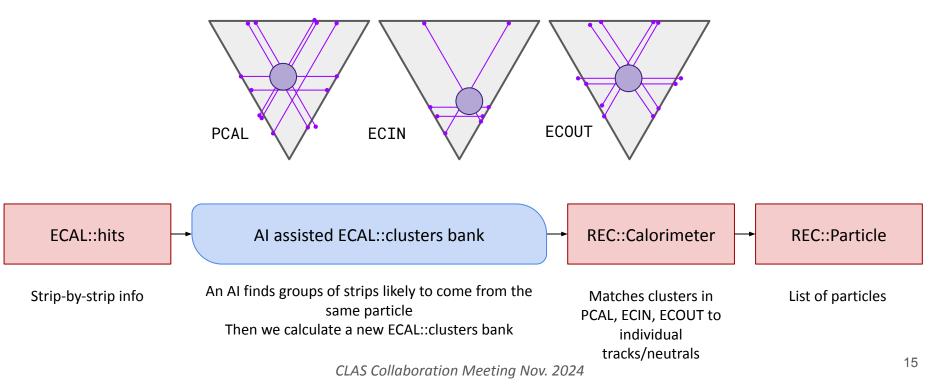
Al-assisted Neutral Clustering

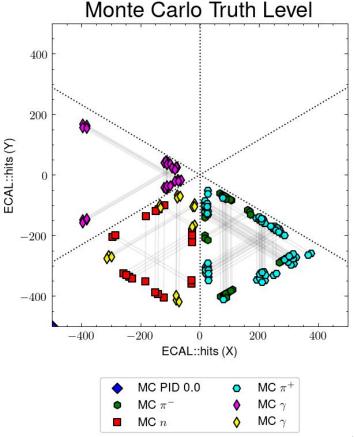
★ Our AI organizes groups of strips separate single objects (particles)



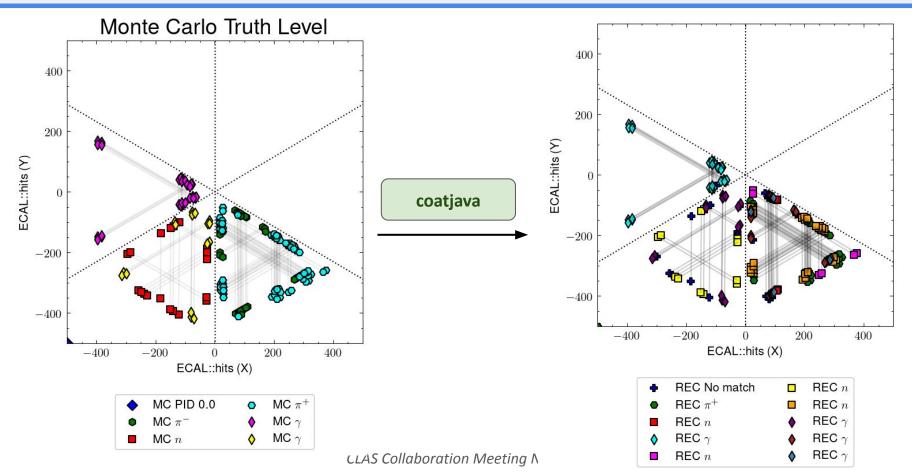
Al-assisted Neutral Clustering

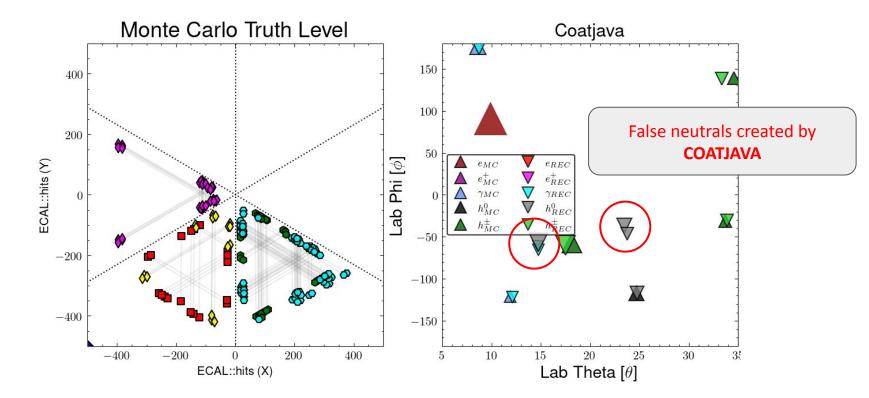
- ★ Our AI organizes groups of strips separate single objects (particles)
- ★ Then we manually calculate one cluster (x,y,z,E,t) for each ECAL type

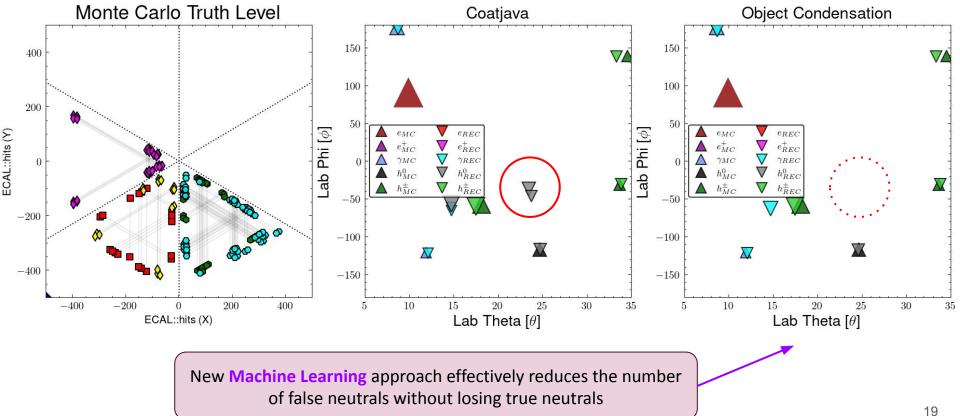




- Left Plot shows the final state Monte Carlo particles generated in SIDIS that are *responsible* for the ECAL strip hits
 - $\circ \quad \text{ Colors} \rightarrow \text{Different particles}$
 - $\circ \quad \text{ Shapes} \to \text{Different MC PIDs}$
- PCAL, ECIN, and ECOUT are overlaid
 - For each strip hit, there is an "origin" and"endpoint" (x,y,z) as well as edep and timing
 - In general, Coatjava looks for 3-way
 intersections in the PCAL, ECIN, and ECOUT
 (separately) to create *clusters*
- Track <-> Cluster matching determines if we need to make a neutral particle



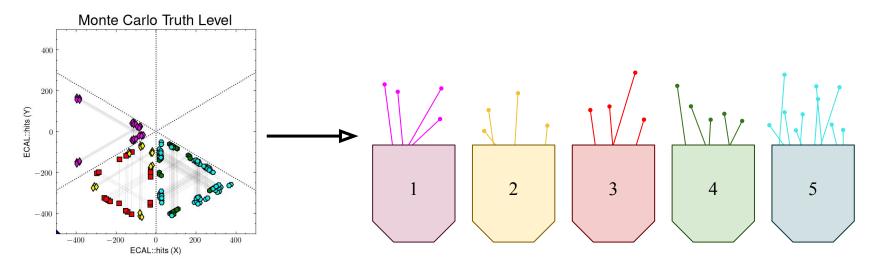




Defining the Problem

- Input: <u>Point Cloud</u> of ECAL strips with several features (layer, sector, E, t, x, y, z, etc)
 - For training we are aware of the Monte Carlo particle responsible for the strip hit
- > **Output:** Distinct groups/clusters of strips that *belong to the same particle*

This is a much more abstract version of Image-within-Image classification

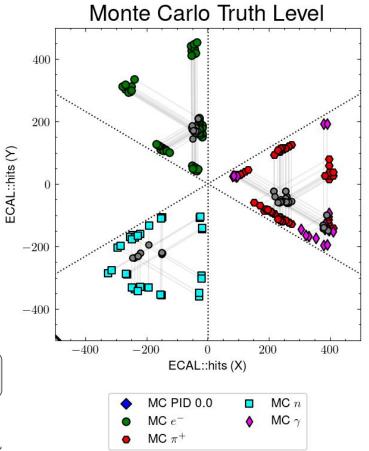


ML Input Considerations

Model Input Features (22)

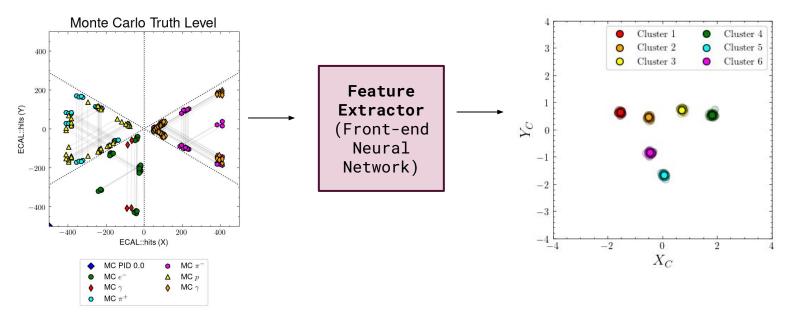
- [+3] Strip Origin Point (x₁, y₁, z₁)
- [+3] Strip End Point (x_2, y_2, z_2)
 - **Red** features scaled [-500,500] -> [0,1]
 - Blue features are scaled [550-950] -> [0,1]
- [+1] Energy Deposition (already [0,1])
- [+3] Strip's most energetic centroid (x,y,z)
 - [+2] One-hot encode for either 3 way or 2 way
- [+1] Timing Information $[0,1000] \rightarrow [0,1]$
- [+9] Layer
 - One-hot-encoded, 9 feature bits [0,1] total

Grey circles (right plot) show location of the energetic centroids



What is $\star Object Condensation \star ?$

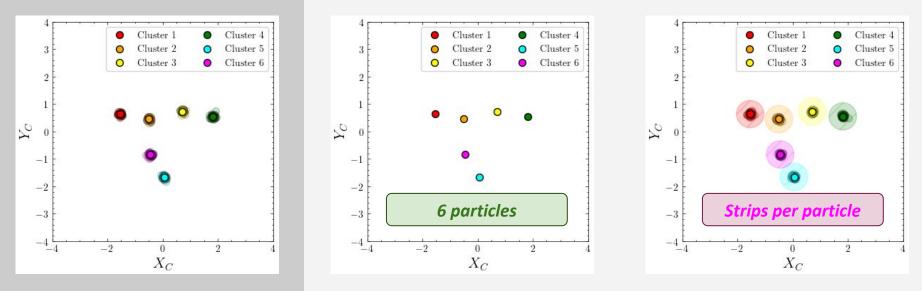
- Object Condensation defines a loss function that a neural network will try to minimize
- > If this loss function is minimized, the **Point Cloud** is mapped to a clustered latent space
- > Each ECAL strip learns its own point in the latent space (x_c, y_c) as well as a brightness $(0 < \Box < 1)$
- > For each object (particle) only one latent space pixel is "bright" (\Box near 1)



What is $\star Object Condensation \star ?$

By viewing this clustered latent space $(\mathbf{x}_{c}, \mathbf{y}_{c})$ we can get...

