AI-powered calorimeter clustering with coatjava integration

Gregory Matousek 11-12-2024

CLAS Collaboration Meeting Nov. 2024

Presentation Outline

- 1. Why do we need to improve neutral clustering at CLAS12 (γ 's vs. n's)?
- 2. How does COATJAVA reconstruct clusters and what are its flaws?
- 3. Introduce ★**Object Condensation**★ a *grid-free* machine learning approach to object clustering
- 4. GravNet nearest-neighbor model architecture training parameters/features
- 5. Training metrics on Monte Carlo How well does the model perform?
- 6. Custom COATJAVA pipeline for this project

Model Evaluation (COATJAVA vs. Object Condensation)

- A. Neutron Gun events
- B. Incoherent J/Psi production off deuterium (with the help of Richard Tyson)
- C. Monte Carlo DIS events

Neutral Clustering at CLAS12

 \triangleright Shown is the (θ,ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

Neutral Clustering at CLAS12

 \triangleright Shown is the (θ,ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

 \triangleright In an ideal world, the **Reconstructed** particles (downwards facing triangles) would be exactly on top of the thrown MC particles

Neutral Clustering at CLAS12

 \triangleright Shown is the (θ,ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

 \triangleright However, issues in neutral particle clustering lead to many false neutrals being reconstructed

Non-combinatorial backgrounds emerge for π^0 studies for *instance, where one of the photons in the pair is <i>fake*

Resolving the Photon Clustering Issue

- ➢ In turns out the information in **REC::Calorimeter** and **REC::Particle** is plenty to address the false photon backgrounds
- \triangleright Unlikely for false photons 150 $\overline{\mathbf{M}}$ to collect around true 100 MC electron photons MC gamma 0.2 0.4^{-} ab Phi [deg] 50 MC charged hadron $M_{\gamma\gamma}$ \triangleright More likely for false **REC** electron $\overline{0}$ REC gamma photons to collect around -50 REC charged hadron many other false photons \triangledown **REC** neutral hadron -100 $\boldsymbol{\lambda}$ A simple **Gradient Boosted** -150 **Tree** model with nearest 10 20 30 40 50 Ω Lab Theta [deg]

neighbor features cleans up

the photons at CLAS12

Why Neutrons pose a challenge

➢ In turns out the information in **REC::Calorimeter** and **REC::Particle** is NOT ENOUGH to address the false neutron backgrounds

★ **Issues** in this step lead to faulty clustering of excess neutral particles

ECAL::hits $\begin{array}{ccc}\n\begin{array}{ccc}\n\downarrow\n\end{array}$ ECAL::peaks $\begin{array}{ccc}\n\downarrow\n\end{array}$ ECAL::clusters $\begin{array}{ccc}\n\downarrow\n\end{array}$ REC::Calorimeter $\begin{array}{ccc}\n\downarrow\n\end{array}$ REC::Particle Strip-by-strip info **Collects** adjacent strips into "peak" objects Finds 3-way crossings to form clusters Matches clusters in PCAL, ECIN, ECOUT to individual tracks/neutrals List of particles ★ **Issues** in this step lead to faulty clustering of excess neutral particles 13 … *Coatjava* may find 3 **clusters** in and correctly associate them with one another… but it may accidentally **find more**! … The clusters may also **fail to be associate**d! PCAL \setminus \setminus ECIN \setminus ECOUT REC Pion REC Photon **REC Neutron**

AI-assisted Neutral Clustering

★ Our AI organizes groups of strips separate **single objects** (particles)

AI-assisted Neutral Clustering

- ★ Our AI organizes groups of strips separate **single objects** (particles)
- \bigstar Then we manually calculate one cluster (x,y,z,E,t) for each ECAL type

