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◮ Nuclear χEFT approach

◮ EM charge and current operators up to one loop from χEFT

◮ A = 2 and 3 nuclei: elastic form factors

◮ Summary and outlook
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The Basic Model

◮ The nucleus is a system made of A interacting nucleons, its energy is given by

H = T +V =
A

∑
i=1

ti +∑
i<j

υij + ∑
i<j<k

Vijk + ...

where υij and Vijk are 2- and 3-nucleon interaction operators

◮ Current and charge operators describe the interaction of nuclei with external

fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi +∑
i<j

ρij + ... , j =
A

∑
i=1

ji +∑
i<j

jij + ...

q
+ . . .

N N

γ

◮ Longitudinal EM current operator j linked to the nuclear Hamiltonian via

q · j = [H, ρ ] = [T +V , ρ ]
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Nuclear χEFT approach

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

◮ χEFT exploits the χ symmetry exhibited by QCD at low energy to restrict the

form of the interactions of π’s with other π’s, and with N’s, ∆’s, . . .

◮ The pion couples by powers of its momentum Q→Leff can be systematically

expanded in powers n of Q/Λχ

Leff = L
(0)+L

(1)+L
(2)+ ...+L

(n)+ ...

Λχ ∼ 1 GeV is the hard scale where χEFT breaks down and characterizes the

convergence of the expansion→ we are limited to kinematic regions where

Q≪ Λχ

◮ The coefficients of the expansion, Low Energy Constants (LECs) are unknown

and need to be fixed by comparison with exp data

◮ The systematic expansion in Q naturally has the feature

〈O〉1−body > 〈O〉2−body > 〈O〉3−body

◮ A theoretical error due to the truncation of the expansion can be assigned
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Transition amplitude in time-ordered perturbation theory

◮ We use non relativistic N’s and π’s as mediators of the nuclear interaction at

large interparticle distances

◮ We can construct multiple pion-exchange operators or multiple nucleon

contact-terms encoding intermediate– and short–range dynamics

Tfi = 〈f | T | i〉 = 〈f | H1

∞

∑
n=1

(
1

Ei−H0 + iη
H1

)n−1

| i〉

= 〈f | H1 | i〉+∑
|I〉

〈f | H1| I〉
1

Ei−EI
〈I |H1 | i〉+ ...

◮ A contribution with N interaction vertices and L loops scales as

e

(
N

∏
i=1

Qαi−βi/2

)

︸ ︷︷ ︸

H1scaling

×Q−(N−NK−1) Q−2NK

︸ ︷︷ ︸

denominators

× Q3L

︸︷︷︸

loopintegration

αi = number of derivatives in H1 and βi = number of π’s at each vertex

NK = number of pure nucleonic intermediate states
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Power counting

◮ Due to the chiral expansion, the transition amplitude Tfi can be expanded as

Tfi = TLO +TNLO +TN2LO + . . . and TNnLO ∼ (Q/Λχ )
nTLO

◮ NK energy denominators scale as Q−2

1

Ei−EI
|I〉=

1

Ei−EN
|I〉 ∼Q−2|I〉

◮ (N−NK −1) energy denominators scale Q−1 in the static limit; they can be

further expanded in powers of (Ei−EN)/ωπ ∼ Q

1

Ei−EI
|I〉=

1

Ei−EN −ωπ
|I〉 ∼ −

[
1

ωπ
︸︷︷︸

Q−1

+
Ei−EN

ω2
π

︸ ︷︷ ︸

Q0

+
(Ei−EN)

2

ω3
π

︸ ︷︷ ︸

Q1

+ . . .
]

|I〉

◮ Relativistic effects taken in to account as (Q/mN)
2 corrections to

non-relativistic operators
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NN Potential at N2LO (or Qn=2)

υCT0 υCT2

renormalizeLEC′s

LO (Q0 ) N2LO ( )Q2

p

p′

◮ Contact potential at LO (or Qn=0) depends on 2 LECs

◮ Contact potential at N2LO (or Qn=2) depends on 7 additional LECs

NN potentials with π’s and N’s

∗ van Kolck et al. (1994–96)

∗ Kaiser, Weise et al. (1997–98)

∗ Epelbaum, Glöckle, Meissner (1998–2015)

∗ Entem and Machleidt (2002–2015) ∗

∗ . . .

