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Presentation Outline

1. Why do we need to improve neutral clustering at CLAS12 ( 𝛾’s vs. n’s )?

2. How does COATJAVA reconstruct clusters and what are its flaws?

3. Introduce ★Object Condensation★ – a grid-free machine learning approach to 

object clustering

4. GravNet nearest-neighbor model architecture – training parameters/features

5. Training metrics on Monte Carlo – How well does the model perform?

6. Custom COATJAVA pipeline for this project 

Model Evaluation (COATJAVA vs. Object Condensation)

A. Neutron Gun events

B. Incoherent J/Psi production off deuterium (with the help of Richard Tyson)

C. Monte Carlo DIS events

2



CLAS Collaboration Meeting Nov. 2024

Neutral Clustering at CLAS12

➢ Shown is the (𝜃,𝜙) distribution 

of Monte Carlo particles from 

a sample SIDIS event (upwards 

facing triangles)
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Neutral Clustering at CLAS12

➢ Shown is the (𝜃,𝜙) distribution 
of Monte Carlo particles from 
a sample SIDIS event (upwards 
facing triangles)

➢ In an ideal world, the 
Reconstructed particles 
(downwards facing triangles) 
would be exactly on top of the 
thrown MC particles
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Neutral Clustering at CLAS12

➢ Shown is the (𝜃,𝜙) distribution 

of Monte Carlo particles from 

a sample SIDIS event (upwards 

facing triangles)

➢ However, issues in neutral 

particle clustering lead to 

many false neutrals being 

reconstructed
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Non-combinatorial backgrounds emerge for 𝜋0 studies for 
instance, where one of the photons in the pair is fake
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Resolving the Photon Clustering Issue

6

➢ In turns out the information in REC::Calorimeter and REC::Particle is plenty to 

address the false photon backgrounds

➢ Unlikely for false photons 

to collect around true 

photons

➢ More likely for false 

photons to collect around 

many other false photons

A simple Gradient Boosted 

Tree model with nearest 

neighbor features cleans up 

the photons at CLAS12
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➢ In turns out the information in REC::Calorimeter and REC::Particle is NOT ENOUGH 

to address the false neutron backgrounds

Why Neutrons pose a challenge

7

➢ Neutrons can be fairly 
separated in (𝜃,𝜙) yet 
definitely false

➢ Bundles of false neutrons 
can be found near a true 
neutron

➢ They can also be found 
with no true neutron 
nearby
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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PCAL ECIN ECOUT

Thrown pion →
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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… Coatjava may find 3 
clusters in and correctly 
associate them with one 
another…

PCAL ECIN ECOUT

REC Pion
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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… Coatjava may find 3 
clusters in and correctly 
associate them with one 
another… but it may 
accidentally find more! PCAL ECIN ECOUT

REC Pion
REC Photon
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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… Coatjava may find 3 
clusters in and correctly 
associate them with one 
another… but it may 
accidentally find more!

… The clusters may also 
fail to be associated!

PCAL ECIN ECOUT

REC Pion
REC Photon
REC Neutron
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AI-assisted Neutral Clustering

ECAL::hits REC::Calorimeter REC::Particle

Strip-by-strip info Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Our AI organizes groups of strips separate single objects (particles)

14

PCAL ECIN ECOUT

AI assisted ECAL::clusters bank

An AI finds groups of strips likely to come from the 
same particle
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AI-assisted Neutral Clustering

ECAL::hits REC::Calorimeter REC::Particle

Strip-by-strip info Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Our AI organizes groups of strips separate single objects (particles)
★ Then we manually calculate one cluster (x,y,z,E,t) for each ECAL type

15

PCAL ECIN ECOUT

AI assisted ECAL::clusters bank

An AI finds groups of strips likely to come from the 
same particle

Then we calculate a new ECAL::clusters bank
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Sample Monte Carlo Event