- Left Plot shows the final state Monte Carlo particles generated in SIDIS that are *responsible* for the ECAL strip hits
	- **○ Colors →** Different particles
	- **○ Shapes** → Different MC PIDs
- PCAL, ECIN, and ECOUT are overlaid
	- For each strip hit, there is an "origin" and "endpoint" (x,y,z) as well as edep and timing
	- In general, Coatjava looks for 3-way intersections in the PCAL, ECIN, and ECOUT (separately) to create *clusters*
- Track <-> Cluster matching determines if we need to make a neutral particle

CLAS Collaboration Meeting Nov. 2024

Defining the Problem

- ➢ **Input:** *Point Cloud* of ECAL strips with several features (layer, sector, E, t, x, y, z, etc)
	- For training we are aware of the Monte Carlo particle responsible for the strip hit
- ➢ **Output:** Distinct groups/clusters of strips that *belong to the same particle*

This is a much more abstract version of Image-within-Image classification

ML Input Considerations

Model Input Features (22)

- \bullet [+3] Strip Origin Point $(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)$
- \bullet [+3] Strip End Point (x_2, y_2, z_2)
	- **○ Red** features scaled [-500,500] -> [0,1]
	- **○ Blue** features are scaled [550-950] -> [0,1]
- **[+1]** Energy Deposition (already [0,1])
- **[+3]** Strip's most energetic centroid (x,y,z)
	- **[+2]** One-hot encode for either 3 way or 2 way
- **[+1]** Timing Information $[0,1000] \rightarrow [0,1]$
- **[+9]** Layer
	- One-hot-encoded, 9 feature bits [0,1] total

Grey circles (right plot) show location of the energetic centroids

What is ★**Object Condensation**★?

- \triangleright [Object Condensation](https://arxiv.org/abs/2002.03605) defines a loss function that a neural network will try to minimize
- ➢ If this loss function is minimized, the *Point Cloud* is mapped to a clustered latent space
- > Each ECAL strip learns its own point in the latent space (x_c, y_c) as well as a brightness (0<□<1)
- \triangleright For each object (particle) only one latent space pixel is "bright" (\Box near 1)

What is ★**Object Condensation**★?

By viewing this clustered latent space (x_c , y_c) we can get...

- \triangleright The number of particles threshold away the dim \square' 's and count them!
- \triangleright The strips for each particle for a bright \square , collect all dim \square' 's within some radius

★**Object Condensation**★ Recap

22 feats.

- \triangleright Input \rightarrow v_{in}(N, F)
	- **○ N:** Number of nodes (in our case number of strips)
	- **○ F:** Number of features per node (in our case 22)
- $≥$ Output → v_{out} (N, 3) → *i.e. each strip learns 3 variables*
	- **v**_{out}[:, 0] is the x-coordinate in a latent space (called **x**_c)
	- **v**_{out}[:, 1] is the y-coordinate in a latent space (called y_c)
	- **○ v**_{out}[:, 2] is the *brightness* of the node (strip) in the latent space [0,1] (called □)

Object Condensation (OC) defines a loss function L(x_c, y_c, □) that is *minimum* if…

- 1. The (x_c, y_c) of nodes that belong to the same cluster are close (**attractive loss**)
- 2. The (x_c, y_c) of nodes that belong to different clusters are far (**repulsive loss**)
- 3. Only one node per cluster has a large brightness ꞵ~1 (**coward loss**)

, y_c , β

Object Condensation Loss

$$
L_V = \frac{1}{N} \sum_{j=1}^{N} q_j \sum_{k=1}^{K} \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).
$$
\n
$$
q_i = \operatorname{arctanh}^2 \beta_i + q_{\min}
$$

Attractive Loss

Each individual strip calculates one piece of the **attractive loss**

Very similar to E&M **U = qV**

For each strip (j), punish the loss function the further it is from the *brightest beta* for its particle (k)

The *brightest* strip for particle (k) is α k

$$
\breve{V}_k(x) = ||x - x_{\alpha}||^2 q_{\alpha k}
$$

Object Condensation Loss

$$
L_V = \frac{1}{N} \sum_{j=1}^{N} q_j \sum_{k=1}^{K} \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).
$$

