GitLab, Containers, and
Continuous Integration

code.jlab.org

Christopher Dilks

4>
.!efferson Lab CIQ“’ ‘ CLAS Collaboration Meeting, November 2024

https://code.jlab.org/

What's a Container?

M Put all the software you need in a self-contained “box”
Terminology:
- Image: the “box” which you can distribute to others
- Container: a running instance of the image
= Software options include Docker, Podman, Apptainer, Singularity

B No need to build your software or dependencies |
Creating the image does the building or downloading of software alamy
This is done by a build “recipe”, e.g., a Dockerfile

%

A APPTAINER

C. Dilks Jefferson Lab lguana CIQ"? 2

Why are we doing this?

W Portability: easy to share images
Your development environment on ifarm can be reproduced locally
#* Run your code in containers
= Share images with others

M If everyone uses the same images, we expect:
The same results — reproducibility
The same bugs - facilitates maintenance

® Preservation of running software
Containerize your analysis!

C. Dilks Jefferson Lab Iguana

GitLab: a place to build images (and more)

B GitLab provides a remote host for ‘git’ repositories
= ‘git’ is an open source distributed Version Control System
® https://gitlab.com/ - the “main” GitLab website
- GitLab can also be “self-hosted”: your own GitLab instance
- By the way, GitHub also is a remote host at https://github.com/
B JLab hosts a GitLab instance: https://code.jlab.org/
HallB’s code: https://code.jlab.org/hallb
All the ‘git’ commands are the same (‘git commit’, ‘git push’, etc.)
- Same concepts, e.g., branches, merges
- Arequest to merge a branch, usually to the ‘main branch’, is called:
* Pull Request (PR) in GitHub
* Merge Request (MR) in GitLab
All the buttons you're used to clicking on GitHub are (most likely) found on GitLab

C. Dilks Jefferson Lab lguana CIQg‘ﬁ

https://gitlab.com/
https://github.com/
https://code.jlab.org/
https://code.jlab.org/hallb

Continuous Integration (ClI) \

B Both GitHub and GitLab offer “Continuous Integration” (Cl)

Basic idea: run jobs, triggered by some ‘git’ action, usually by _ Generate & Deployﬂ
- Commits on a MR branch Linux NEOS Documentation

-+ Any commit on the Main branch
-» Other custom triggers (scheduled, manual, etc.)
What kind of jobs? Here are some examples:

-+ See the diagram to the right - _ Deploy test
Linux macOS results to a

M CI helps ensure software stability webpage
MRs should not be merged unless the jobs pass

Previous jobs give a sense of “history” of the software project
(which can also be useful for debugging)

Automation helps make sure we don't “forget” something

Trigger Downstream
Tests

e.g., job efficiency

C. Dilks Jefferson Lab lguana CIQ"? 5

Building Images with Cl

M Creating the image does the building or downloading of software
= We use GitLab’s Continuous Integration to build images
= |mages for CLAS12 are deployed to GitLab’s Container Registry:
- https://code.jlab.org/hallb/clas12/clas12-containers/container_registry

- These images are NOT “production ready” yet, but you're welcome to try, e.g.,
apptainer pull docker://codecr.jlab.org/hallb/clasi2/clasl2-containers/clas12_analysis: latest

= GitLab has a ton of other features we may take advantage of

GitLab

build

C. Dilks Jefferson Lab lguana CIQg‘ﬁ 6

https://code.jlab.org/hallb/clas12/clas12-containers/container_registry

clasl2-containers

B GitLab repository for building and deploying images for CLAS12 (and related) software
= https:/icode.jlab.org/hallb/clasl2/clasl12-containers

Uses CI to automatically build and test images PARDON OUR DUST
B Still in the early stages of development! A\

Contributions welcome, but should be discussed) " P

Merge requests are always welcome (since they trigger image builds) CONSTRUGTION WORK

= Requests for certain software to be included are also welcome, just ask! __ INPROGRESS

B Some issues (see https://code.jlab.org/hallb/clas12/clas12-containers/-/issues)
Versioning - need to sync with Module Environment files (clas12-env)

= Build cache usage - some things are rebuilding (viz. ROOT) when they should be using the
cache build

= Documentation — there isn’'t any yet
Missing license and contributing guidelines
Add more software

C. Dilks Jefferson Lab lguana CIQg‘ﬁ 7

https://code.jlab.org/hallb/clas12/clas12-containers
https://code.jlab.org/hallb/clas12/clas12-containers/-/issues

clas1l2-containers Strategy

B Main branch commits
|mages get tagged “latest”

debug-cache

B Tagged versions of clas12-containers :
clasiZroot
* |Image get tagged as “v###H##", with the version number |
#* Need to include a list of the version numbers of software l"
B Merge Requests (MR) —
® |mages are tagged as “MR-....", with the MR number l”

- These images are eventually auto-deleted from the registry
Each commit on the MR branch re-triggers image builds

- First one is a full rebuild

- Subsequent ones use the cache

C. Dilks lguana CIQ;’?

.gefferson Lab

Syncing with our Module Environment

B Need to stay in sync with clas12-env

Currently just using everyone’s ‘main’ branch for now, to get us started

scicomp:
* Need to switch to using specific versions e optional cormiib/2023
clas12-containers will only build the “latest” versions # java:

prereq_optional jdk/17.0.2

C. Dilks

Module Environment can handle the dependency combinatorics,
whereas clasl12-containers will not, instead having only one version of
each package

Older versions will be in tagged images; we can try to “maintain” them,
if needed (e.g., re-build against latest upstream, etc.)