● Left Plot shows the final state Monte Carlo 

particles generated in SIDIS that are responsible 

for the ECAL strip hits
○ Colors → Different particles

○ Shapes → Different MC PIDs

● PCAL, ECIN, and ECOUT are overlaid

● For each strip hit, there is an “origin” and 

“endpoint” (x,y,z) as well as edep and timing

● In general, Coatjava looks for 3-way 

intersections in the PCAL, ECIN, and ECOUT 

(separately) to create clusters

● Track <-> Cluster matching determines if we 

need to make a neutral particle
16
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Sample Monte Carlo Event

17

coatjava
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Sample Monte Carlo Event

18

False neutrals created by 
COATJAVA
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Sample Monte Carlo Event

19

New Machine Learning approach effectively reduces the number 
of false neutrals without losing true neutrals
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Defining the Problem

➢ Input: Point Cloud of ECAL strips with several features (layer, sector, E, t, x, y, z, etc)
○ For training we are aware of the Monte Carlo particle responsible for the strip hit

➢ Output: Distinct groups/clusters of strips that belong to the same particle

This is a much more abstract version of Image-within-Image classification

20

1 2 3 4 5
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ML Input Considerations

Model Input Features (22)

● [+3] Strip Origin Point (x
1
 , y

1
 , z

1
) 

● [+3] Strip End Point (x
2
 , y

2
 , z

2
)

○ Red features scaled [-500,500] -> [0,1]
○ Blue features are scaled [550-950] -> [0,1]

● [+1] Energy Deposition (already [0,1])
● [+3] Strip’s most energetic centroid (x,y,z)

○ [+2] One-hot encode for either 3 way or 2 way

● [+1] Timing Information [0,1000] → [0,1]
● [+9] Layer

○ One-hot-encoded, 9 feature bits [0,1] total

Grey circles (right plot) show location of the energetic centroids
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What is ★Object Condensation★?
➢ Object Condensation defines a loss function that a neural network will try to minimize

➢ If this loss function is minimized, the Point Cloud is mapped to a clustered latent space

➢ Each ECAL strip learns its own point in the latent space (x
C
 , y

C
) as well as a brightness (0<ꞵ<1)

➢ For each object (particle) only one latent space pixel is “bright” (ꞵ near 1)

22

Feature 
Extractor 
(Front-end 

Neural 
Network)

https://arxiv.org/abs/2002.03605
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What is ★Object Condensation★?

By viewing this clustered latent space (x
C
 , y

C
) we can get…

➢ The number of particles – threshold away the dim ꞵ’s and count them!

➢ The strips for each particle – for a bright ꞵ, collect all dim ꞵ’s within some radius

23

6 particles Strips per particle



CLAS Collaboration Meeting Nov. 2024

★Object Condensation★ Recap

➢ Input → v
in

(N, F)
○ N: Number of nodes (in our case number of strips)

○ F:  Number of features per node (in our case 22)

➢ Output → v
out

(N, 3) → i.e. each strip learns 3 variables
○ v

out
[: , 0] is the x-coordinate in a latent space (called x

C
)

○ v
out

[: , 1] is the y-coordinate in a latent space (called y
C
)

○ v
out

[: , 2] is the brightness of the node (strip) in the latent space [0,1] (called ꞵ)

24

Object Condensation (OC) defines a loss function L(xc,yc,ꞵ) that is minimum if…

1. The (x
C
 , y

C
) of nodes that belong to the same cluster are close (attractive loss)

2. The (x
C
 , y

C
) of nodes that belong to different clusters are far (repulsive loss)

3. Only one node per cluster has a large brightness ꞵ~1 (coward loss)

22 feats. x
C
 , y

C
 , 𝛽



Object Condensation Loss
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Attractive Loss

Each individual strip calculates one piece of 
the attractive loss

Very similar to E&M  U = qV

For each strip ( j ), punish the loss function 
the further it is from the brightest beta for its 
particle ( k )

The brightest strip for particle ( k ) is αk

Hey! You’re too far from 
our bright representative!

Do not fret!  During training I will get 
closer as that will minimize the 

attractive loss! 