Repulsive Loss

Each individual strip calculates **K-1** pieces of the **repulsive loss**

$$
\hat{V}_k(x) = \max(0, 1 - ||x - x_\alpha||)q_{\alpha k}.
$$

For each strip (j), punish the loss function the closer it is to the *brightest beta* of any other particle (k)

The *brightest* strip for particle (k) is α k

Object Condensation Attractive & Repulsive

X Y

(Right) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point)

Object Condensation Loss

$$
L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,
$$

Coward Loss

For each particle (k) , punish the **coward loss** if the object's *brightest beta* is dim (near 0)

Noise Loss

For each strip (i) punish the **noise loss** if the strip is noise (ex: 0-padded) and has a high *brightness beta*

Here n_i is a bit that is 1 if strip (i) is noise

Object Condensation Summary

- A feature extractor maps the (N,F) strip input space into a (x_c, y_c) space
- \triangleright The weights/biases of the feature extractor are backpropagated to minimize four Object Condensation losses (**attractive, repulsive, coward, noise**)

Object Condensation Summary

What is the Feature Extractor we use?

Model Architecture

Backpropagation w/ cyclical LR $(1e^{-6} \leftarrow 1e^{-5})$ every 20 batches)

Feature Extractor

and fed into DNNs to extract **Beta** and (x_c, y_c) for each strip $\frac{1}{2}$ Subsequent **GravNet Blocks** are concatenated with the original input

Data Generation (see [repository](https://github.com/Gregtom3/neutneut) ?)

- 1. 1M **e+p** DIS events simulated using **clasdis** split into 1000 batches
- 2. Detector readout simulated using **gemc** with MC::True saved (see [here](https://github.com/JeffersonLab/coatjava/tree/development/reconstruction/mc/src/main/java/org/jlab/service/mc) \Box)
- 3. Create ECAL::hits and other familiar banks with **recon-util**
	- a. Custom **coatjava fork uses MC::True to give true/rec** pid to each strip
- 4. Use hipopy to read ECAL::hits into csv files (see here \bigcirc)
	- a. Also parse REC::Particle (for comparisons) and MC::Particle (for training)
- 5. Preprocess the csv files into h5 files for training (ex: scaling features, get centroids)

Training Information

- ❖ 128 events per batch
- ❖ 100 epochs (~45 per 24hrs training on 1 TitanRTX GPU)
- ❖ 80% 20% Training/Validation splitting
- ❖ GravNet Feature Extractor Information
	- \geq 10 GravNet blocks 10 nearest neighbors 4 S-space dimensions 32 hidden features 256 output
	- \geq Total trainable parameters = 637,934
- ❖ Hyperparameters
	- \ge q_{min} = 0.1
	- $>$ $S_p = 1$ (only noise considered is 0-padded anyway, not hard for model to figure that out)
	- $\geq t_0 = 0.5$ = 0.5 (minimum *brightness* threshold)
	- $\geq t_{\text{D}} = 0.28$ (radius of cluster in latent space, decided by eye, but need to develop rigorous metric)
- \dots Cyclical Learning rate between 10^{-6} < $> 10^{-5}$ every 20 batches (help navigate out of local minima)
- ❖ Stopping Procedure
	- \triangleright Stop if validation loss does not improve for 10 epochs (not yet seen)

Loss Function

$$
L_V = \frac{1}{N} \sum_{j=1}^{N} q_j \sum_{k=1}^{K} \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).
$$

$$
L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,
$$

★ Per epoch evaluation of **Obj. Condensation Loss** \star Solid lines = Training /// Dotted lines = Validation \star Since validation loss is evaluated at the end of each epoch, the fast-learning early epochs have validation loss < train loss

 \star Overfitting not yet seen, but training stopped at 24 hours. Working on extending training

Training Visualization **(Event A)**

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space [* x_c *, y_C] (colors match TL plot)* **Top Right** *REC::Particle reco hits*