- > The number of particles threshold away the dim \Box 's and count them!
- > The strips for each particle for a bright \Box , collect all dim \Box 's within some radius



★ Object Condensation★ Recap

- > Input $\rightarrow v_{in}(N, F)$
 - N: Number of nodes (in our case number of strips)
 - F: Number of features per node (in our case 22)
- > Output → $v_{out}(N, 3)$ → *i.e. each strip learns 3 variables*
 - v_{out} [:, 0] is the x-coordinate in a latent space (called x_c)
 - \mathbf{v}_{out} [:, 1] is the y-coordinate in a latent space (called \mathbf{y}_{c})
 - \mathbf{v}_{out} [:, 2] is the *brightness* of the node (strip) in the latent space [0,1] (called \Box)

22 feats. x_c, y_c, β

Object Condensation (OC) defines a loss function $L(x_c, y_c, \Box)$ that is <u>minimum</u> if...

- 1. The (x_c, y_c) of nodes that belong to the same cluster are close (**attractive loss**)
- 2. The (x_c, y_c) of nodes that belong to different clusters are far (**repulsive loss**)
- 3. Only one node per cluster has a large brightness $\Box \sim 1$ (coward loss)

Object Condensation Loss

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} \breve{V}_{k}(x_{j}) + (1 - M_{jk}) \hat{V}_{k}(x_{j}) \right).$$

$$q_{i} = \operatorname{arctanh}^{2} \beta_{i} + q_{\min}$$

$$Q_{i} = \operatorname{arctanh}^{2} \beta_{i} + q_{\min}$$

Attractive Loss

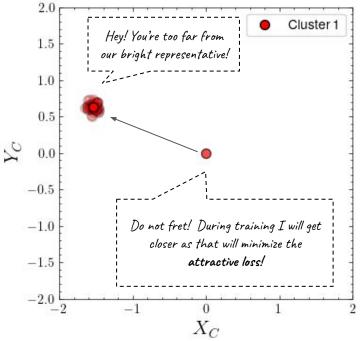
Each individual strip calculates one piece of the **attractive loss**

Very similar to E&M U = qV

For each strip (j), punish the loss function the further it is from the *brightest beta* for its particle (k)

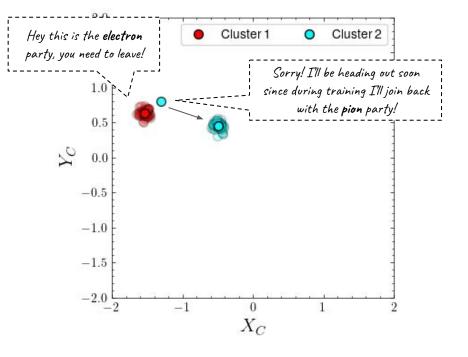
The *brightest* strip for particle (k) is $\mathbf{\alpha}\mathbf{k}$

$$\breve{V}_k(x) = ||x - x_\alpha||^2 q_{\alpha k}$$



Object Condensation Loss

$$L_V = \frac{1}{N} \sum_{j=1}^N q_j \sum_{k=1}^K \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).$$



Repulsive Loss

Each individual strip calculates **K-1** pieces of the **repulsive loss**

$$\hat{V}_k(x) = \max(0, 1 - ||x - x_\alpha||)q_{\alpha k}.$$

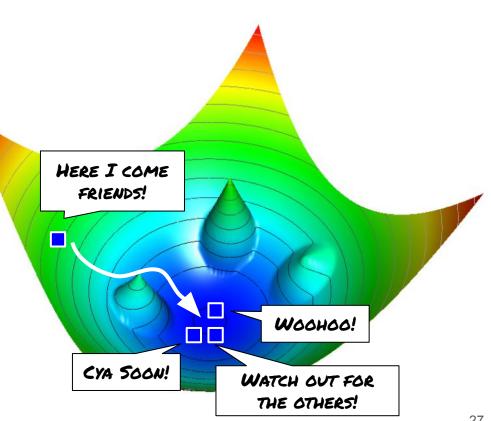
For each strip (j), punish the loss function the closer it is to the *brightest beta* of <u>any</u> <u>other particle</u> (k)

The *brightest* strip for particle (k) is $\mathbf{\alpha}\mathbf{k}$

Object Condensation Attractive & Repulsive

X

(*Right*) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point)



Object Condensation Loss

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + \frac{s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i}{\sum_{i} n_i \beta_i},$$

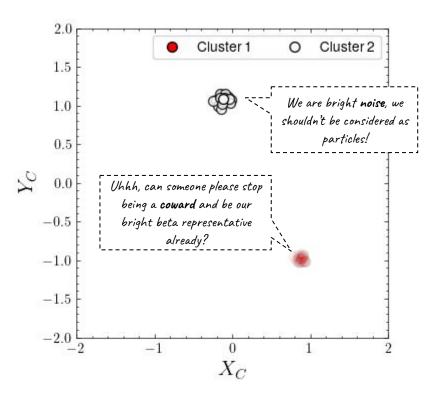
Coward Loss

For each particle (k), punish the **coward loss** if the object's *brightest beta* is dim (near 0)

Noise Loss

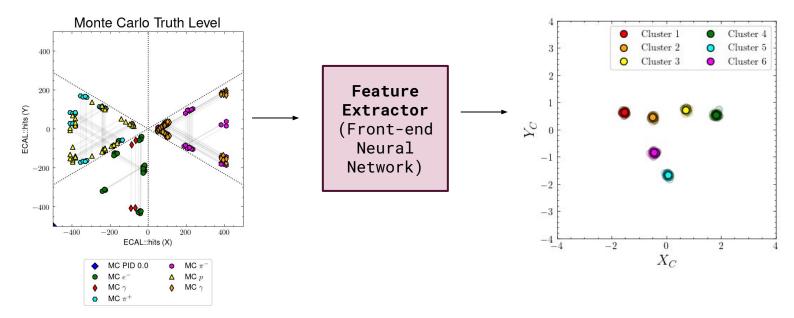
For each strip (i) punish the **noise loss** if the strip is noise (ex: 0-padded) and has a high *brightness beta*

Here n_i is a bit that is 1 if strip (i) is noise



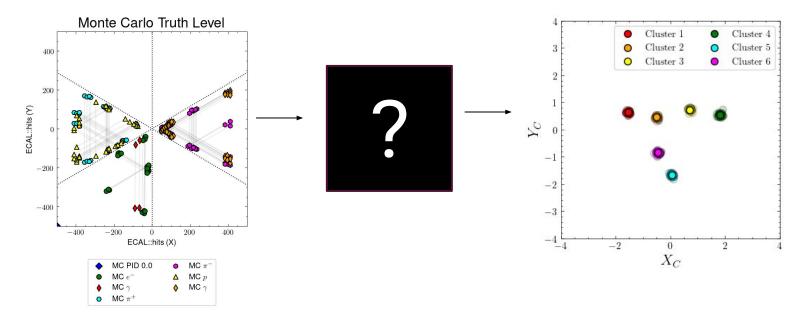
Object Condensation Summary

- > A feature extractor maps the (N,F) strip input space into a (x_c, y_c) space
- The weights/biases of the feature extractor are backpropagated to minimize four Object Condensation losses (attractive, repulsive, coward, noise)



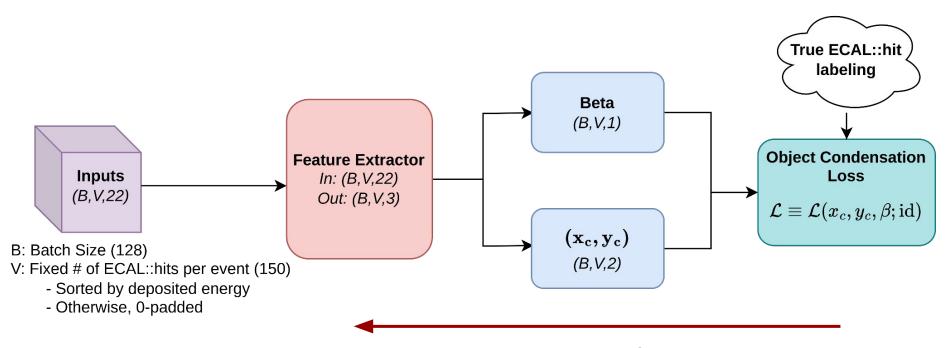
Object Condensation Summary

What is the Feature Extractor we use?



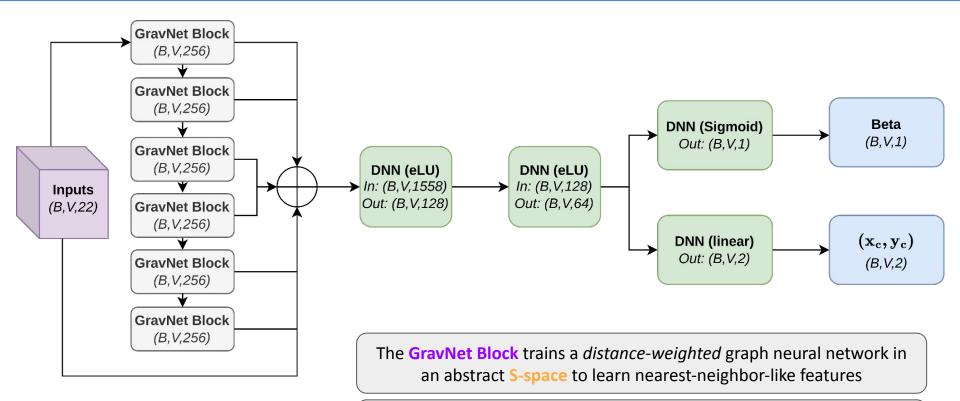
CLAS Collaboration Meeting Nov. 2024

Model Architecture



Backpropagation w/ cyclical LR ($1e^{-6} <-> 1e^{-5}$ every 20 batches)

Feature Extractor

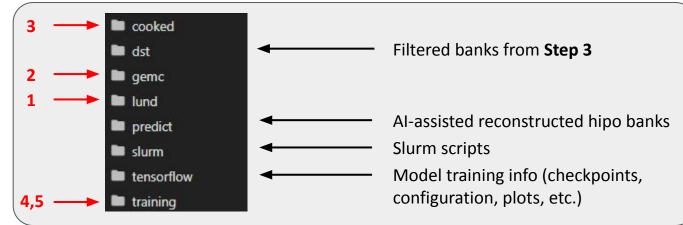


Subsequent GravNet Blocks are concatenated with the original input and fed into DNNs to extract Beta and (x_c, y_c) for each strip

32

Data Generation (see <u>repository</u>)