Object Condensation Loss
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Repulsive Loss

Each individual strip calculates K-1 pieces of 
the repulsive loss

For each strip ( j ), punish the loss function 
the closer it is to the brightest beta of any 
other particle ( k )

The brightest strip for particle ( k ) is αk

Hey this is the electron 
party, you need to leave!

Sorry! I’ll be heading out soon 
since during training I’ll join back 

with the pion party!



Object Condensation Attractive & Repulsive

X

Y

(Right) The total potential V 
experienced by the blue square as 
it navigates past 3 unaffiliated 
objects (peaked condensation 
points) towards its clustering home 
(the bottom of the well, another 
condensation point)

Here I come 

friends!

Woohoo!

Cya Soon!

27

Watch out for 

the others!
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For each particle ( k )  , punish the coward loss if 
the object’s brightest beta is dim (near 0)

Coward Loss

Noise Loss

For each strip ( i ) punish the noise loss if the 
strip is noise (ex: 0-padded) and has a high 
brightness beta

Here n
i 
 is a bit that is 1 if strip ( i ) is noise

We are bright noise, we 
shouldn’t be considered as 

particles!

Uhhh, can someone please stop 
being a coward and be our 
bright beta representative 

already?
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Object Condensation Summary

➢ A feature extractor maps the (N,F) strip input space into a (x
C
 , y

C
) space

➢ The weights/biases of the feature extractor are backpropagated to minimize four 

Object Condensation losses (attractive, repulsive, coward, noise)

29

Feature 
Extractor 
(Front-end 

Neural 
Network)
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Object Condensation Summary

What is the Feature Extractor we use?

30

?
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Model Architecture

Backpropagation w/ cyclical LR (1e-6 <-> 1e-5 every 20 batches)

31
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Feature Extractor

The GravNet Block trains a distance-weighted graph neural network in 
an abstract S-space to learn nearest-neighbor-like features

Subsequent GravNet Blocks are concatenated with the original input 
and fed into DNNs to extract Beta and (x

c
 , y

c
) for each strip 32
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Data Generation (see repository     )

1. 1M e+p DIS events simulated using clasdis split into 1000 batches

2. Detector readout simulated using gemc with MC::True saved (see here         )

3. Create ECAL::hits and other familiar banks with recon-util
a. Custom coatjava fork          uses MC::True to give true/rec pid to each strip

4. Use hipopy to read ECAL::hits into csv files (see here        ) 
a. Also parse REC::Particle (for comparisons) and MC::Particle (for training)

5. Preprocess the csv files into h5 files for training (ex: scaling features, get centroids)

33

3

2

1

4,5

Filtered banks from Step 3

AI-assisted reconstructed hipo banks

Slurm scripts

Model training info (checkpoints, 
configuration, plots, etc.)

https://github.com/Gregtom3/neutneut
https://github.com/JeffersonLab/coatjava/tree/development/reconstruction/mc/src/main/java/org/jlab/service/mc
https://github.com/Gregtom3/coatjava/tree/dev_ecal_truth_match
https://github.com/mfmceneaney/hipopy/tree/main
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Training Information
❖ 128 events per batch

❖ 100 epochs (~45 per 24hrs training on 1 TitanRTX GPU)

❖ 80% - 20% Training/Validation splitting

❖ GravNet Feature Extractor Information

➢ 10 GravNet blocks – 10 nearest neighbors – 4 S-space dimensions – 32 hidden features – 256 output

➢ Total trainable parameters = 637,934

❖ Hyperparameters

➢ q
min

 = 0.1 

➢ s
B
 = 1        (only noise considered is 0-padded anyway, not hard for model to figure that out)

➢ t
B
 = 0.5     (minimum brightness threshold)

➢ t
D
 = 0.28   (radius of cluster in latent space, decided by eye, but need to develop rigorous metric)

❖ Cyclical Learning rate between 10-6 <-> 10-5 every 20 batches (help navigate out of local minima)

