Effective field theory methods for light nuclei*

Saori Pastore @ ODU, Norfolk VA - March 2015

* in collaboration with: Luca Girlanda, Maria Piarulli, Rocco Schiavilla, Michele Viviani, Laura E. Marcucci, Alejandro Kievsky, Steven Pieper, Bob Wiringa

PRC78, 064002 (2008) - PRC80, 034004 (2009) - PRC81, 034005 (2010) PRL105, 232502, (2010) - PRC84, 024001 (2011) - PRC87, 014006, (2013)

- ► Nuclear χ EFT approach
- EM charge and current operators up to one loop from χ EFT
- A = 2 and 3 nuclei: elastic form factors
- Summary and outlook

The Basic Model

▶ The nucleus is a system made of A interacting nucleons, its energy is given by

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are 2- and 3-nucleon interaction operators

Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1-, 2-, ... nucleon operators:

$$\rho = \sum_{i=1}^{A} \rho_i + \sum_{i < j} \rho_{ij} + \dots, \qquad \mathbf{j} = \sum_{i=1}^{A} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

$$\gamma_{r} \mathbf{j}^{\mathbf{q}} \mathbf{j}^{\mathbf{r}} \mathbf{j} \qquad \qquad + \dots$$

▶ Longitudinal EM current operator j linked to the nuclear Hamiltonian via

$$\mathbf{q} \cdot \mathbf{j} = [H, \rho] = [T + V, \rho]$$

Nuclear χ EFT approach

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

- > χ EFT exploits the χ symmetry exhibited by QCD at low energy to restrict the form of the interactions of π 's with other π 's, and with *N*'s, Δ 's, ...
- ► The pion couples by powers of its momentum $Q \rightarrow \mathscr{L}_{eff}$ can be systematically expanded in powers *n* of Q/Λ_{χ}

$$\mathscr{L}_{e\!f\!f} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \ldots + \mathscr{L}^{(n)} + \ldots$$

 $\Lambda_{\chi} \sim 1$ GeV is the hard scale where χ EFT breaks down and characterizes the convergence of the expansion \rightarrow we are limited to kinematic regions where $Q \ll \Lambda_{\chi}$

- The coefficients of the expansion, Low Energy Constants (LECs) are unknown and need to be fixed by comparison with exp data
- The systematic expansion in Q naturally has the feature

$$\langle \mathcal{O} \rangle_{1-\text{body}} > \langle \mathcal{O} \rangle_{2-\text{body}} > \langle \mathcal{O} \rangle_{3-\text{body}}$$

► A theoretical error due to the truncation of the expansion can be assigned

Transition amplitude in time-ordered perturbation theory

- We use non relativistic N's and π 's as mediators of the nuclear interaction at large interparticle distances
- We can construct multiple pion-exchange operators or multiple nucleon contact-terms encoding intermediate- and short-range dynamics

$$\begin{split} T_{\mathrm{fi}} &= \langle f \mid T \mid i \rangle \quad = \quad \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \\ &= \quad \langle f \mid H_1 \mid i \rangle + \sum_{|I\rangle} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots \end{split}$$

A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex

 N_K = number of pure nucleonic intermediate states

Power counting

• Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as

$$T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$$
 and $T^{\rm NnLO} \sim (Q/\Lambda_{\chi})^n T^{\rm LO}$

▶ N_K energy denominators scale as Q^{-2}

$$\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N} |I\rangle \sim Q^{-2} |I\rangle$$

• $(N - N_K - 1)$ energy denominators scale Q^{-1} in the <u>static limit</u>; they can be further expanded in powers of $(E_i - E_N)/\omega_{\pi} \sim Q$

$$\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim - \left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle$$

Relativistic effects taken in to account as (Q/m_N)² corrections to non-relativistic operators

NN Potential at N2LO (or $Q^{n=2}$)

• Contact potential at LO (or $Q^{n=0}$) depends on 2 LECs

Contact potential at N2LO (or $Q^{n=2}$) depends on 7 additional LECs

NN potentials with π 's and *N*'s

- * van Kolck et al. (1994–96)
- * Kaiser, Weise et al. (1997–98)
- * Epelbaum, Glöckle, Meissner (1998–2015)
- * Entem and Machleidt (2002–2015) *

```
* ...
```

Observations:

1. EM H_1 obtained by minimal substitution in the π - and N-derivative couplings involve the same LECs entering H_1 strong

$$\begin{array}{lll} \nabla \pi_{\mp}(\mathbf{x}) & \to & [\nabla \mp i e \mathbf{A}(\mathbf{x})] \, \pi_{\mp}(\mathbf{x}) \\ \nabla N(\mathbf{x}) & \to & [\nabla - i e e_N \mathbf{A}(\mathbf{x})] N(\mathbf{x}) \,, \qquad e_N = (1 + \tau_z)/2 \end{array}$$

2. LECs entering EM H_1 from the $F_{\mu\nu} = (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$ are not constrained by the strong interaction

χ EFT EM current up to n = 1 (or up to N3LO)

- ► n = -2, -1, 0, and 1-(loops only): depend on known LECs (g_A, F_π , and $\mu_{p/n}$)
- ► n = 0: $(Q/m_N)^2$ relativistic correction to $\mathbf{j}^{(-2)}$ at LO
- Strong contact 'minimal' LECs at n = 1 fixed from fits to np phases shifts—Q⁴ NN potential of Entem&Machleidt
- Unknown 'non-minimal' EM LECs enter the n = 1 contact and tree-level currents
- No three-body EM currents at this order !!!
- NLO and N3LO loop-contributions lead to purely isovector operators
- ► $\mathbf{j}^{(n \leq 1)}$ satisfies the continuity eq. with χ EFT two-nucleon potential $v^{(n \leq 2)}$

 χ EFT EM currents at N3LO: fixing the EM LECs – Piarulli *et al.*

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}({}^{3}\text{H}/{}^{3}\text{He})$

Isovector sector:

* model I =
$$c^V$$
 from EXPT $npd\gamma$ xsec.