Bottom Left

*Hits clustered in latent space * Box = Brightess Beta ** **Bottom Middle** *Latent space with tB =0.5and tD =0.28 used to determine clusters (colors match BL plot)* **Bottom Right** *Histogram of the strip brightness (*ꞵ*) values*
Training Visualization **(Event A)**

Epoch 1, Batch 0001, Loss = 1.0721

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* $[x_c, y_c]$ *(colors match TL plot)* **Top Right** *REC::Particle reco hits*

Bottom Left

*Hits clustered in latent space * Box = Brightess Beta ** **Bottom Middle** Latent space with t_B=0.5and *tD =0.28 used to determine clusters (colors match BL plot)* **Bottom Right** *Histogram of the strip brightness (*ꞵ*) values*

Training Visualization **(Event A)**

Epoch 1, Batch 0002, Loss = 1.0444

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* $[x_c, y_c]$ *(colors match TL plot)* **Top Right** *REC::Particle reco hits*

Bottom Left

*Hits clustered in latent space * Box = Brightess Beta ** **Bottom Middle** Latent space with t_B=0.5and *tD =0.28 used to determine clusters (colors match BL plot)* **Bottom Right** *Histogram of the strip brightness (*ꞵ*) values*

Training Visualization **(Event A)**

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* $[x_c, y_c]$ *(colors match TL plot)* **Top Right** *REC::Particle reco hits*

Bottom Left *Hits clustered in latent space * Box = Brightess Beta ** **Bottom Middle** Latent space with t_B=0.5and *tD =0.28 used to determine clusters (colors match BL plot)* **Bottom Right** *Histogram of the strip brightness (*ꞵ*) values*

Training Visualization **(Event B)**

Top Left *Monte Carlo true hits* **Top Middle** *True hits in latent space* $[x_c, y_c]$ *(colors match TL plot)* **Top Right** *REC::Particle reco hits*

Bottom Left *Hits clustered in latent space * Box = Brightess Beta ** **Bottom Middle** *Latent space with tB =0.5and tD =0.28 used to determine clusters (colors match BL plot)* **Bottom Right** *Histogram of the strip brightness (*ꞵ*) values*

Training Results **(Event C)**

Coatjava (middle column) reconstructs an extra false neutral particle in Sector 4

Object Condensation (right column) does not make this mistake, finding one cluster here

Obj. Cond.=More comprehensive understanding of what should be considered a cluster

Training Results **(Event D)**

Coatjava (middle column) does not find the neutron in Sector 4

Object Condensation (right column) does find this neutron but the ambiguity of the 3-way intersection leads to a misreconstruction of **theta**

Obj. Cond.=Could use more development in calculating the centroid location after clustering

CLAS Collaboration Meeting Nov. 2024

Training Results **(Event E)**

Coatjava (middle column) finds a swamp of neutrals in Sector 6

Object Condensation (right column) correctly identifies only two unique clusters in Sector 6.

Obj. Cond.=Can handle multiple particles in a sector and still predict their centroid effectively

2. For each strip (i) belonging to cluster (k) a. Find its most energetic $(\sum_j E_j)$ 3-way intersection. A 3-way intersection

Creating new ECAL::clusters bank ([python\)](https://github.com/Gregtom3/neutneut/blob/object_pid/src/ECALClusterAnalyzer.py)

is determined by the average (x,y,z) of closest approach for **uv, vw, uw** strips. E_j is energy corrected to account for attenuation!

v

- 3. For each cluster (k) containing (**N**) 3-way intersections
	- a. Only consider 3-way intersections in the sector with a 50%+ majority
	- b. Calculate the z-score z_i for each 3-way intersection (x,y,z)