❖ Stopping Procedure

➢ Stop if validation loss does not improve for 10 epochs (not yet seen)

34
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Loss Function

★ Per epoch evaluation of Obj. Condensation Loss

★ Solid lines = Training /// Dotted lines = Validation

★ Since validation loss is evaluated at the end of 

each epoch, the fast-learning early epochs have 

validation loss < train loss

★ Overfitting not yet seen, but training stopped at 

24 hours. Working on extending training

35
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Training Visualization (Event A)

36

Top Left
Monte Carlo true hits
Top Middle
True hits in latent space [x

C
 , y

C
 ] 

(colors match TL plot)
Top Right
REC::Particle reco hits

Bottom Left
Hits clustered in latent space
* Box = Brightess Beta *
Bottom Middle
Latent space with t

B
=0.5and 

t
D
=0.28 used to determine 

clusters (colors match BL plot)
Bottom Right
Histogram of the strip 
brightness (ꞵ) values 

Smaller model used to make plots quickly
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Training Visualization (Event A)

37

Top Left
Monte Carlo true hits
Top Middle
True hits in latent space [x

C
 , y

C
 ] 

(colors match TL plot)
Top Right
REC::Particle reco hits

Bottom Left
Hits clustered in latent space
* Box = Brightess Beta *
Bottom Middle
Latent space with t

B
=0.5and 

t
D
=0.28 used to determine 

clusters (colors match BL plot)
Bottom Right
Histogram of the strip 
brightness (ꞵ) values 
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Training Visualization (Event A)

38

Top Left
Monte Carlo true hits
Top Middle
True hits in latent space [x

C
 , y

C
 ] 

(colors match TL plot)
Top Right
REC::Particle reco hits

Bottom Left
Hits clustered in latent space
* Box = Brightess Beta *
Bottom Middle
Latent space with t

B
=0.5and 

t
D
=0.28 used to determine 

clusters (colors match BL plot)
Bottom Right
Histogram of the strip 
brightness (ꞵ) values 
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Training Visualization (Event A)
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Top Left
Monte Carlo true hits
Top Middle
True hits in latent space [x

C
 , y

C
 ] 

(colors match TL plot)
Top Right
REC::Particle reco hits

Bottom Left
Hits clustered in latent space
* Box = Brightess Beta *
Bottom Middle
Latent space with t

B
=0.5and 

t
D
=0.28 used to determine 

clusters (colors match BL plot)
Bottom Right
Histogram of the strip 
brightness (ꞵ) values 
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Training Visualization (Event B)

40

Top Left
Monte Carlo true hits
Top Middle
True hits in latent space [x

C
 , y

C
 ] 

(colors match TL plot)
Top Right
REC::Particle reco hits

Bottom Left
Hits clustered in latent space
* Box = Brightess Beta *
Bottom Middle
Latent space with t

B
=0.5and 

t
D
=0.28 used to determine 

clusters (colors match BL plot)
Bottom Right
Histogram of the strip 
brightness (ꞵ) values 

Actual model used to make this plot
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Training Results (Event C)

41

Coatjava (middle column) 
reconstructs an extra false 
neutral particle in Sector 4

Object Condensation (right 
column) does not make this 
mistake, finding one cluster here

Obj. Cond.=More comprehensive 
understanding of what should be 
considered a cluster
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Training Results (Event D)

42

Coatjava (middle column) does 
not find the neutron in Sector 4

Object Condensation (right 
column) does find this neutron 
but the ambiguity of the 3-way 
intersection leads to a 
misreconstruction of theta

Obj. Cond.=Could use more 
development in calculating the 
centroid location after clustering
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Training Results (Event E)

43

Coatjava (middle column) finds a 
swamp of neutrals in Sector 6 

Object Condensation (right 
column) correctly identifies only 
two unique clusters in Sector 6. 

