

Christopher Dilks
CLAS Collaboration Meeting, November 2024

code.jlab.org

GitLab, Containers, and
Continuous Integration

https://code.jlab.org/

C. Dilks Iguana 2

What’s a Container?
Put all the software you need in a self-contained “box”

Terminology:

Image: the “box” which you can distribute to others

Container: a running instance of the image

Software options include Docker, Podman, Apptainer, Singularity

No need to build your software or dependencies

Creating the image does the building or downloading of software

This is done by a build “recipe”, e.g., a Dockerfile

C. Dilks Iguana 3

Why are we doing this?
Portability: easy to share images

Your development environment on ifarm can be reproduced locally

Run your code in containers

Share images with others

If everyone uses the same images, we expect:

The same results → reproducibility

The same bugs → facilitates maintenance

Preservation of running software
Containerize your analysis!

C. Dilks Iguana 4

GitLab: a place to build images (and more)
GitLab provides a remote host for ‘git’ repositories

‘git’ is an open source distributed Version Control System

https://gitlab.com/ - the “main” GitLab website

GitLab can also be “self-hosted”: your own GitLab instance

By the way, GitHub also is a remote host at https://github.com/

JLab hosts a GitLab instance: https://code.jlab.org/

HallB’s code: https://code.jlab.org/hallb

All the ‘git’ commands are the same (‘git commit’, ‘git push’, etc.)

Same concepts, e.g., branches, merges

A request to merge a branch, usually to the ‘main branch’, is called:
● Pull Request (PR) in GitHub
● Merge Request (MR) in GitLab

All the buttons you’re used to clicking on GitHub are (most likely) found on GitLab

https://gitlab.com/
https://github.com/
https://code.jlab.org/
https://code.jlab.org/hallb

C. Dilks Iguana 5

Build

Continuous Integration (CI)
Both GitHub and GitLab offer “Continuous Integration” (CI)

Basic idea: run jobs, triggered by some ‘git’ action, usually by

Commits on a MR branch

Any commit on the Main branch

Other custom triggers (scheduled, manual, etc.)

What kind of jobs? Here are some examples:

See the diagram to the right →

CI helps ensure software stability

MRs should not be merged unless the jobs pass

Previous jobs give a sense of “history” of the software project
(which can also be useful for debugging)

Automation helps make sure we don’t “forget” something

Linux macOS

Test

Linux macOS

Generate & Deploy
Documentation

Trigger Downstream
Tests

Deploy test
results to a
webpage

e.g., job efficiency

C. Dilks Iguana 6

Building Images with CI
Creating the image does the building or downloading of software

We use GitLab’s Continuous Integration to build images

Images for CLAS12 are deployed to GitLab’s Container Registry:

https://code.jlab.org/hallb/clas12/clas12-containers/container_registry

These images are NOT “production ready” yet, but you’re welcome to try, e.g.,
● apptainer pull docker://codecr.jlab.org/hallb/clas12/clas12-containers/clas12_analysis:latest

GitLab has a ton of other features we may take advantage of

https://code.jlab.org/hallb/clas12/clas12-containers/container_registry

C. Dilks Iguana 7

clas12-containers
GitLab repository for building and deploying images for CLAS12 (and related) software

https://code.jlab.org/hallb/clas12/clas12-containers

Uses CI to automatically build and test images

Still in the early stages of development!

Contributions welcome, but should be discussed

Merge requests are always welcome (since they trigger image builds)

Requests for certain software to be included are also welcome, just ask!

Some issues (see https://code.jlab.org/hallb/clas12/clas12-containers/-/issues)

Versioning → need to sync with Module Environment files (clas12-env)

Build cache usage → some things are rebuilding (viz. ROOT) when they should be using the
cache build

Documentation → there isn’t any yet

Missing license and contributing guidelines

Add more software

https://code.jlab.org/hallb/clas12/clas12-containers
https://code.jlab.org/hallb/clas12/clas12-containers/-/issues

C. Dilks Iguana 8

clas12-containers Strategy
Main branch commits

Images get tagged “latest”