1. Loop over PCAL, ECIN, and ECOUT strips

- c. Report the centroid's (x,y,z) as the weighted sum of the 3-way intersections. where $w_i = (1+z^2)^{-1}$ to lessen the impact of *distantly separately 3-way's*
- 4. Purposefully assign $ECAL$::cluster status of PCAL, ECIN, ECOUT to a *independent* identifiable status value to force REC::Calorimeter to recognize them as a group
- 5. Generate new ECAL::clusters, ECAL::calib (empty) and ECAL::moments (empty)

w

Creating new ECAL::clusters bank ([python\)](https://github.com/Gregtom3/neutneut/blob/object_pid/src/ECALClusterAnalyzer.py)

 Purposefully assign ECAL::cluster status of PCAL, ECIN, ECOUT to a uniquely identifiable status value to force REC::Calorimeter to recognize them as a group

 Implementation added in personal coatjava fork in order to force all clusters with identical status to be assigned to the same REC::Particle

See *processNeutralTracks* OC in [EventBuilder.java](https://github.com/Gregtom3/coatjava/blob/dev_ecal_truth_match/reconstruction/eb/src/main/java/org/jlab/service/eb/EventBuilder.java)

- // Group DetectorResponses by their status
- for (DetectorResponse response : allResponses) {

 $int status = response.getStatus();$

groupedResponses.computeIfAbsent(status, k -> new ArrayList<>()).add(response);

Benchmarks – Coatjava vs. Obj Condensation

Next we will discuss three of the ways I directly compared the two clustering methods

- 1. (P, θ , ϕ) binned neutron gun events
- 2. Incoherent J/Psi production off deuterium $(e+n \rightarrow e'+J/Psi+n')$
- 3. clasdis Monte Carlo SIDIS events

We classify REC::Particle's as *trustworthy* if …

- A. There is an MC::Particle within … $\delta\theta$ < 4 [deg] and $\delta\varphi$ < 8 [deg]
- B. The matched MC::Particle has the same pid as the REC::Particle
- C. There are no other REC::Particles that also satisfy this requirement for that MC::Particle

CLAS Collaboration Meeting Nov. 2024

Particle Gun Benchmark

- ➢ 1000 **e+n** events in each bin
- $≥$ Columns: θ =10,15,20,25,30 [deg]
- \triangleright Rows: $\phi = 0.5, 10, 15, 20$ [deg]
- \triangleright Data points: $1 < P < 3$ [GeV]

Observations:

Average improvement of **Object Condensation** vs. **Coatjava** of 20-40%

Can be further improved because of the 3-way intersection issue…(see next slide)

Should extend study to smaller momentum

Particle Gun Benchmark

Here, the electron and neutron are thrown and leave hits in sectors 4 and 1, respectively…

Despite **Object Condensation** clustering the neutron hits as an object (bottom right red cluster), since there is no 3-way intersection, we do not assign it as a REC::Particle later

Future: Train Obj. Cond. to predict neutral particle Px, Py, Pz and bypass needing ECAL cluster

CLAS Collaboration Meeting Nov. 2024

Incoherent J/Psi Production Benchmark

- > 1M spherically generated e+n→e ' + (J/ψ →e⁺e⁻) +n events (w/ Fermi motion)
- \triangleright For comparison, we make simple cuts
	- \circ N_{electrons} = 2
	- \circ N_{positrons} = 1
	- \circ N_{neutrons} = 1
- \triangleright We see that Object Condensation provides a roughly 40% increase

Richard Tyson is completing a more thorough comparison using his analysis pipeline to come to a more accurate conclusion

Mx2 Distribution (e+D \rightarrow e(J/ $\Psi \rightarrow$ e-e+)n(p))

SIDIS Monte Carlo Benchmark

- \triangleright Provides the most complex comparison...ex: multiple particles/types per sector
- ➢ One major advantage *currently* for **Coatjava** is that one strip can belong to two particles/clusters in the same layer…still working how to adjust for this in Obj. Cond.
- \triangleright Typically, photons leave less hits in the calorimeter per cluster than neutrons which means Obj. Cond. has a disadvantage in finding photons

In the next slides, we compare the **Momentum** and **Theta** dependence of trustworthy neutrons/photons between Coatjava and Object Condensation…