Obj. Cond.=Can handle multiple 
particles in a sector and still 
predict their centroid effectively
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1. Loop over PCAL, ECIN, and ECOUT strips
2. For each strip ( j ) belonging to cluster ( k )

a. Find its most energetic (∑j Ej) 3-way intersection. A 3-way intersection
is determined by the average (x,y,z) of closest approach for uv, vw, uw 
strips. Ej is energy corrected to account for attenuation!

3. For each cluster ( k ) containing ( N ) 3-way intersections
a. Only consider 3-way intersections in the sector with a 50%+ majority
b. Calculate the z-score zi for each 3-way intersection (x,y,z)
c. Report the centroid’s (x,y,z) as the weighted sum of the 3-way intersections

where wi = (1+z2)-1 to lessen the impact of distantly separately 3-way’s
4. Purposefully assign ECAL::cluster status of PCAL, ECIN, ECOUT to a uniquely 

identifiable status value to force REC::Calorimeter to recognize them as a group
5. Generate new ECAL::clusters, ECAL::calib (empty) and ECAL::moments (empty)

Creating new ECAL::clusters bank (python)

44

[1]

u

v

w

https://github.com/Gregtom3/neutneut/blob/object_pid/src/ECALClusterAnalyzer.py
https://www.sciencedirect.com/science/article/pii/S0168900220300309
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Creating new ECAL::clusters bank (python)

45

    Purposefully assign ECAL::cluster status of 
PCAL, ECIN, ECOUT to a uniquely identifiable 
status value to force REC::Calorimeter to 
recognize them as a group

    Implementation added in personal coatjava fork 
in order to force all clusters with identical status to 
be assigned to the same REC::Particle

See processNeutralTracks_OC in  EventBuilder.java

https://github.com/Gregtom3/neutneut/blob/object_pid/src/ECALClusterAnalyzer.py
https://github.com/Gregtom3/coatjava/blob/dev_ecal_truth_match/reconstruction/eb/src/main/java/org/jlab/service/eb/EventBuilder.java
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Benchmarks – Coatjava vs. Obj Condensation
Next we will discuss three of the ways I directly compared 
the two clustering methods

1. (P, 𝜃, 𝜙) binned neutron gun events
2. Incoherent J/Psi production off deuterium 

(e+n → e’+J/Psi+n’)
3. clasdis Monte Carlo SIDIS events

We classify REC::Particle’s as trustworthy if …

A. There is an MC::Particle within …
δθ < 4 [deg] and δ𝜑 < 8 [deg] 

B. The matched MC::Particle has the same pid as the 
REC::Particle

C. There are no other REC::Particles that also satisfy 
this requirement for that MC::Particle

46

trustworthy

not 
trustworthy
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Particle Gun Benchmark

➢ 1000 e+n events in each bin

➢ Columns: 𝜃=10,15,20,25,30 [deg]

➢ Rows: 𝜙=0,5,10,15,20 [deg]

➢ Data points: 1 < P < 3 [GeV]

Observations:

Average improvement of Object 

Condensation vs. Coatjava of 20-40%

Can be further improved because of the 

3-way intersection issue…(see next slide)

Should extend study to smaller momentum

47
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Particle Gun Benchmark

48

Here, the electron and neutron 

are thrown and leave hits in 

sectors 4 and 1, respectively…

Despite Object Condensation 

clustering the neutron hits as an 

object (bottom right red cluster), 

since there is no 3-way 

intersection, we do not assign it as 

a REC::Particle later

Future: Train Obj. Cond. to predict 

neutral particle Px, Py, Pz and 

bypass needing ECAL cluster
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Incoherent J/Psi Production Benchmark

➢ 1M spherically generated e+n→e’+(J/𝜓→e+e-)+n events (w/ Fermi motion)

➢ For comparison, we make simple cuts
○ N

electrons 
= 2

○ N
positrons 

= 1

○ N
neutrons

 = 1

➢ We see that Object Condensation

provides a roughly 40% increase

Richard Tyson is completing a more 

thorough comparison using his analysis

pipeline to come to a more accurate

conclusion

49
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➢ Provides the most complex comparison…ex: multiple particles/types per sector

➢ One major advantage currently for Coatjava is that one strip can belong to two 

particles/clusters in the same layer…still working how to adjust for this in Obj. Cond.