- 1. 1M **e+p** DIS events simulated using **clasdis** split into 1000 batches
- 2. Detector readout simulated using gemc with MC::True saved (see here 💭)
- 3. Create ECAL::hits and other familiar banks with recon-util
 - a. Custom <u>coatjava fork</u> uses MC::True to give **true/rec** pid to each strip
- 4. Use hipopy to read ECAL::hits into csv files (see here 😱)
 - a. Also parse REC::Particle (for comparisons) and MC::Particle (for training)
- 5. Preprocess the csv files into h5 files for training (ex: scaling features, get centroids)



Training Information

- 128 events per batch
- 100 epochs (~45 per 24hrs training on 1 TitanRTX GPU)
- ✤ 80% 20% Training/Validation splitting
- GravNet Feature Extractor Information
 - 10 GravNet blocks 10 nearest neighbors 4 S-space dimensions 32 hidden features 256 output
 - Total trainable parameters = 637,934
- Hyperparameters
 - \succ q_{min} = 0.1
 - s_B = 1 (only noise considered is 0-padded anyway, not hard for model to figure that out)
 - > t_B = 0.5 (minimum *brightness* threshold)
 - t_D = 0.28 (radius of cluster in latent space, decided by eye, but need to develop rigorous metric)
- ✤ Cyclical Learning rate between 10⁻⁶ <-> 10⁻⁵ every 20 batches (help navigate out of local minima)
- Stopping Procedure
 - Stop if validation loss does not improve for 10 epochs (not yet seen)

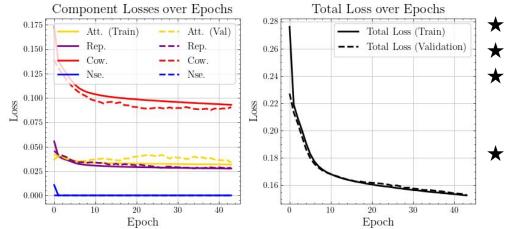
Loss Function

$$L_V = \frac{1}{N} \sum_{j=1}^N q_j \sum_{k=1}^K \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).$$

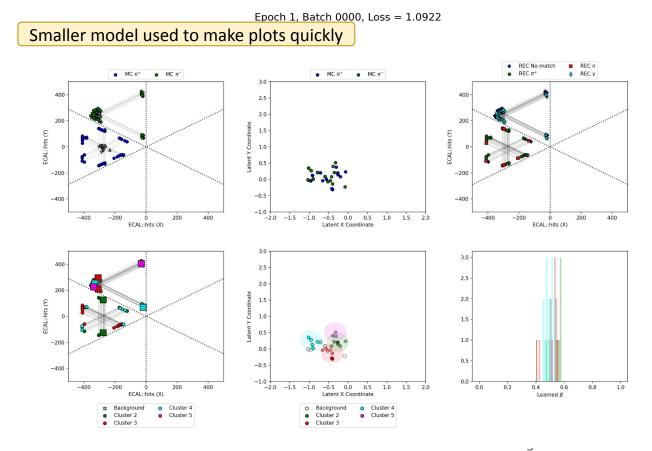
$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,$$

Per epoch evaluation of **Obj. Condensation Loss** Solid lines = Training /// Dotted lines = Validation Since validation loss is evaluated at the end of each epoch, the fast-learning early epochs have <u>validation loss < train loss</u>

Overfitting not yet seen, but training stopped at 24 hours. Working on extending training



Training Visualization (Event A)

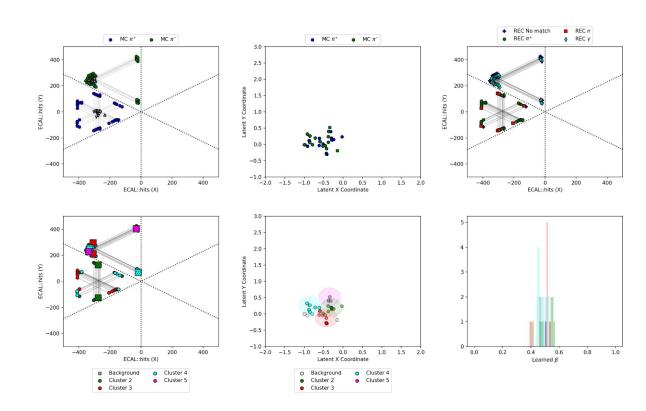


Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* $[x_c, y_c]$ (colors match TL plot) **Top Right** *REC::Particle reco hits*

Bottom Left

Hits clustered in latent space * Box = Brightess Beta * Bottom Middle Latent space with t_B =0.5and t_D =0.28 used to determine clusters (colors match BL plot) Bottom Right Histogram of the strip brightness (\Box) values

Training Visualization (Event A)



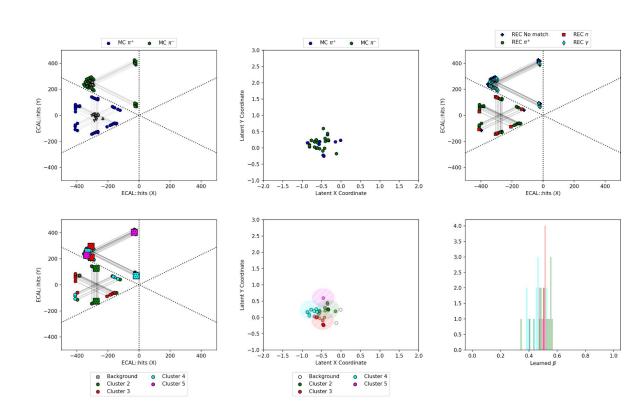
Epoch 1, Batch 0001, Loss = 1.0721

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* [x_c, y_c] (colors match TL plot) **Top Right** *REC::Particle reco hits*

Bottom Left

Hits clustered in latent space * Box = Brightess Beta * Bottom Middle Latent space with t_B =0.5and t_D =0.28 used to determine clusters (colors match BL plot) Bottom Right Histogram of the strip brightness (\Box) values

Training Visualization (Event A)



Epoch 1, Batch 0002, Loss = 1.0444

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* [x_c, y_c] (colors match TL plot) **Top Right** *REC::Particle reco hits*

Bottom Left

Hits clustered in latent space * Box = Brightess Beta * Bottom Middle Latent space with t_B =0.5and t_D =0.28 used to determine clusters (colors match BL plot) Bottom Right Histogram of the strip brightness (\Box) values

Training Visualization (Event A)

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* $[x_c, y_c]$ (colors match TL plot) **Top Right** *REC::Particle reco hits*

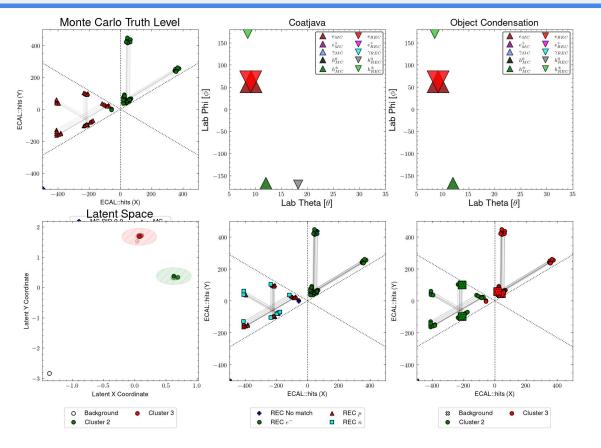
Bottom Left *Hits clustered in latent space* * *Box = Brightess Beta ** **Bottom Middle** *Latent space with* t_B =0.5and t_D =0.28 used to determine *clusters* (*colors match BL plot*) **Bottom Right** *Histogram of the strip brightness* (\Box) values

Training Visualization (Event B)

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* [x_c, y_c] (colors match TL plot) **Top Right** *REC::Particle reco hits*

Bottom Left Hits clustered in latent space * Box = Brightess Beta * Bottom Middle Latent space with t_B =0.5and t_D =0.28 used to determine clusters (colors match BL plot) Bottom Right Histogram of the strip brightness (\Box) values

Training Results (Event C)

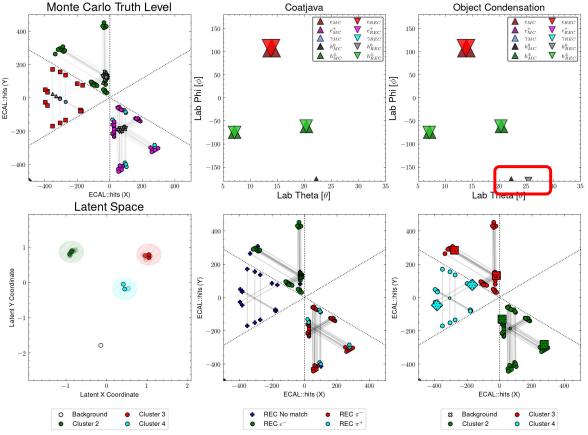


Coatjava (middle column) reconstructs an extra false neutral particle in Sector 4

Object Condensation (right column) does not make this mistake, finding one cluster here

Obj. Cond.=More comprehensive understanding of what should be considered a cluster

Training Results (Event D)



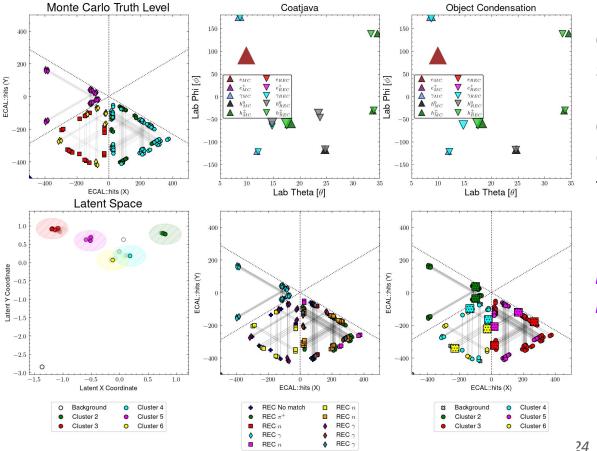
Coatjava (middle column) does not find the neutron in Sector 4

Object Condensation (right column) <u>does find this neutron</u> but the ambiguity of the 3-way intersection leads to a misreconstruction of **theta**

Obj. Cond.=Could use more development in calculating the centroid location after clustering

CLAS Collaboration Meeting Nov. 2024

Training Results (Event E)



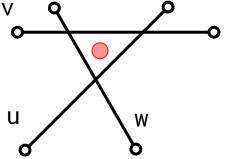
Coatjava (middle column) finds a swamp of neutrals in Sector 6

Object Condensation (right column) correctly identifies only two unique clusters in Sector 6.

Obj. Cond.=Can handle multiple particles in a sector and still predict their centroid effectively

Creating new ECAL::clusters bank (python)

- 1. Loop over PCAL, ECIN, and ECOUT strips
- 2. For each strip (j) belonging to cluster (k)
 - a. Find its most energetic $(\sum_{j} E_{j})$ 3-way intersection. A 3-way intersection is determined by the average (x,y,z) of closest approach for **uv**, **vw**, **uw** strips. E_{i} is energy corrected to account for attenuation!