1M e+p DIS events simulated using **clasdis** separate from what was used during training

Trustworthy **REC::Neutron** Percentage

Trustworthy **REC::Photon** Percentage

Neutron Kinematics

- ➢ Yields for **Object Condensation** and **Monte Carlo** seem to more closely match for *p<2 GeV* which corresponds to β<0.9
- ➢ In **Coatjava** there is an if-statement that assigns β>0.9 particles to neutrons if it has no PCAL cluster (hence why there are *p>2 GeV* neutrons)
- ➢ Since **Object Condensation** finds clusters more effectively, this if-statement fails

CLAS Collaboration Meeting Nov. 2024

Neutron Kinematic Resolutions

Plots shown for all REC neutrons with a Monte Carlo match

We see the resolution is improved and the mean is essentially the same between **Coatjava** and **Object Condensation**

Intersector Tracks

- \triangleright Coatjava and Object Condensation will be prone to scenarios where accidental neutral clustering is *unavoidable*
	- \circ Ex: Below, a Pi+ left hits in S2 and S3 ($\varphi \sim 60 100$ [deg])
	- Both Coatjava and Object Condensation find a stray neutral

Intersector Tracks

- ➢ In this other example, a **Pi- Generated in Sector 5** crosses into sector 2. This pion leaves hits in **Sector 2 which is registered as a Neutron**
	- It *makes sense* that Object Condensation would see the **Sector 2** 3-way intersection as a viable cluster

Intersector Tracks

Track might actually leave hits in all 3 DC's (albeit different sectors) Does the track algorithm account for this in anyway?

Areas to Improve

- \triangleright The latent space clusters in Object Condensation have the ability to learn features
	- This can be used during training to predict **PID, Cluster X,Y,Z** perhaps more efficiently than just using 3-way intersections
	- This would also allow for non-traditional clusters to be reconstructed, such as 2-way intersections

 \triangleright On the left is a strip plot from our neutron gun events \triangleright Since there is no 3-way intersection here, neither Obj. Condensation nor Coatjava will reconstruct a particle

Can predicting cluster X,Y,Z help resolve this problem?

Also, what can we do to add/improve our definition of noise?

Conclusion/**Future**

- \triangleright We identified that an AI trained on REC::Calorimeter/REC::Particle would not alleviate the neutral particle clustering effectively \rightarrow Turn to the source, train an AI-assisted clustering algorithm
- \triangleright Coatjava was forked to attach additional truth information to the ECAL::hits bank for training purposes
- \triangleright A feature extractor utilizing GravNet blocks was used to accumulate abstract nearest neighbor information
- \triangleright Object Condensation was used to optimize the feature extractor, encouraging it to form clusters in a 2-dimensional latent space that represent Monte Carlo particles
- \triangleright The ECAL::hits that fall into these clustered regions were processed to calculate a new ECAL::clusters bank
- \triangleright The ECAL::clusters bank is fed back into the Coatjava pipeline to form a new REC::Particle bank
- ➢ We see **3 times improvement** in the trustworthiness of REC::Particle neutrons without sacrificing yields
- \triangleright Streamlining of collaborator usage/testing of my training/coatjava fork
- \triangleright Add PID, Px, Py prediction capabilities of neutrals to training

TO DO

- \triangleright Begin hyperparameter search to optimize network
- Monte Carlo in a full reconstruction pipeline) Looking into using it for EIC KLM 2nd detector clustering 59 \triangleright With collaborator approval, consider publishing (might be first AI-assisted calorimeter clustering tested on

Extra Slides

Task: Image Classification

Given… An isolated 'grid' of inputs **Output…** A list of prediction scores for each trained category

★**Training**★ is straightforward. ImageNet has ~14 million labeled images with more than 22,000 categories.