Tagged versions of clas12-containers

Image get tagged as “v#####”, with the version number

Need to include a list of the version numbers of software

Merge Requests (MR)

Images are tagged as “MR-….”, with the MR number

These images are eventually auto-deleted from the registry

Each commit on the MR branch re-triggers image builds

First one is a full rebuild

Subsequent ones use the cache

C. Dilks Iguana 9

Syncing with our Module Environment
Need to stay in sync with clas12-env

Currently just using everyone’s ‘main’ branch for now, to get us started

Need to switch to using specific versions

clas12-containers will only build the “latest” versions
● Module Environment can handle the dependency combinatorics,

whereas clas12-containers will not, instead having only one version of
each package

● Older versions will be in tagged images; we can try to “maintain” them,
if needed (e.g., re-build against latest upstream, etc.)

● The tag number should match the ‘clas12’ module number

C. Dilks Iguana 10

What images are we building?
Package dependency graph

Images

● “prod” images are for users
● “dev” images are for development, and serve as “bases” for the prod images
● “base” is the base Linux distribution + updates + common packages

inspires

C. Dilks Iguana 11

Base Image
Currently based on Arch Linux

The latest version of everything: “the bleeding edge”

Minimal → smaller image sizes

Arch Linux repositories have a lot of software available

Still supports x86-64 v1 baseline (old OSG nodes)

Does not support ARM, e.g., newer Macs
● Arch Linux ARM does, but doesn’t seem as well maintained

Need to think about security

Alternatives

Alma9: as used on ifarm; baseline is x86-64 v2 (some OSG nodes are still v1); a lot
of software packages are held back on old versions

Debian – EIC has been using this

openSUSE Tumbleweed – supports both x86 and ARM, and is also staying near the
bleeding edge

We’re open to other ideas

C. Dilks Iguana 12

dev and dev_root images
“Development” images: common CLAS12 software
dependencies

RCDB

CCDB

QADB

ROOT (in dev_root, not in dev)

HIPO

clas12-config

C. Dilks Iguana 13

production images
Reconstruction

coatjava

denoiser

Analysis

iguana

clas12root

chanser

brufit

Simulation

Synergy with OSG images (Maurizio)

C. Dilks Iguana 14

What’s in the Image
/opt

Common installation prefix

… for software that generates an installation tree
● e.g., directories such as bin/, include/, lib/

Examples: clas12root, iguana, HIPO

Environment variables ($PATH, $LD_LIBRARY_PATH, etc.) include this

ROOT is also installed here, but may be moved elsewhere (/apps/ROOT?)

/apps

Common location for all the rest of the software, that does not generate an
installation tree

Examples: QADB, clas12-config

C. Dilks Iguana 15

How do I build a new image?
Open a merge request!

Then you can use it

But Container Registry will delete it eventually, unless your
MR is approved and merged

C. Dilks Iguana 16

Containerize Your Analysis
For the preservation of your analysis, consider adding a
Dockerfile which builds your analysis code

Complicated dependencies? Complicated setup?
Containerize!

Consider basing your image off of one of clas12-containers’s
images

https://code.jlab.org/hallb/clas12/clas12-containers

Send a merge request (MR), then you can use the CI to
build your image

https://code.jlab.org/hallb/clas12/clas12-containers

C. Dilks Iguana 17

Summary
clas12-containers

Build images with CLAS12 software and more

Using JLab’s GitLab Continuous Integration and Container Registry

Preservation of running code

cf. Preservation of Data efforts

cf. Iguana → Preservation of data analysis algorithms

Portability

Shared features (and shared problems)

Streamline local development

Containerize your analysis

For all the above reasons

https://github.com/JeffersonLab/iguana

C. Dilks Iguana 18

backup

C. Dilks Iguana 19

Under the Hood
The Runners

32 CPUs

~380 GB RAM

However, job constraints limit us to (which may change depending on
load)

12 CPUs

4 GB RAM

Issue: not enough memory per core to take full advantage

The Software

OpenShift + Kubernetes for the runners

Kaniko to build a Docker image within a running container

Issue: Kaniko is no longer maintained!!!

SciComp is working on Buildah support

OpenShift

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