- 3. For each cluster (k) containing (N) 3-way intersections
 - a. Only consider 3-way intersections in the sector with a 50%+ majority
 - b. Calculate the z-score \mathbf{z}_i for each 3-way intersection (x,y,z)
 - c. Report the centroid's (x,y,z) as the weighted sum of the 3-way intersections, where $w_i = (1+z^2)^{-1}$ to lessen the impact of *distantly separately 3-way's*
- 4. Purposefully assign ECAL::cluster status of PCAL, ECIN, ECOUT to a iniquely identifiable status value to force REC::Calorimeter to recognize them as a group
- 5. Generate new ECAL::clusters, ECAL::calib (empty) and ECAL::moments (empty)

Creating new ECAL::clusters bank (python)

index	:	2	3	1	0
pindex		1	1	2	3
detector		7	7	7	7
sector		3	3	2	5
layer		1	4	1	7
energy		0.1823	0.0090	0.3472	0.2481
time		149.9131	151.2900	149.1106	155.7128
path		764.8085	801.8519	744.9232	770.0773
chi2		0.0000	0.0000	0.0000	0.0000
х	:	-37.5027	-29.0460	93.4869	-120.4040
У		70.6440	58.9809	78.6126	-239.4463
Z	:	752.1381	794.9993	735.1639	722.0366
hx		-39.3423	-38.3846	93.4869	-120.4040
hy		68.0255	66.5349	78.6126	-239.4463
hz		753.1024	790.1033	735.1639	722.0366
lu		0.0000	0.0000	0.0000	0.0000
lv	:	0.0000	0.0000	0.0000	0.0000
lw		0.0000	0.0000	0.0000	0.0000
du	:	0.0000	0.0000	0.0000	0.0000
dv		0.0000	0.0000	0.0000	0.0000
dw		0.0000	0.0000	0.0000	0.0000
m2u		0.0000	0.0000	0.0000	0.0000
m2v		0.0000	0.0000	0.0000	0.0000
m2w	:	0.0000	0.0000	0.0000	0.0000
m3u		0.0000	0.0000	0.0000	0.0000
m3v		0.0000	0.0000	0.0000	0.0000
wcm	1.	0.0000	0.0000	0.0000	0.0000
status	-	2	2	1	0

Purposefully assign ECAL::cluster status of PCAL, ECIN, ECOUT to a uniquely identifiable <u>status</u> value to force REC::Calorimeter to recognize them as a group

Implementation added in personal coatjava fork in order to force all clusters with identical status to be assigned to the same REC::Particle

See processNeutralTracks_OC in EventBuilder.java

- // Group DetectorResponses by their status
- for (DetectorResponse response : allResponses) {

int status = response.getStatus();

groupedResponses.computeIfAbsent(status, k -> new ArrayList<>()).add(response);

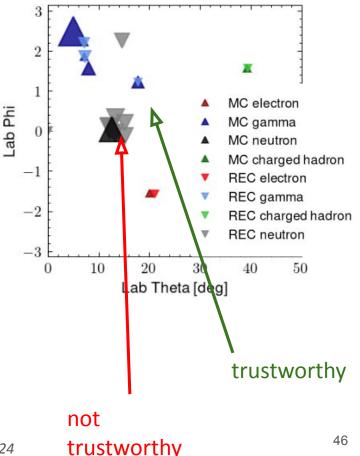
Benchmarks – Coatjava vs. Obj Condensation

Next we will discuss three of the ways I directly compared the two clustering methods

- 1. (P, θ , ϕ) binned neutron gun events
- 2. Incoherent J/Psi production off deuterium $(e+n \rightarrow e'+J/Psi+n')$
- 3. clasdis Monte Carlo SIDIS events

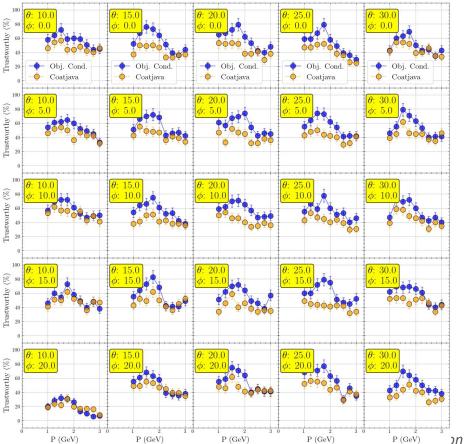
We classify REC::Particle's as *trustworthy* if ...

- A. There is an MC::Particle within ... $\delta \theta < 4$ [deg] and $\delta \phi < 8$ [deg]
- B. The matched MC::Particle has the same pid as the REC::Particle
- C. There are no other REC::Particles that also satisfy this requirement for that MC::Particle



CLAS Collaboration Meeting Nov. 2024

Particle Gun Benchmark



- 1000 e+n events in each bin
- Columns: θ=10,15,20,25,30 [deg]
- ➢ Rows: φ=0,5,10,15,20 [deg]
- Data points: 1 < P < 3 [GeV]</p>

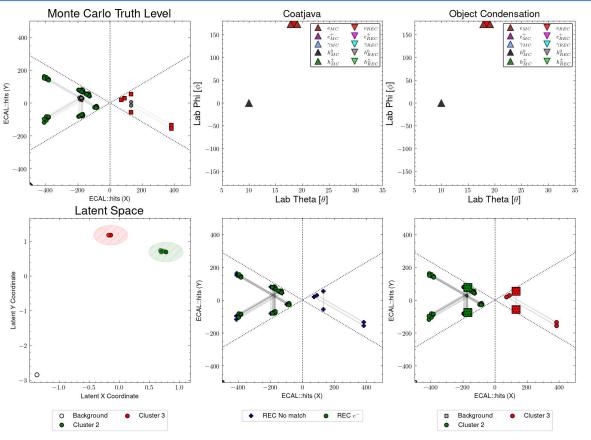
Observations:

Average improvement of **Object Condensation** vs. **Coatjava** of 20-40%

Can be further improved because of the 3-way intersection issue...(see next slide)

Should extend study to smaller momentum

Particle Gun Benchmark



Here, the electron and neutron are thrown and leave hits in sectors 4 and 1, respectively...

Despite Object Condensation clustering the neutron hits as an object (bottom right red cluster), since there is no 3-way intersection, we do not assign it as a REC::Particle later

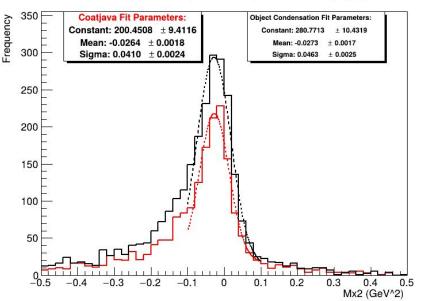
Future: Train Obj. Cond. to predict neutral particle Px, Py, Pz and bypass needing ECAL cluster

Incoherent J/Psi Production Benchmark

- > 1M spherically generated $e+n \rightarrow e' + (J/\psi \rightarrow e^+e^-) + n$ events (w/ Fermi motion)
- For comparison, we make simple cuts

 - \circ N_{neutrons} = 1
- We see that Object Condensation provides a roughly 40% increase

Richard Tyson is completing a more thorough comparison using his analysis pipeline to come to a more accurate conclusion Mx2 Distribution (e+D \rightarrow e(J/\Psi \rightarrow e-e+)n(p))



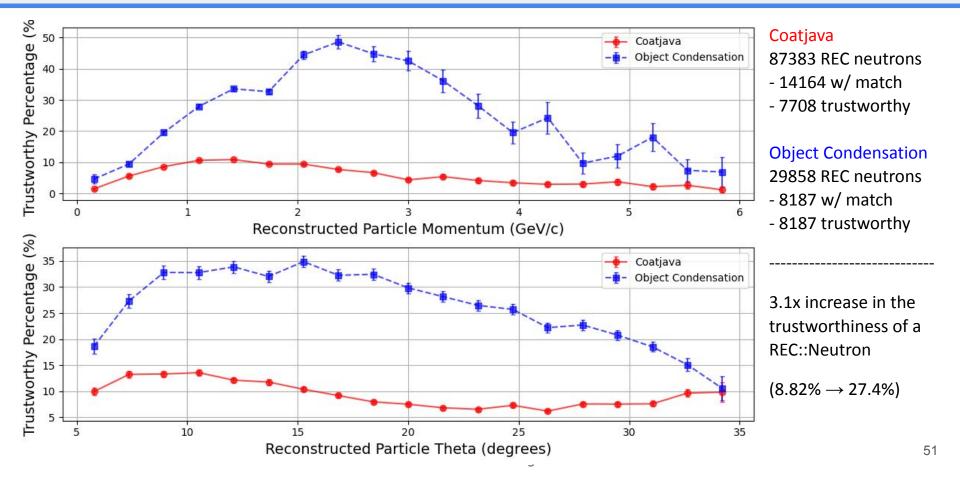
SIDIS Monte Carlo Benchmark

- Provides the most complex comparison...ex: multiple particles/types per sector
- One major advantage *currently* for **Coatjava** is that <u>one strip can belong to two</u> <u>particles/clusters in the same layer</u>...still working how to adjust for this in Obj. Cond.
- Typically, photons leave less hits in the calorimeter per cluster than neutrons which means Obj. Cond. has a disadvantage in finding photons

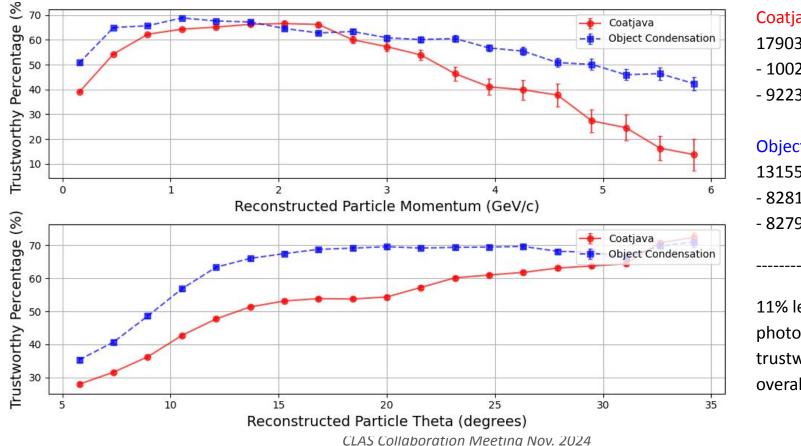
In the next slides, we compare the **Momentum** and **Theta** dependence of trustworthy neutrons/photons between Coatjava and Object Condensation...