➢ Typically, photons leave less hits in the calorimeter per cluster than neutrons which 

means Obj. Cond. has a disadvantage in finding photons

In the next slides, we compare the Momentum and Theta dependence of trustworthy 

neutrons/photons between Coatjava and Object Condensation…

1M e+p DIS events simulated using clasdis separate from what was used during training

SIDIS Monte Carlo Benchmark

50
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Trustworthy REC::Neutron Percentage

51

Coatjava
87383 REC neutrons
- 14164 w/ match
- 7708 trustworthy

Object Condensation
29858 REC neutrons
- 8187 w/ match
- 8187 trustworthy

-----------------------------

3.1x increase in the 
trustworthiness of a 
REC::Neutron

(8.82% → 27.4%)
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Trustworthy REC::Photon Percentage

52

Coatjava

179039 REC photons

- 100245 w/ match

- 92233 trustworthy

Object Condensation

131555 REC photons

- 82817 w/ match

- 82798 trustworthy

-----------------------------

11% less trustworthy 

photons, but higher 

trustworthy %-age 

overall
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Neutron Kinematics

➢ Yields for Object Condensation and Monte Carlo seem to more closely match for 
p<2 GeV which corresponds to β<0.9

➢ In Coatjava there is an if-statement that assigns β>0.9 particles to neutrons if it has 
no PCAL cluster (hence why there are p>2 GeV neutrons)

➢ Since Object Condensation finds clusters more effectively, this if-statement fails

53
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Neutron Kinematic Resolutions
Plots shown for all REC 

neutrons with a Monte 

Carlo match

We see the resolution is 

improved and the mean 

is essentially the same 

between Coatjava and 

Object Condensation

54
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Intersector Tracks

➢ Coatjava and Object Condensation will be prone to scenarios where accidental 

neutral clustering is unavoidable
○ Ex: Below, a Pi+ left hits in S2 and S3 (𝜑 ~ 60 - 100 [deg])

○ Both Coatjava and Object Condensation find a stray neutral

55



CLAS Collaboration Meeting Nov. 2024

Intersector Tracks

56

➢ In this other example, a Pi- Generated in Sector 5 crosses into sector 2. This pion 

leaves hits in Sector 2 which is registered as a Neutron
○ It makes sense that Object Condensation would see the Sector 2 3-way intersection as a viable cluster

S5 S6

S1S4
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Intersector Tracks

57

Sector 2

Sector 5

π-

Track might actually leave hits in 
all 3 DC’s (albeit different sectors)
Does the track algorithm account 
for this in anyway?
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Areas to Improve

➢ The latent space clusters in Object Condensation have the ability to learn features
○ This can be used during training to predict PID, Cluster X,Y,Z perhaps more efficiently than just using 

3-way intersections

○ This would also allow for non-traditional clusters to be reconstructed, such as 2-way intersections

58

➢ On the left is a strip plot from our neutron gun events

➢ Since there is no 3-way intersection here, neither Obj. 

Condensation nor Coatjava will reconstruct a particle

Can predicting cluster X,Y,Z help resolve this problem?

Also, what can we do to add/improve our definition of noise?
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Conclusion/Future
➢ We identified that an AI trained on REC::Calorimeter/REC::Particle would not alleviate the neutral particle 

clustering effectively → Turn to the source, train an AI-assisted clustering algorithm

➢ Coatjava was forked to attach additional truth information to the ECAL::hits bank for training purposes

➢ A feature extractor utilizing GravNet blocks was used to accumulate abstract nearest neighbor information

➢ Object Condensation was used to optimize the feature extractor, encouraging it to form clusters in a 
2-dimensional latent space that represent Monte Carlo particles

➢ The ECAL::hits that fall into these clustered regions were processed to calculate a new ECAL::clusters bank