Observations:

1. EM H1 obtained by minimal substitution in the π- and N-derivative couplings involve the same LECs

entering H1 strong

∇π∓(x) → [∇∓ ieA(x)]π∓(x)

∇N(x) → [∇− ieeN A(x)]N(x) , eN = (1+ τz)/2

2. LECs entering EM H1 from the Fµν = (∂µ Aν −∂ν Aµ ) are not constrained by the strong interaction
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χEFT EM current up to n = 1 (or up to N3LO)

LO : j(−2) ∼ eQ−2

NLO : j(−1) ∼ eQ−1

N2LO : j(−0) ∼ eQ0

◮ n =−2,−1, 0, and 1-(loops only):

depend on known LECs (gA, Fπ , and

µp/n)

◮ n = 0: (Q/mN)
2 relativistic correction to

j(−2) at LO

◮ Strong contact ‘minimal’ LECs at n = 1

fixed from fits to np phases shifts—Q4

NN potential of Entem&Machleidt

◮ Unknown ‘non-minimal’ EM LECs enter

the n = 1 contact and tree-level currents

◮ No three-body EM currents at this order !!!

◮ NLO and N3LO loop-contributions lead to purely isovector operators

◮ j(n≤1) satisfies the continuity eq. with χEFT two-nucleon potential υ(n≤2)

unknownLEC′s

N3LO: j(1) ∼ eQ
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χEFT EM currents at N3LO: fixing the EM LECs – Piarulli et al.

cS, cVdS, dV
1 , dV

2

Five LECs: dS, dV
1 , and dV

2 could be

determined by pion photo-production

data on the nucleon

Isovector

dV
1 , dV

2

dV
2 and dV

1 are known assuming

∆-resonance saturation

Left with 3 LECs: Fixed in the A = 2−3 nucleons’ sector

◮ Isoscalar sector:

* dS and cS from EXPT µd and µS(3H/3He)

◮ Isovector sector:

* model I = cV from EXPT npdγ xsec.

or

* model II = cV from EXPT µV (3H/3He) m.m. ← our choice

Note that:

χEFT operators have a power law behavior→ introduce a regulator to kill divergencies at large Q, e.g.,

CΛ = e−(Q/Λ)n , ...and also, pick n large enough so as to not generate spurious contributions

CΛ ∼ 1−

(
Q

Λ

)n

+ . . .
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Predictions with χEFT EM currents for A = 2–3 systems – Piarulli et al.

np capture xsec. (using model II) / µV of A = 3 nuclei (using model I)

bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

500 600
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260
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◮ npdγ xsec. and µV (3H/3He) m.m. are within 1% and 3% of EXPT

◮ Two-body currents important to reach agreement with exp data

◮ Negligible dependence on the cutoff entering the regulator exp(−(k/Λ)4)
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EM charge up to n = 0 (or up to N3LO)

ρ
(0)
π (ν)

LO : ρ(−3)

N3LO : ρ(0)

N2LO : ρ(−1)

◮ n =−3

ρ (−3)(q) = e(2π)3δ (p1 +q−p′1)(1+τ1,z)/2+1 ⇋ 2

◮ n =−1:

(Q/mN)
2 relativistic correction to ρ(−3)

◮ n = 0:

i) ‘static’ tree-level current (originates

from a γπN vertex of order eQ)

ii) ‘non-static’ OPE charge operators,

ρ
(0)
π (ν) depends on υ

(2)
π (ν)

◮ No unknown LECs up to N4LO or n = 1 (gA, Fπ ) !!
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EM charge @ n = 1 (or N4LO)

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ Charge operators up to n = 1 satisfy the condition

ρ (n>−3)(q = 0) = 0

which follows from charge conservation

ρ(q = 0) =
∫

dxρ(x) = e
(1+ τ1,z)

2
+1 ⇋ 2 = ρ (−3)(q = 0)

◮ Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as

they must since there are no counter-terms at N4LO

◮ ρ(1) does not depend on unknown LECs and it is purely isovector
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Previous work using χEFT with pions and nucleons

Electroweak currents with π’s and N’s

∗ Park, Rho et al. (1996–2009);

hybrid studies in A=2–4 by Song at al. (2009-2011)

∗ Meissner et al. (2001), Kölling et al. (2009–2011);

applications to d and 3He photodisintegration by Rozpedzik et al. (2011);

applications to d magnetic f.f. by Kölling, Epelbaum, Phillips (2012)