Image *within Image* Classification

Given… An isolated 'grid' of inputs

Output… A potentially arbitrary number of objects, each classified

★**Training** is more difficult!★

- Cannot easily train for datasets with all possible category combinations
- How would one deal with situations where objects *overlap*?
- The **★Approach★** must be changed (can't do simple CNN)

Machine Learning Input Features

- ➢ Shown are the *per strip* input features (normalized to 1)
	- ➢ Energy & Time are log-scaled
- \triangleright The one-hot encode for the strip's sector *is not used* because it too strongly correlates with being a unique particle, leading to a quick local minimum during training

I want my ML model to tell me how many clusters, and their centroids (x c , y c)

Lets see what a well-trained model does, then discuss how we even train it to perform the task at hand (clustering!) ⁶⁴

High β implies the model thinks this point is very important!

72
Object Condensation Basics

Object Condensation Basics

Y

Solution becomes much simpler to picture…

... threshold away dim pixels $(\beta < 0.8)$...

… count the # pixels remaining …

... read off their predicted x_c and y_c ...

v # S-dims, **# Learned Features ⁱ in →** Strip i's Input vector to GravNet

Hyperparameters

Procedure (for each strip)

1. A DNN produces a set of coordinates in **S-space** and hidden features **v LR**

Hyperparameters **# S-dims**, **# Learned Features**, **# S-Neighbors**

- 1. A DNN produces a set of coordinates in **S-space** and hidden features **v LR**
- 2. Calculate the distance $\mathbf{d}_{i,k}$ for **K** neighbors

Hyperparameters **# S-dims**, **# Learned Features**, **# S-Neighbors**

- 1. A DNN produces a set of coordinates in **S-space** and hidden features **v LR**
- 2. Calculate the distance \mathbf{d}_{ik} for **K** neighbors
- 3. Calculate distance-weighted *j-th* learned **(LR)** feature of the **K** neighbors of strip *i*

Hyperparameters **# S-dims**, **# Learned Features**, **# S-Neighbors**

- 1. A DNN produces a set of coordinates in **S-space** and hidden features **v LR**
- 2. Calculate the distance $\mathbf{d}_{i,k}$ for **K** neighbors
- 3. Sum the distance-weighted *j-th* learned **(LR)** feature of the **K** neighbors of strip *i*
- 4. Calculate the **mean** & **max** of each learned features nearest neighbors. Concatenate v^{in} , v^{LR} and the mean(+)max of v\tilde{LR}

Hyperparameters **# S-dims**, **# Learned Features**, **# S-Neighbors**, **# output features**

- 1. A DNN produces a set of coordinates in **S-space** and hidden features **v LR**
- 2. Calculate the distance \mathbf{d}_{ik} for **K** neighbors
- 3. Sum the distance-weighted *j-th* learned **(LR)** feature of the **K** neighbors of strip *i*
- 4. Calculate the **mean** & **max** of each learned features nearest neighbors. Concatenate v^{in} , v^{LR} and the mean(+)max of v\tilde{LR}
- 5. DNN the final result to a new output vector **v out**

During training, we know these points (i,j) come from the same object…

…we want them to attract to one another in the latent space…

Before training, **X** & **Y** are random

 $0₇$

20

In words… for each pixel (\sim **)** potential w.r.t each **object object** (k), punish (increase away ... $M_{ik} = 1$ if (j) is in object (k), and

Y

We must also "scare" away pixels from

different also "scare" away pixels from
elsewhere that they cluster

el_{sewhere...}

X

Demand B: Points group separately

Demand B: Points group separately

(Right) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point)

Photon Kinematic Resolutions

Photon Reconstruction

Plots shown for all REC photons with a Monte Carlo match

We see the resolution is good apart from the **Pz** and **P** which has a documented parallax fix in the [CLAS12](https://www.sciencedirect.com/science/article/pii/S0168900220300309) [Electromagnetic](https://www.sciencedirect.com/science/article/pii/S0168900220300309) [Calorimeter](https://www.sciencedirect.com/science/article/pii/S0168900220300309) paper that I have not implemented (has to do with the cluster's

centroid-z coordinate

Interesting Example