➢ The ECAL::clusters bank is fed back into the Coatjava pipeline to form a new REC::Particle bank

➢ We see 3 times improvement in the trustworthiness of REC::Particle neutrons without sacrificing yields

➢ Streamlining of collaborator usage/testing of my training/coatjava fork

➢ Add PID, Px, Py prediction capabilities of neutrals to training

➢ Begin hyperparameter search to optimize network

➢ With collaborator approval, consider publishing (might be first AI-assisted calorimeter clustering tested on 
Monte Carlo in a full reconstruction pipeline) Looking into using it for EIC KLM 2nd detector clustering
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TO DO
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Extra Slides

60
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Task: Image Classification

dog 
car
boat
cat
house
flute
grass
…

(0.025)
(0.004)
(0.001)
(0.950)
(0.001)
(0.003)
(0.000)
…

NxMx3

Given… An isolated ‘grid’ of inputs
Output… A list of prediction scores for each trained category

★Training★ is straightforward. ImageNet has ~14 million labeled images with 
more than 22,000 categories. 
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Image within Image Classification

1 person
5 sheep
1 dog

NxMx3

Given… An isolated ‘grid’ of inputs
Output… A potentially arbitrary number of objects, each classified

★Training is more difficult!★
- Cannot easily train for datasets with all possible category combinations
- How would one deal with situations where objects overlap?
- The ★Approach★ must be changed (can’t do simple CNN)

 

???

62



CLAS Collaboration Meeting Nov. 2024

Machine Learning Input Features

➢ Shown are the per strip 

input features (normalized 

to 1)

➢ Energy & Time are 

log-scaled

➢ The one-hot encode for the 

strip’s sector is not used 

because it too strongly 

correlates with being a 

unique particle, leading to a 

quick local minimum during 

training



Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

I want my ML model 
to tell me how many 
clusters, and their 
centroids (xc , yc )

Lets see what a well-trained model does, then discuss how we even train it to 
perform the task at hand (clustering!) 64



Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

X
Y
𝛽
Xc
Yc

…

…
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Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

X
Y
𝛽
Xc
Yc

…

…

Coords in new 
latent space
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Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

X
Y
𝛽
Xc
Yc

…

…

Coords in new 
latent space

0 < 𝛽 < 1
Likelihood that 
“this is the most 
important pixel of 
the object”
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Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

X
Y
𝛽
Xc
Yc

…

…

Coords in new 
latent space

0 < 𝛽 < 1
Likelihood that 
“this is the most 
important pixel of 
the object”

Predicted 
object’s centroid
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Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

X
Y
𝛽
Xc
Yc

…

…

X

Y

Latent Space
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Object Condensation Basics

xi
yi
𝛼i

i-1

i+1

X = 12
Y = 55

𝛽 = 0.002
Xc = ...
Yc = ...

…

…

X

Y
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Object Condensation Basics

xj
yj
𝛼j

j-1

j+1

X = 11
Y = 54
𝛽 = 0.01
Xc = ...
Yc = ...

…

…

X

Y

71



Object Condensation Basics

xk
yk
𝛼k

k-1

k+1

X = 12
Y = 54
𝛽 = 0.88
Xc = ...
Yc = ...

…

…

X

Y

High 𝜷 implies the model 
thinks this point is very 
important! 72



Object Condensation Basics

X

Y

Input:  Set of [x,y,𝛼]  (625x3)
Output: Set of [X,Y,𝜷,xc,yc] (625x5)

Model is trained to make 1 bright 𝜷 per object 73



Object Condensation Basics

X

Y

Solution becomes much simpler to picture…

… threshold away dim pixels (𝜷 < 0.8) …

… count the # pixels remaining …

… read off their predicted xc and yc …
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

Hyperparameters
# S-dims, # Learned Featuresv

i
in → Strip i’s Input 

vector to GravNet 
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

3. Calculate distance-weighted j-th learned 
(LR) feature of the K neighbors of strip i

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

3. Sum the distance-weighted j-th learned 
(LR) feature of the K neighbors of strip i

4. Calculate the mean & max of each 
learned features nearest neighbors.  
Concatenate vin , vLR and the mean(+)max 
of v\tilde{LR} 