1M e+p DIS events simulated using clasdis separate from what was used during training

Trustworthy REC::Neutron Percentage



Trustworthy REC::Photon Percentage



Coatjava

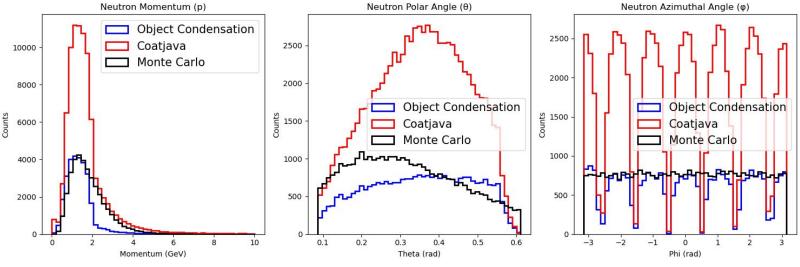
179039 REC photons - 100245 w/ match - 92233 trustworthy

Object Condensation 131555 REC photons - 82817 w/ match - 82798 trustworthy

11% less trustworthy photons, but higher trustworthy %-age overall

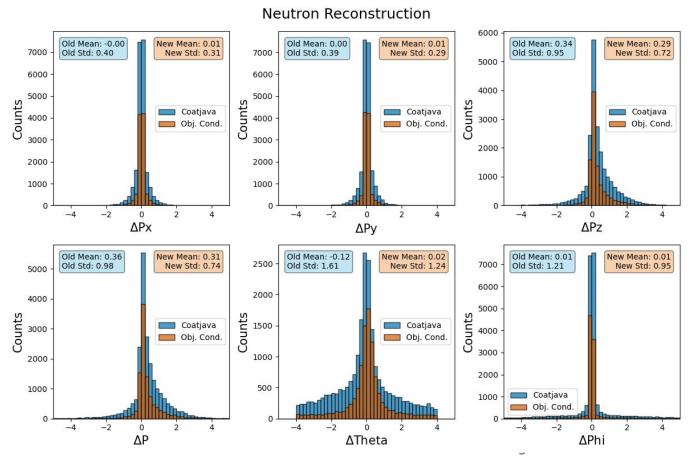
Neutron Kinematics

- > Yields for **Object Condensation** and **Monte Carlo** seem to more closely match for p<2 GeV which corresponds to $\beta<0.9$
- > In Coatjava there is an if-statement that assigns β >0.9 particles to neutrons if it has no PCAL cluster (hence why there are *p*>2 GeV neutrons)
- Since Object Condensation finds clusters more effectively, this if-statement fails



CLAS Collaboration Meeting Nov. 2024

Neutron Kinematic Resolutions

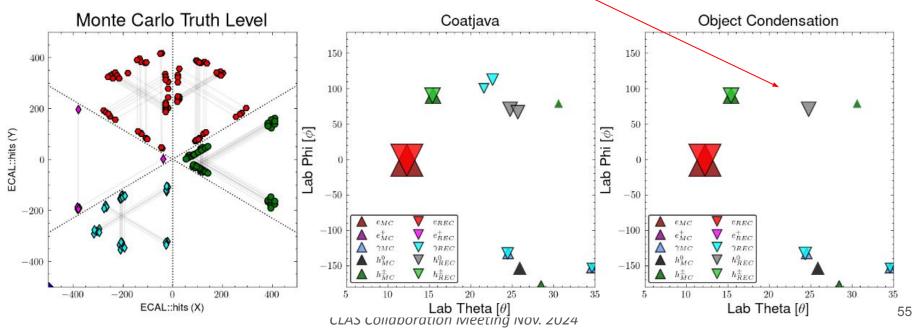


Plots shown for all REC neutrons with a Monte Carlo match

We see the resolution is improved and the mean is essentially the same between **Coatjava** and **Object Condensation**

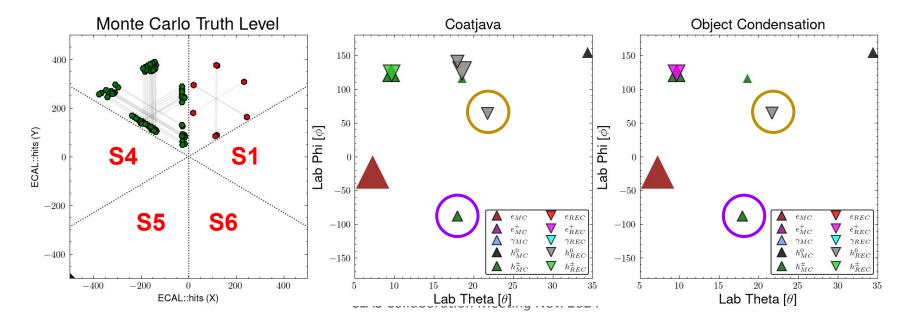
Intersector Tracks

- Coatjava and Object Condensation will be prone to scenarios where accidental neutral clustering is *unavoidable*
 - Ex: Below, a Pi+ left hits in S2 and S3 ($\varphi \sim 60 100$ [deg])
 - Both Coatjava and Object Condensation find a stray neutral

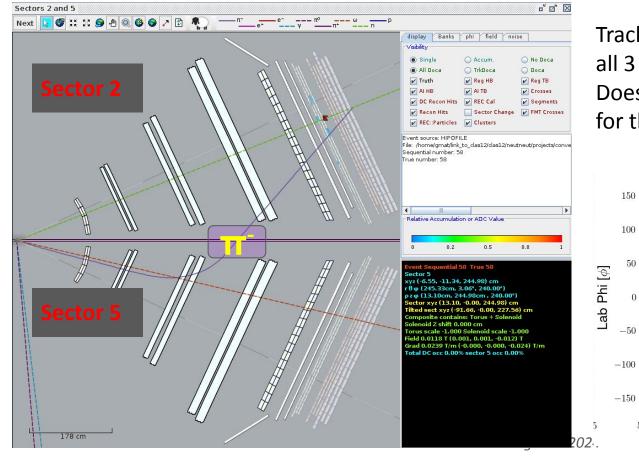


Intersector Tracks

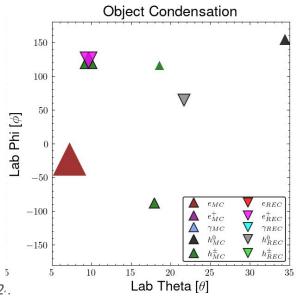
- In this other example, a Pi- Generated in Sector 5 crosses into sector 2. This pion leaves hits in Sector 2 which is registered as a Neutron
 - It makes sense that Object Condensation would see the Sector 2 3-way intersection as a viable cluster



Intersector Tracks

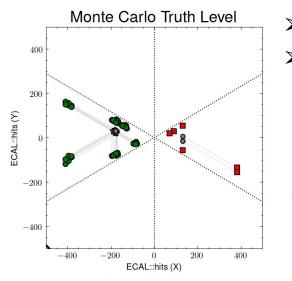


Track might actually leave hits in all 3 DC's (albeit different sectors) Does the track algorithm account for this in anyway?



Areas to Improve

- The latent space clusters in Object Condensation have the ability to learn features
 - This can be used during training to predict PID, Cluster X,Y,Z perhaps more efficiently than just using 3-way intersections
 - This would also allow for non-traditional clusters to be reconstructed, such as 2-way intersections



On the left is a strip plot from our neutron gun events
 Since there is no 3-way intersection here, neither Obj.
 Condensation nor Coatjava will reconstruct a particle

Can predicting cluster X,Y,Z help resolve this problem?

Also, what can we do to add/improve our definition of noise?

Conclusion/Future

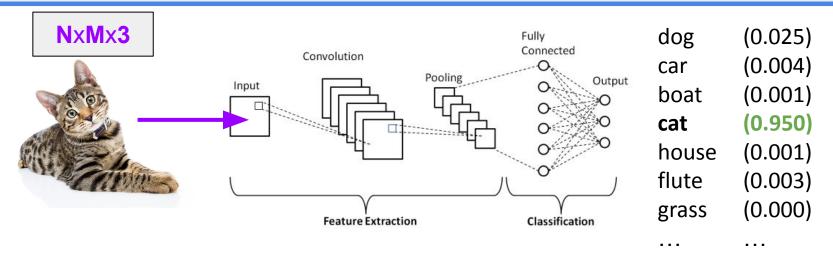
- ➤ We identified that an AI trained on REC::Calorimeter/REC::Particle would not alleviate the neutral particle clustering effectively → Turn to the source, train an AI-assisted clustering algorithm
- Coatjava was forked to attach additional truth information to the ECAL::hits bank for training purposes
- > A feature extractor utilizing GravNet blocks was used to accumulate abstract nearest neighbor information
- Object Condensation was used to optimize the feature extractor, encouraging it to form clusters in a
 2-dimensional latent space that represent Monte Carlo particles
- > The ECAL::hits that fall into these clustered regions were processed to calculate a new ECAL::clusters bank
- > The ECAL::clusters bank is fed back into the Coatjava pipeline to form a new REC::Particle bank
- > We see **3 times improvement** in the trustworthiness of REC::Particle neutrons without sacrificing yields
- Streamlining of collaborator usage/testing of my training/coatjava fork
- Add PID, Px, Py prediction capabilities of neutrals to training

TO DO

- Begin hyperparameter search to optimize network
- With collaborator approval, consider publishing (might be first AI-assisted calorimeter clustering tested on Monte Carlo in a full reconstruction pipeline) Looking into using it for EIC KLM 2nd detector clustering

Extra Slides

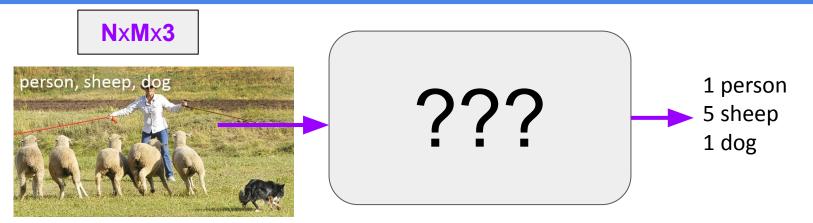
Task: Image Classification



Given... An isolated 'grid' of inputs **Output...** A list of prediction scores for each trained category

★Training★ is straightforward. ImageNet has ~14 million labeled images with more than 22,000 categories.