The tag number should match the ‘clas12’ module number

ccdb: vl-main-python3
clasl2-config: main
coatjava: development
denoiser: main

hipo: master

iguana: main

gadb: main

rcdb: main

root: v6-32-04

prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional

CH++:

prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional
prereq_optional

python:
prereq_optional
prereq_optional

gemc:
prereq_optional
prereq_optional

maven/3.9.0
groovy/4.0.3
coatjava/10.1.1
ced/1.6.1
monl2/7.2

cmake/3.29.0
julia/l.1@.2
ro0t/6.30.04
ccdb/1.99.2
rcdb/1.99.0
qadb/1.3.0
hipo/4.1.0
denoise/4.0.1
iguana/@.7.0
clasl2root/1.8.4
mcgen/3.10

pymods/3.9
util

sim
gemc/5.10

.gefferson Lab Iguana

<.
clasy

What images are we building?

Package dependency graph Im?o?es

e— dev

Simulation
prod_simulation

General
dev

Reconstruction
prod_reconstruction

General + ROOT
dev_ROOT

Analysis
prod_analysis

* “prod” images are for users
* “dev”images are for development, and serve as “bases” for the prod images
* “base” is the base Linux distribution + updates + common packages

C. Dilks Jefferson Lab lguana CIQ;‘? 10

Base Image

B Currently based on Arch Linux
* The latest version of everything: “the bleeding edge”
Minimal —» smaller image sizes

Arch Linux repositories have a /ot of software available

Still supports x86-64 v1 baseline (old OSG nodes)

Does not support ARM, e.g., newer Macs
* Arch Linux ARM does, but doesn’'t seem as well maintained

= Need to think about security

B Alternatives

Alma9: as used on ifarm; baseline is x86-64 v2 (some OSG nodes are still v1); a lot
of software packages are held back on old versions

Debian — EIC has been using this

openSUSE Tumbleweed — supports both x86 and ARM, and is also staying near the
bleeding edge

® We’'re open to other ideas

C. Dilks Iguana 11

.gefferson Lab

DT
clasy

dev and dev_root images

®m “Development” images: common CLAS12 software
dependencies

* RCDB

« CCDB

* QADB

* ROOT (in dev_root, not in dev)
« HIPO

= clasl12-config

C. Dilks Jefferson Lab lguana CIQg‘ﬁ 12

production images

® Reconstruction

© coatjava
« denoiser
B Analysis
© iguana STEE dev
« clasl2root
= chanser N
® brufi
B Simulation
» Synergy with OSG images (Maurizio) S L RET

C. Dilks Jefferson Lab Iguana CI

What’s In the Image

B /opt
Common installation prefix
#= .. for software that generates an installation tree
* e.g., directories such as bin/, include/, lib/
= Examples: clas12root, iguana, HIPO
= Environment variables ($PATH, $LD_LIBRARY_PATH, etc.) include this
ROOT is also installed here, but may be moved elsewhere (/apps/ROOT?)

B /apps

Common location for all the rest of the software, that does not generate an
installation tree

= Examples: QADB, clas12-config

/opt
— LICENSE
— README
— bin (=3
— cmake
— config
— etc

— fonts
— geom

— icons

— include C:
— lib (=3

— libexec

[macros

— man

— python C:I
— scripts

— share

— tutorials

IET]
clas12-config
clasi2-qadb
rcdb

versions.yaml

— ui5s

C. Dilks Jefferson Lab Iguana

DT
clasy

14

How do | build a new image?

® Open a merge request!
® Then you can use it

« But Container Registry will delete it eventually, unless your
MR is approved and merged

C. Dilks Jefferson Lab Iguana

<.
class

15

Containerize Your Analysis

M For the preservation of your analysis, consider adding a
Dockerfile which builds your analysis code

M Complicated dependencies? Complicated setup?
Containerize!

M Consider basing your image off of one of clas12-containers’s
images

https://code.jlab.org/hallb/clas12/clas12-containers

#= Send a merge request (MR), then you can use the Cl to
build your image

C. Dilks Jefferson Lab Iguana

16

https://code.jlab.org/hallb/clas12/clas12-containers

Summary

B clas12-containers
Build images with CLAS12 software and more
Using JLab’s GitLab Continuous Integration and Container Registry

“ GitLab

B Preservation of running code
= cf. Preservation of Data efforts
= cf. lguana - Preservation of data analysis algorithms

B Portability
= Shared features (and shared problems)
Streamline local development

B Containerize your analysis
For all the above reasons

C. Dilks lguana CIQ:’ 17

Jefferson Lab

wy

https://github.com/JeffersonLab/iguana

C. Dilks

.!efferson Lab

backup

Iguana

]
clas;

wy

18

Under the Hood

B The Runners

32 CPUs Red Hat

® ~380 GB RAM

= However, job constraints limit us to (which may change depending on OpenShift
load)

- 12 CPUs r
+ 4 GB RAM -@- kubernete
- |ssue: not enough memory per core to take full advantage k

B The Software
= OpenShift + Kubernetes for the runners
Kaniko to build a Docker image within a running container
- |ssue: Kaniko is no longer maintained!!!
- SciComp is working on Buildah support

C. Dilks Iguana

.!efferson Lab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