∗ Phillips (2003-2007);

applications to deuteron static properties and f.f.’s
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Deuteron Charge and Quadrupole f.f.’s – Piarulli et al.
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◮ N4LO contributions do not enter as they lead to isovector operators

◮ Calculations include nucleonic f.f.’s taken from exp data

◮ Qd within 1% (2%) of the exp data with N3LO(AV18)

◮ Bands’ thickness gives cutoff dependence Λ = 500−600 MeV

◮ GQ agrees with exp up to q≃ 6 fm−1, i.e., beyond the 3−4 mπ range

Λ MeV < rd > (fm) < rd > EXP Qd (fm2) Qd (fm2) EXP

500 1.976 (1.969) 1.9734(44) 0.285 (0.281) 0.2859(3)

600 1.968 (1.969) 0.282 (0.280)
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χEFT predictions for the Deuteron Charge and Quadrupole f.f.’s

χEFT calculations from Piarulli et al., Phillips
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(d)

◮ Good agreement between theoretical calculations and data for low q-values
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Deuteron Magnetic f.f.’s – Piarulli et al.
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m
/(

M
d
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)|
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|

j
LO

/AV18

j
N3LO

/AV18

j
LO

/NN(N3LO)

j
N3LO

/NN(N3LO)

(a)

◮ µd is used to constrain the EM current→ predictions are for q > 0

◮ Calculations include nucleonic f.f.’s taken from exp data

◮ Good agreement up to q≃ 2 fm−1

◮ Exhibited sensitivity to nuclear Hamiltonians due to differences in the S- and

D-wave functions

◮ Cutoff dependence large in the chiral formulation

16 / 25



χEFT predictions for the deuteron magnetic f.f.

χEFT calculations from Piarulli et al., Kölling et al.

bands represent cutoff dependence
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(b)

j
N3LO

/NN(N2LO), Kolling et al.
..

j
N3LO

/NN(N3LO), Piarulli  et al.

◮ Good agreement between theoretical calculations and data for low q-values

17 / 25



Deuteron wave functions

from Entem&Machleidt 2011 Review

◮ Entem&Machleidt N3LO

◮ Epelbaum et al. 2005

◮ black lines = conventional potentials, i.e. AV18, CD-Bonn, Nijm-I
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3He and 3H charge f.f.’s – Piarulli et al.
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◮ Excellent agreement up to q≃ 2 fm−1

◮ N3LO and N4LO comparable

3He < r >EXP= 1.959±0.030 fm 3H < r >EXP= 1.755±0.086

Λ 500 600 500 600

LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

N4LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)
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3He and 3H magnetic f.f.’s – Piarulli et al.
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◮
3He and 3H µ’s used to fix the EM current; 10% correction from two-body

currents

◮ Two-body current crucial to improve agreement with exp data

3He < r >EXP= 1.965±0.153 fm 3H < r >EXP= 1.840±0.181 fm

Λ 500 600 500 600

LO 2.098 (2.092) 2.090 (2.092) 1.924 (1.918) 1.914 (1.918)

N3LO 1.927 (1.915) 1.913 (1.924) 1.808 (1.792) 1.794 (1.797)
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3He and 3H magnetic f.f.’s – Piarulli et al.
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◮ If model II is used (with LEC from npdγ x-sec.) we get better agreement with

exp but larger cutoff dependence and µV off by 3%
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Magnetic moments in A≤ 10 nuclei

Predictions for A > 3 nuclei
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µ(IA) = µN ∑
i

[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]
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Magnetic moments in A≤ 10 nuclei - bis

Predictions for A > 3 nuclei
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◮ 9C (9Li) dominant spatial symmetry [s.s.] = [432] = [α ,3He(3H),pp(nn)]→ Large MEC

◮ 9Be (9B) dominant spatial symmetry [s.s.] = [441] = [α ,α ,n(p)]
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Summary

◮ We derived the EM charge and current operators up to one loop from χEFT

with π’s and N’s

◮ The charge operator does not involve unknown LECs and two-body corrections

(of one-pion range) appear at N3LO

◮ The current operator depends on 5 LECs which have been fixed to EM data for

A = 2 ad 3 systems with two-body corrections appearing at NLO (purely

isovector)

◮ Electromagnetic form factors are well reproduced for q < 3 fm−1

◮ Sensitivity to cutoff variations and Hamiltonian models is observed at larger

values of q

◮ Convergence pattern of the expansion is spoiled by N3LO EM currents of

‘non-minimal’ nature
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Outlook

∗ The microscopic description of nuclei successfully reproduces EXPT data

provided that many-body effects in nuclear interactions and EM currents are

accounted for.