Image within Image Classification



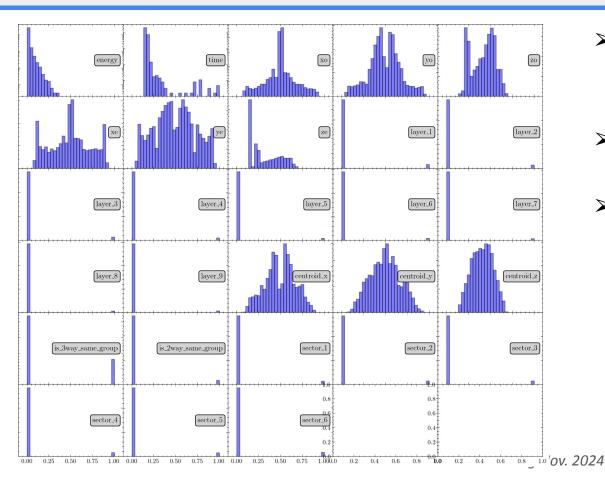
Given... An isolated 'grid' of inputs

Output... A potentially arbitrary number of objects, each classified

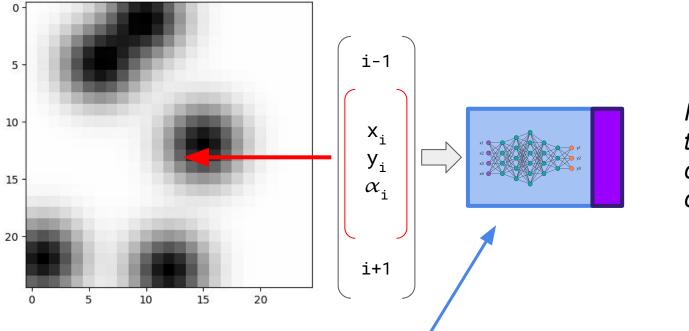
★Training is more difficult!★

- Cannot easily train for datasets with all possible category combinations
- How would one deal with situations where objects overlap?
- The ★Approach★ must be changed (can't do simple CNN)

Machine Learning Input Features

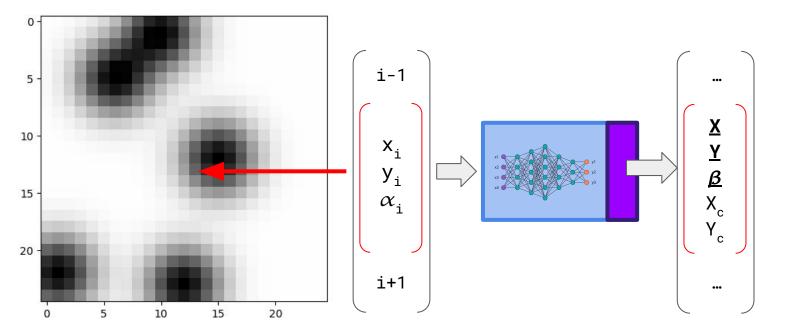


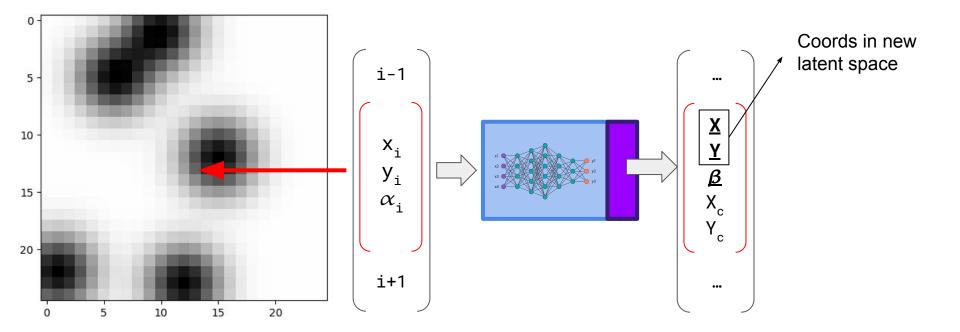
- Shown are the *per strip* input features (normalized to 1)
 - Energy & Time are log-scaled
- The one-hot encode for the strip's sector is not used because it too strongly correlates with being a unique particle, leading to a quick local minimum during training

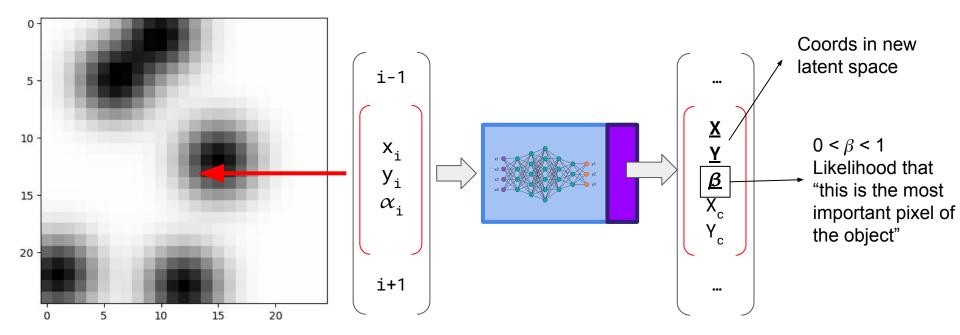


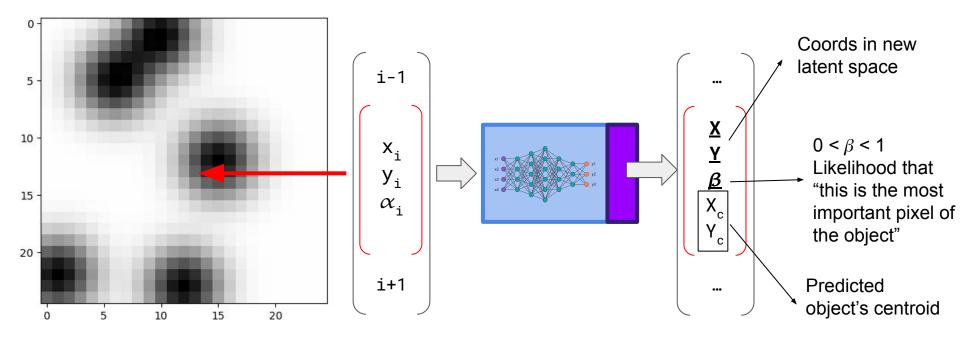
I want my ML model to tell me how many clusters, and their centroids (x_c, y_c)

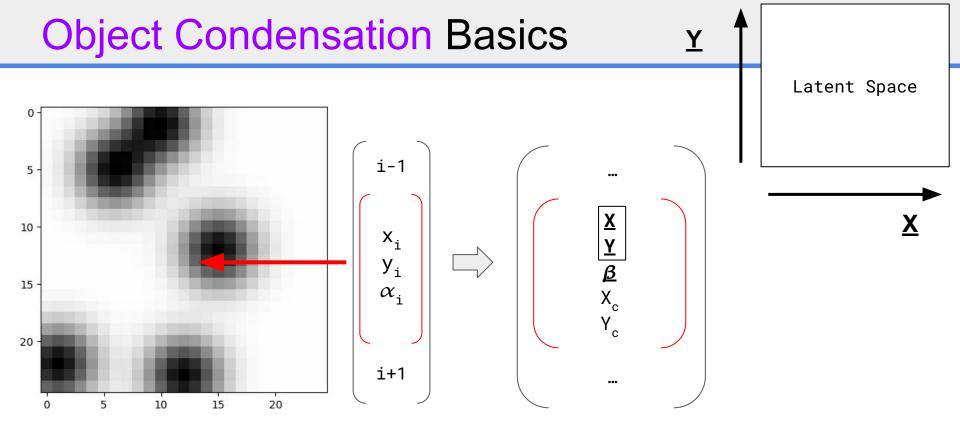
Lets see what a **well-trained** model does, then discuss how we even **train** it to perform the task at hand (clustering!)