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

3. Sum the distance-weighted j-th learned 
(LR) feature of the K neighbors of strip i

4. Calculate the mean & max of each 
learned features nearest neighbors.  
Concatenate vin , vLR and the mean(+)max 
of v\tilde{LR} 

5. DNN the final result to a new output 
vector vout

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors, 
# output features
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GravNet Layer

The 1st  vin to the GravNet blocks have 
no neighbor info

Each output of the block provides 
higher level nearest neighbor features
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Demand A: Points group together

X

Y
During training, we 
know these points (i,j) 
come from the same 
object…

…we want them to 
attract to one another in 
the latent space…

 Before training, X & Y are random

i

j
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Demand A: Points group together

X

Y If we want to encourage 
our frontend model to 
make these X,Y closer, 
have it minimize some 
attractive potential

i

j

How to define?
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Demand A: Points group together

X

Y i

j
𝛼

Punish the model if the pixels are “far away” from the 
brightest (highest 𝛽) pixel

Label that brightest pixel as 𝛼
83



Demand A: Points group together

X

Y
i

j
𝛼

Punish the model if the pixels are “far away” from the 
brightest (highest 𝛽) pixel

Label that brightest pixel as 𝛼

Less punishment !!!
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Demand A: Points group together

X

Y i

j

i → unique id for each pixel [0,1,...,624]
𝜶→per object k, id of pixel with highest 
charge
k→unique id of the object [0,1,2,3,4]
x → latent space coordinates

arctanh2x

𝛼
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Demand A: Points group together

X

Y i

j

i → unique id for each pixel [0,1,...,624]
𝜶→per object k, id of pixel with highest 
charge
k→unique id of the object [0,1,2,3,4]
x → latent space coordinates

Attract an object’s pixels towards its 

brightest (highest 𝜷) member
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Demand A: Points group together

X

Y

In words… for each pixel ( j ) we calculate its 
potential w.r.t each object ( k ) . If that pixel ( j ) is in 
object ( k ) , punish ( increase the Loss ) if ( j ) is far 
away … Mjk = 1 if ( j ) is in object ( k ) , else 0 87



Demand A: Points group together

X

Y

In words… for each pixel ( j ) we calculate its 
potential w.r.t each object ( k ) . If that pixel ( j ) is in 
object ( k ) , punish ( increase the Loss ) if ( j ) is far 
away … Mjk = 1 if ( j ) is in object ( k ) , else 0

We must also “scare” away pixels from 

different objects so that they cluster 

elsewhere...
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Demand B: Points group separately

X

Y

Ew gross! The red squares! I 

want to be with my blue 

square homies!

Punish the model if this repulsive term is large. Occurs 
when pixel ( j ) is near objects it is not affiliated with… 
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Demand B: Points group separately

X

Y

(Right) The total potential V 
experienced by the blue square as 
it navigates past 3 unaffiliated 
objects (peaked condensation 
points) towards its clustering home 
(the bottom of the well, another 
condensation point)

Here I come 

friends!

Woohoo!

Cya Soon!
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Photon Kinematic Resolutions

Plots shown for all REC 
photons with a Monte 
Carlo match

We see the resolution is 
good apart from the Pz and 
P which has a documented 
parallax fix in the CLAS12 
Electromagnetic 
Calorimeter paper that I 
have not implemented (has 
to do with the cluster’s 
centroid-z coordinate
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https://www.sciencedirect.com/science/article/pii/S0168900220300309
https://www.sciencedirect.com/science/article/pii/S0168900220300309
https://www.sciencedirect.com/science/article/pii/S0168900220300309


Interesting Example

9 objects 9 clusters

bkg cluster, all 
have too low of 
beta to pass tB cut

Input Space   Latent Space

Classifier
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