S. Bacca & S. P. – J. Phys. G: Nucl. Part. Phys. 41, 123002 (2014)

∗ EM structure and dynamics of light nuclei

◮ Charge and magnetic form factors of A≤ 10 systems (ongoing)
◮ M1/E2 transitions in light nuclei (ongoing)
◮ Fully consistent χEFT calculations with ‘MEC’ for A > 4
◮ Role of ∆-resonances in ‘MEC’ !!!

∗ Electroweak structure and dynamics of light nuclei

◮ Text axial currents (chiral and conventional) in light nuclei
◮ ν-d pion-production at threshold from HBχPT (ongoing)
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EXTRA SLIDES
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Deuteron A(q) structure function and tensor polarization T20(q) – Piarulli et al.
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Deuteron B(q) structure function – Piarulli et al.
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OPEP beyond the static limit

E ′1

k

v(2)π ∼ Q2v(1)π ∼ Q1v(0)π ∼ Q0

E1 E2

E ′2

On-the-energy-shell, non-static OPEP at N2LO (Q2) can be equivalently written as

υ
(2)
π (ν = 0) = υ

(0)
π (k)

(E ′1−E1)
2 +(E ′2−E2)

2

2ω2
k

υ
(2)
π (ν = 1) = −υ

(0)
π (k)

(E ′1−E1)(E
′
2−E2)

ω2
k

υ
(0)
π (k) = −

g2
A

F2
π

τ1 ·τ2
σ1 ·k σ2 ·k

ω2
k

υ
(2)
π (ν) corrections are different off-the-energy-shell (E1 +E2 6= E′1 +E′2)

◮ TPE contributions are affected by the choice made for the parameter ν
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Magnetic moments in A≤ 10 nuclei

Predictions for A > 3 nuclei

-3

-2

-1

0

1

2

3

4

µ 
(µ

N
)

EXPT

GFMC(IA)
GFMC(FULL)

n

p

2H

3H

3He

6Li

6Li*

7Li

7Be

8Li 8B

9Li

9Be

9B

9C

10B

10B*

µ(IA) = µN ∑
i

[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]

30 / 25



Magnetic moments in A≤ 10 nuclei - bis

Predictions for A > 3 nuclei
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◮ 9C (9Li) dominant spatial symmetry [s.s.] = [432] = [α ,3He(3H),pp(nn)]→ Large MEC

◮ 9Be (9B) dominant spatial symmetry [s.s.] = [441] = [α ,α ,n(p)]
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From amplitudes to potentials

The two-nucleon potential υ = υ(0)+υ(1)+υ(2)+ . . . (with υ(n) ∼ Qn) is iterated

into the Lippmann-Schwinger (LS) equation i.e.

υ +υ G0 υ +υ G0 υ G0 υ + . . . , G0 = 1/(Ei−EI + iη)

υ(n) is obtained subtracting from the transition amplitude T
(n)
fi terms already

accounted for into the LS equation

υ(0) = T(0) ,

υ(1) = T(1)−
[

υ(0) G0 υ(0)
]

,

υ(2) = T(2)−
[

υ(0) G0 υ(0) G0 υ(0)
]

−
[

υ(1)G0 υ(0)+υ(0) G0 υ(1)
]

,

υ(3)(ν) = T(3)−
[

υ(0) G0 υ(0) G0 υ(0)G0 υ(0)
]

−
[

υ(1) G0 υ(0) G0 υ(0)+permutations
]

−
[

υ(1) G0 υ(1)
]

−
[

υ(2)(ν)G0 υ(0)+υ(0) G0 υ(2)(ν)
]

︸ ︷︷ ︸

LS terms
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From amplitudes to potentials: an example with OPE and TPE only

T (3)

v
(2)
2π + LS terms

v
(3)
2π (ν) + LS terms

v(2)π (ν)

v(1)π

T (1)

T (0)

T (2)

v(0)π

LS terms

◮ To each υ
(2)
π (ν) corresponds a υ

(3)
2π (ν)
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Unitary equivalence of υ
(2)
π (ν) and υ

(3)
2π (ν)