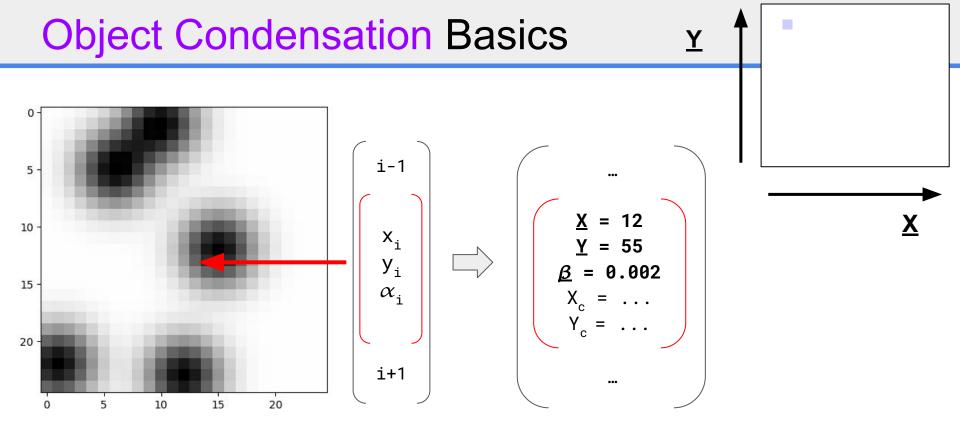


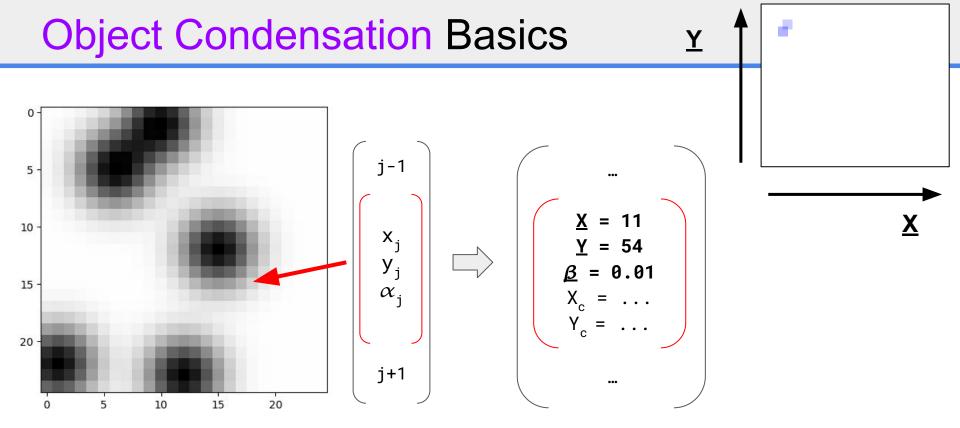


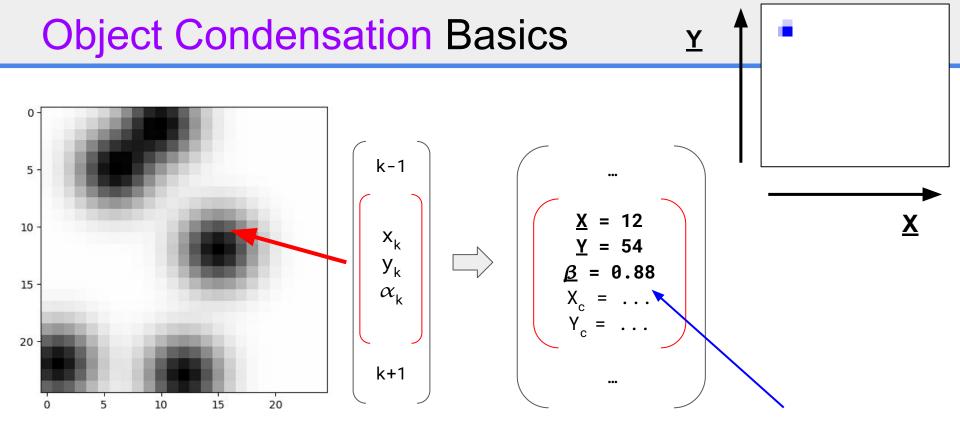








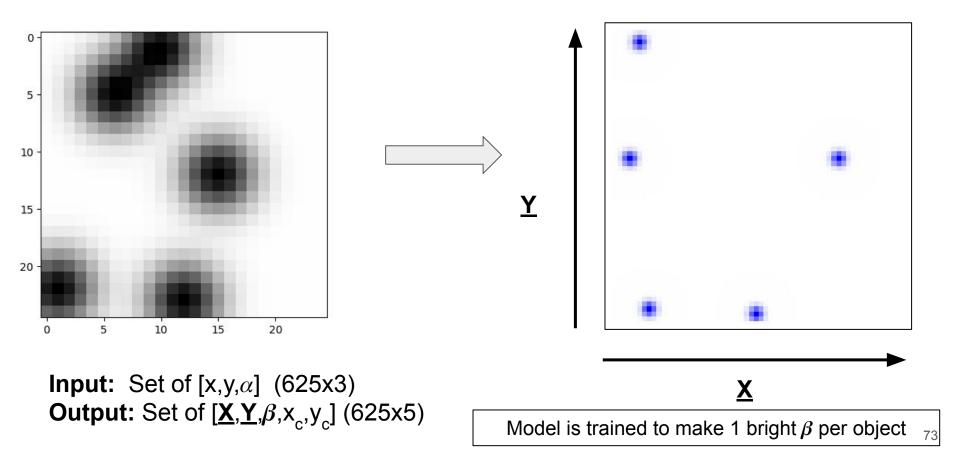




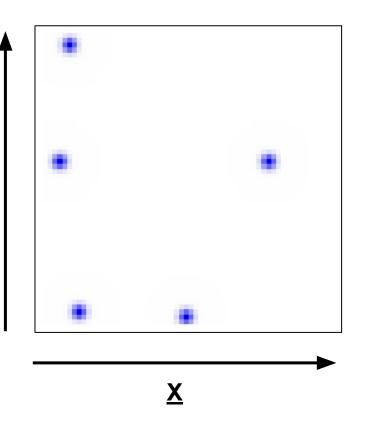
High β implies the model thinks this point is very important!

72

Object Condensation Basics



Object Condensation Basics



Solution becomes much simpler to picture...

... threshold away dim pixels ($\beta < 0.8$) ...

... count the # pixels remaining ...

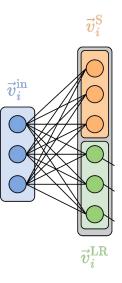
 \dots read off their predicted x_c and y_c \dots

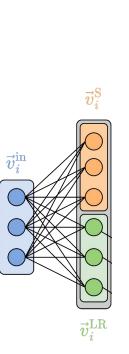
74

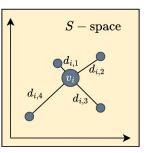
 $v_i^{in} \rightarrow \text{Strip i's Input}$ vector to GravNet Hyperparameters # S-dims, # Learned Features

Procedure (for each strip)

 A DNN produces a set of coordinates in S-space and hidden features v^{LR}

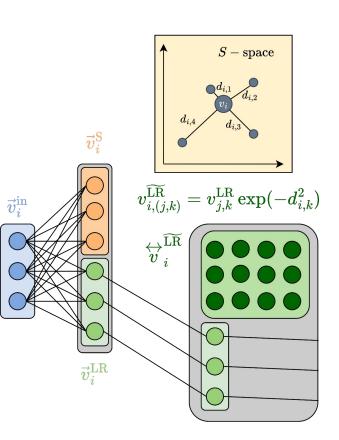






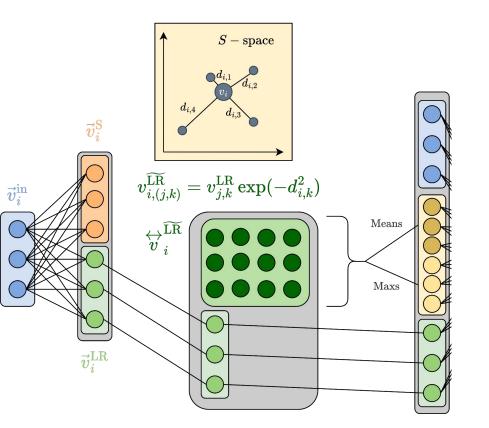
Hyperparameters # S-dims, # Learned Features, # S-Neighbors

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors



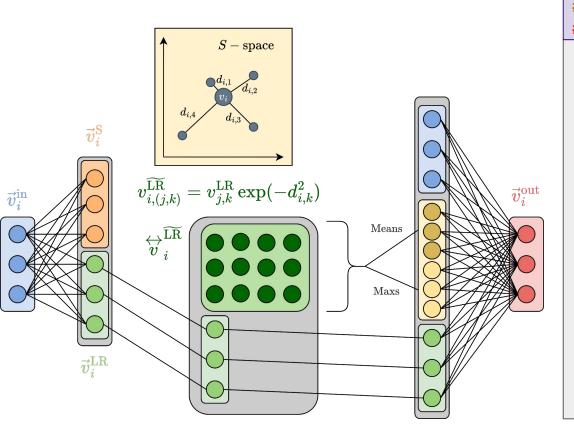
Hyperparameters # S-dims, # Learned Features, # S-Neighbors

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors
- Calculate distance-weighted *j-th* learned
 (LR) feature of the K neighbors of strip *i*



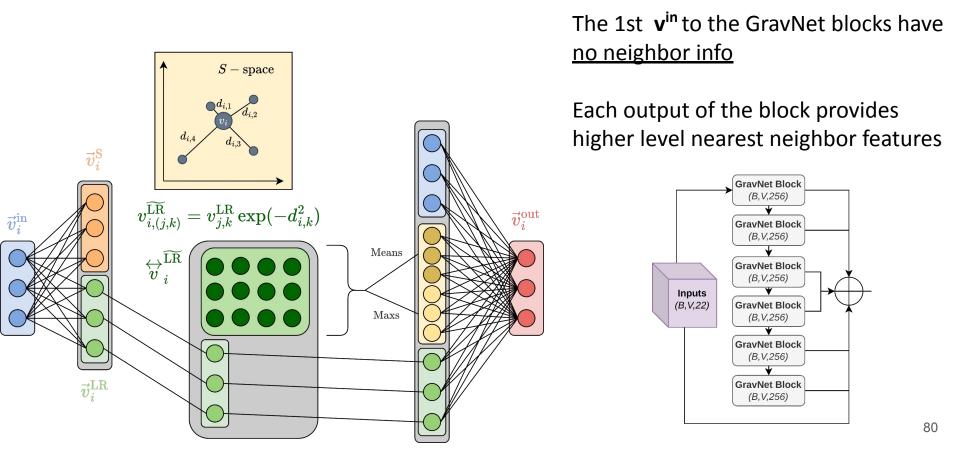
Hyperparameters # S-dims, # Learned Features, # S-Neighbors

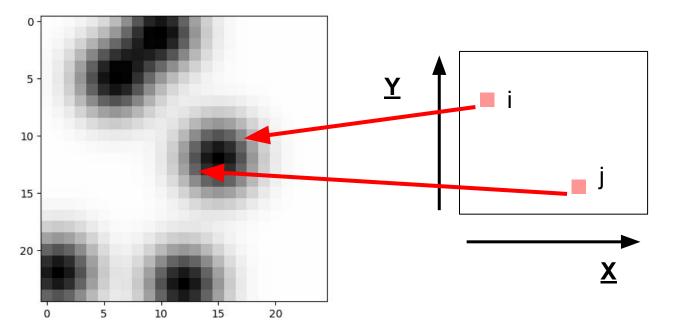
- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors
- Sum the distance-weighted *j-th* learned
 (LR) feature of the K neighbors of strip *i*
- 4. Calculate the mean & max of each learned features nearest neighbors. Concatenate v^{in} , v^{LR} and the mean(+)max of $v^{\text{tilde}\{LR\}}$



Hyperparameters # S-dims, # Learned Features, # S-Neighbors, # output features

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors
- Sum the distance-weighted *j-th* learned
 (LR) feature of the K neighbors of strip *i*
- 4. Calculate the mean & max of each learned features nearest neighbors. Concatenate v^{in} , v^{LR} and the mean(+)max of $v^{\text{tilde}\{LR\}}$
- DNN the final result to a new output vector v^{out}

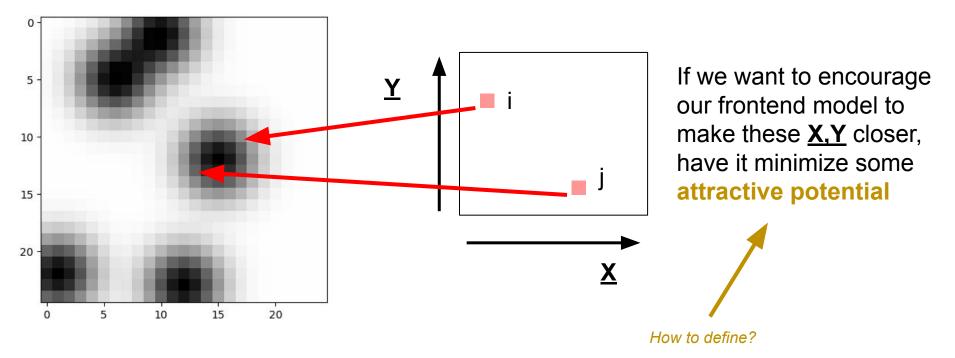


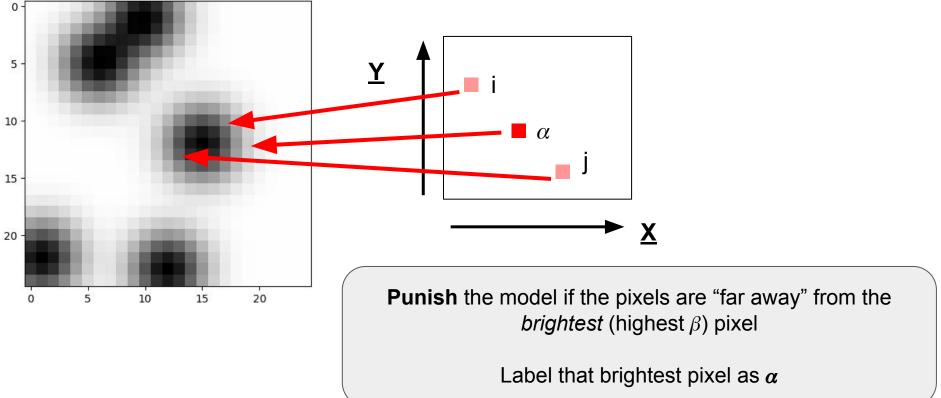


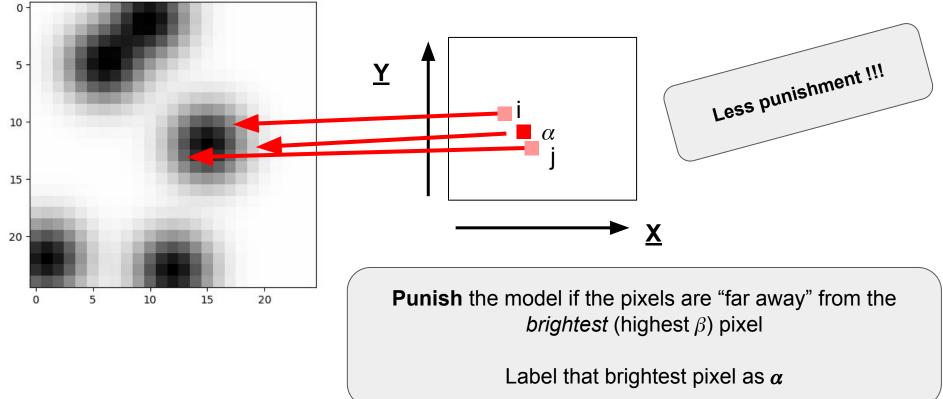
During training, we know these points (i,j) come from the same object...