◮ Different off-the-energy-shell parameterizations lead to unitarily equivalent

two-nucleon Hamiltonians

H(ν) = t(−1)+υ
(0)
π +υ

(2)
2π +υ

(2)
π (ν)+υ

(3)
2π (ν)

t(−1) is the kinetic energy, υ
(0)
π and υ

(2)
2π are the static OPEP and TPEP

◮ The Hamiltonians are related to each other via

H(ν) = e−iU(ν) H(ν = 0)e+iU(ν) , iU(ν)≃ iU(0)(ν)+ iU(1)(ν)

from which it follows

H(ν) = H(ν = 0)+
[

t(−1)+υ
(0)
π , iU(0)(ν)

]

+
[

t(−1), iU(1)(ν)
]

◮ Predictions for physical observables are unaffected by off-the-energy-shell

effects
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From amplitudes to EM charge and current operators

◮ In presence of EM interaction the transition amplitude Tγ is expanded as

Tγ = T
(−3)
γ +T

(−2)
γ +T

(−1)
γ + . . . , T

(n)
γ ∼ eQn

and the charge and current operators are related to T
(n)
γ via

υ
(n)
γ = A0 ρ(n)−A · j(n) = T

(n)
γ − LS terms

that is
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Technical issue II - Recoil corrections at N3LO

jN
3LO

=

q2

q1

Direct Crossed

21

◮ Reducible contributions

jred ∼

∫

υπ (q2)
1

Ei−EI

jNLO(q1)

−

∫

2
ω1 +ω2

ω1 ω2

VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN (1,q1)

◮ Irreducible contributions

jirr =

∫

2
ω1 +ω2

ω1 ω2

VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN (1,q1)

−
∫

2
ω2

1 +ω2
2 +ω1 ω2

ω1 ω2(ω1 +ω2)
[VπNN(2,q2),VπNN(2,q1)]−VπNN(1,q2)VγπNN(1,q1)

◮ Observed partial cancellations at N3LO between recoil corrections to reducible

diagrams and irreducible contributions
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The box diagram: an example at N3LO

q1

q2
Reducible

Irreducible

direct

Irreducible

crossed

1 2

a
b

d

a

b

c

d

c

direct = fd(ω1,ω2)Va Vb Vc Vd

crossed = fc(ω1,ω2)Vb Va Vc Vd VbVa = Va Vb− [Va,Vb]−

irreducible = [ fd(ω1,ω2)+ fc(ω1,ω2)]Va Vb Vc Vd

− fc(ω1,ω2)[Va,Vb]−Vc Vd
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EM charge up to n = 0 (or up to N3LO)

LO : ρ(−3) ∼ eQ−3

N3LO : ρ(0) ∼ eQ0

N2LO : ρ(−1) ∼ eQ−1

ρ
(0)
π (ν)

◮ n =−3

ρ (−3)(q) = e(2π)3δ (p1 +q−p′1)(1+τ1,z)/2+1 ⇋ 2

◮ n =−1:

(Q/mN)
2 relativistic correction to ρ(−3)

◮ n = 0:

i) ‘static’ tree-level current (originates

from a γπN vertex of order eQ)

ii) ‘non-static’ OPE charge operators,

ρ
(0)
π (ν) depends on υ

(2)
π (ν)

◮ ρ
(0)
π (ν)’s are unitarily equivalent

ρ
(0)
π (ν) = ρ

(0)
π (ν = 0)+

[

ρ(−3) , iU(0)(ν)
]

◮ No unknown LECs up to this order (gA, Fπ )
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EM charge @ n = 1 (or N4LO) 1.

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ (a), (f), (d), and (i) vanish

◮ Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as

they must since there are no counter-terms at N4LO

◮ ρ
(1)
h (ν) depends on the parametrization adopted for υ

(2)
π (ν) and υ

(3)
2π (ν)

◮ ρ
(1)
h (ν)’s are unitarily equivalent

ρ
(1)
h (ν) = ρ

(1)
h (ν = 0)+

[

ρ(−3) , iU(1)(ν)
]
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EM charge @ n = 1 (or N4LO) 2.

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ Charge operators (ν-dependent included) up to n = 1 satisfy the condition

ρ (n>−3)(q = 0) = 0

which follows from charge conservation

ρ(q = 0) =

∫

dxρ(x) = e
(1+ τ1,z)

2
+1 ⇋ 2 = ρ (−3)(q = 0)

◮ ρ(1) does not depend on unknown LECs and it is purely isovector
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