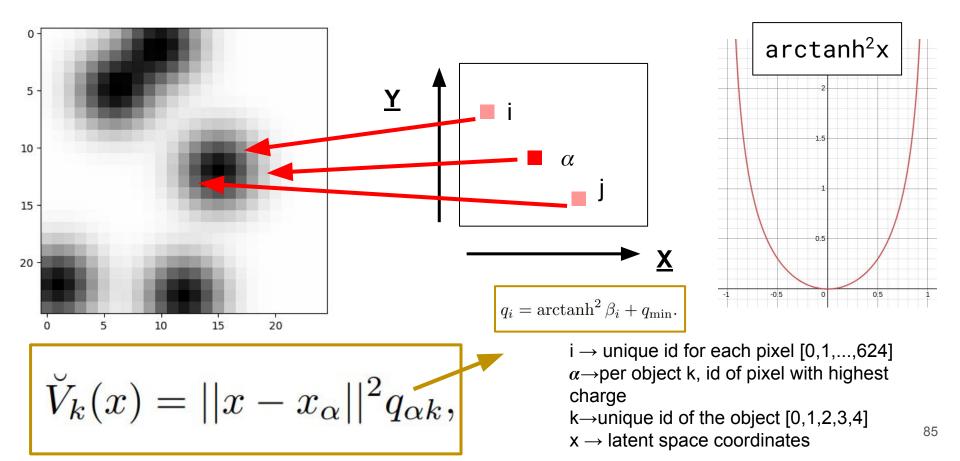
...we want them to attract to one another in the latent space...

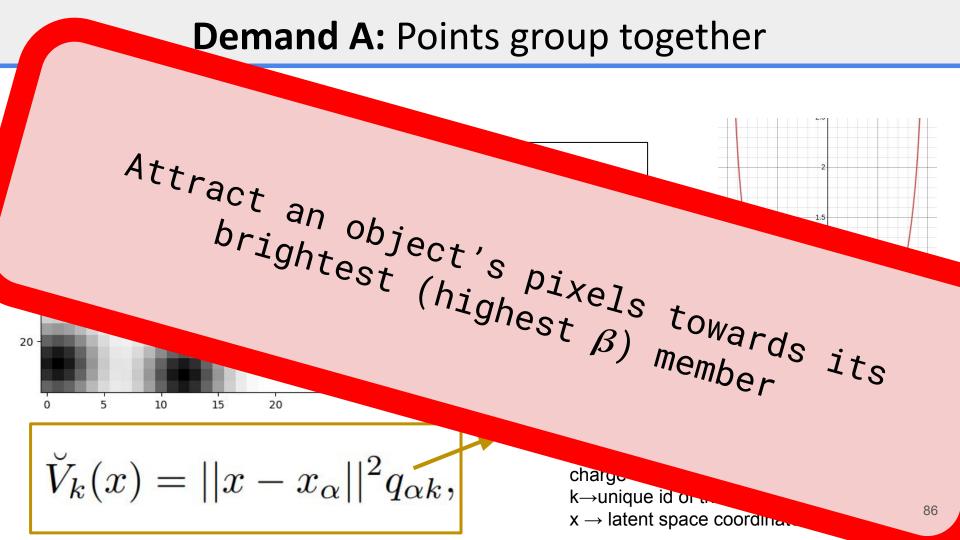
Before training, X & Y are random

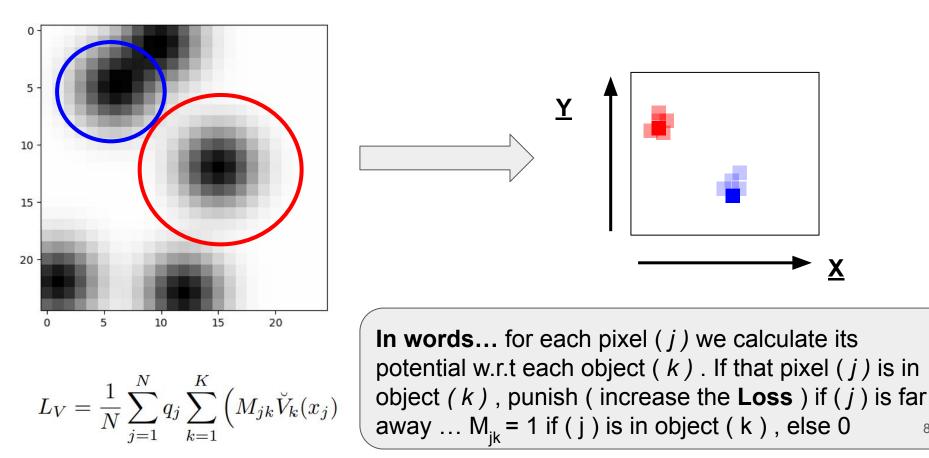




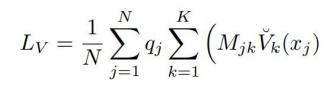








87

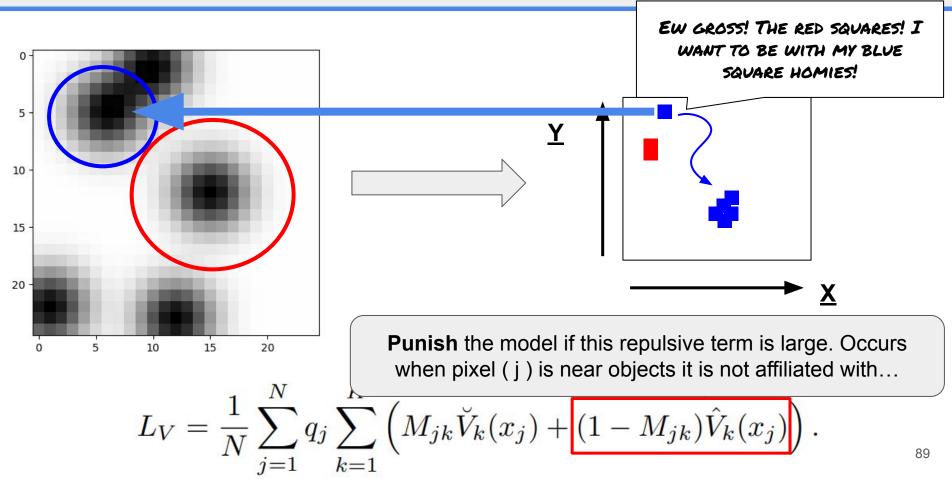


0 -

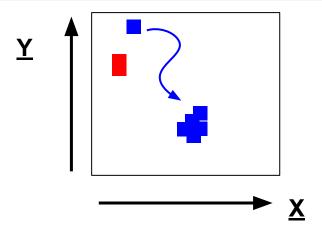
20

We must also "scare" away pixels from different objects so that they cluster In words... potential w.r.t each one object (k), punish (increase away ... $M_{ik} = 1$ if (j) is in object (k), on

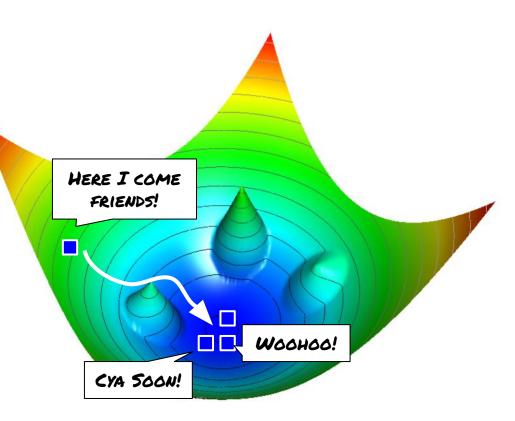
Demand B: Points group separately



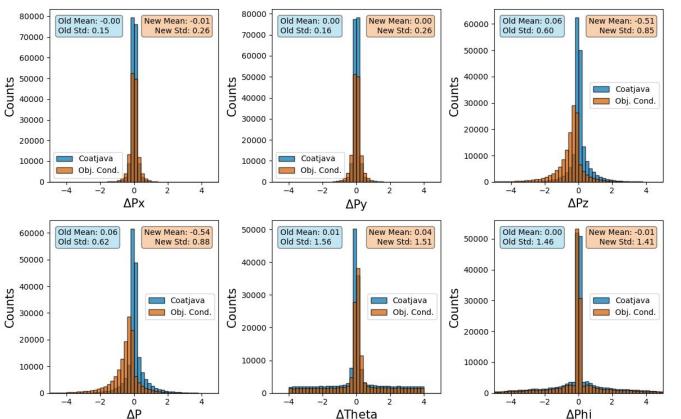
Demand B: Points group separately



(*Right*) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point)



Photon Kinematic Resolutions



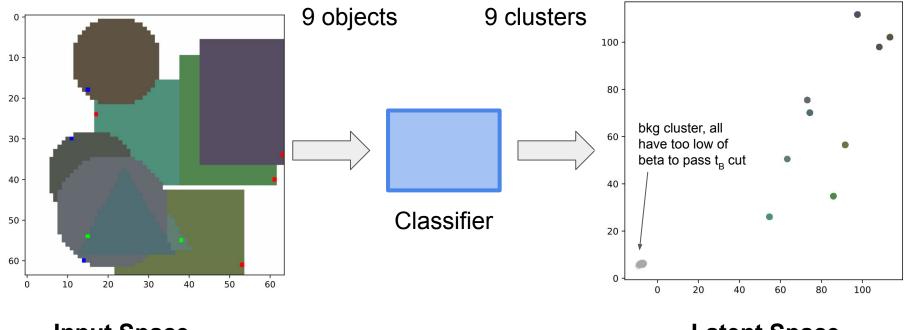
Photon Reconstruction

Plots shown for all REC photons with a Monte Carlo match

We see the resolution is good apart from the **Pz** and **P** which has a documented parallax fix in the <u>CLAS12</u> <u>Electromagnetic</u>

<u>Calorimeter</u> paper that I have not implemented (has to do with the cluster's centroid-z coordinate

Interesting Example



Input Space

Latent Space