* model II = c^V from EXPT $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ m.m. \leftarrow our choice

Note that:

 χ EFT operators have a power law behavior \rightarrow introduce a regulator to kill divergencies at large Q, *e.g.*, $C_{\Lambda} = e^{-(Q/\Lambda)^n}$, ...and also, pick *n* large enough so as to not generate spurious contributions

$$C_{\Lambda} \sim 1 - \left(\frac{Q}{\Lambda}\right)^n + \dots$$

Predictions with χ EFT EM currents for A = 2-3 systems – Piarulli *et al.*

np capture xsec. (using model II) / μ_V of A = 3 nuclei (using model I) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

- ▶ $npd\gamma$ xsec. and $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ m.m. are within 1% and 3% of EXPT
- Two-body currents important to reach agreement with exp data
- ▶ Negligible dependence on the cutoff entering the regulator $exp(-(k/\Lambda)^4)$

EM charge up to n = 0 (or up to N3LO)

► No unknown LECs up to N4LO or n = 1 (g_A , F_π) !!

EM charge @ n = 1 (or N4LO)

• Charge operators up to n = 1 satisfy the condition

$$\rho^{(n>-3)}(\mathbf{q}=0) = 0$$

which follows from charge conservation

$$\rho(\mathbf{q}=0) = \int \mathrm{d}\mathbf{x}\rho(\mathbf{x}) = e\frac{(1+\tau_{1,z})}{2} + 1 \rightleftharpoons 2 = \rho^{(-3)}(\mathbf{q}=0)$$

- Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as they must since there are no counter-terms at N4LO
- $\rho^{(1)}$ does not depend on unknown LECs and it is purely isovector

Previous work using χ EFT with pions and nucleons

Electroweak currents with π 's and N's

- Park, Rho *et al.* (1996–2009); hybrid studies in A=2–4 by Song *at al.* (2009-2011)
- * Meissner *et al.* (2001), Kölling *et al.* (2009–2011); applications to *d* and ³He photodisintegration by Rozpedzik *et al.* (2011); applications to *d* magnetic f.f. by Kölling, Epelbaum, Phillips (2012)
- Phillips (2003-2007); applications to deuteron static properties and f.f.'s

Deuteron Charge and Quadrupole f.f.'s – Piarulli et al.

- N4LO contributions do not enter as they lead to isovector operators
- Calculations include nucleonic f.f.'s taken from exp data
- Q_d within 1% (2%) of the exp data with N3LO(AV18)
- ► Bands' thickness gives cutoff dependence $\Lambda = 500 600$ MeV
- ► G_Q agrees with exp up to $q \simeq 6 \text{ fm}^{-1}$, *i.e.*, beyond the 3-4 m_π range

Λ MeV	$< r_d > (fm)$	$< r_d > \text{EXP}$	Q_d (fm ²)	Q_d (fm ²) EXP
500	1.976 (1.969)	1.9734(44)	0.285 (0.281)	0.2859(3)
600	1.968 (1.969)		0.282 (0.280)	

χ EFT predictions for the Deuteron Charge and Quadrupole f.f.'s

χ EFT calculations from Piarulli *et al.*, Phillips

▶ Good agreement between theoretical calculations and data for low *q*-values

Deuteron Magnetic f.f.'s - Piarulli et al.

- ▶ μ_d is used to constrain the EM current \rightarrow predictions are for q > 0
- Calculations include nucleonic f.f.'s taken from exp data
- Good agreement up to $q \simeq 2 \text{ fm}^{-1}$
- Exhibited sensitivity to nuclear Hamiltonians due to differences in the S- and D-wave functions
- Cutoff dependence large in the chiral formulation

χ EFT predictions for the deuteron magnetic f.f.

 χ EFT calculations from Piarulli *et al.*, Kölling *et al.*

▶ Good agreement between theoretical calculations and data for low *q*-values

Deuteron wave functions

from Entem&Machleidt 2011 Review

- Entem&Machleidt N3LO
- Epelbaum *et al.* 2005
- black lines = conventional potentials, i.e. AV18, CD-Bonn, Nijm-I

³He and ³H charge f.f.'s – Piarulli *et al.*

- Excellent agreement up to $q \simeq 2 \text{ fm}^{-1}$
- N3LO and N4LO comparable

	3 He $< r >_{EXP} = 1.959 \pm 0.030$ fm		$^{3}\text{H} < r >_{EXP} = 1.755 \pm 0.086$	
Λ	500	600	500	600
LO	1.966 (1.950)	1.958 (1.950)	1.762 (1.743)	1.750 (1.743)
N4LO	1.966 (1.950)	1.958 (1.950)	1.762 (1.743)	1.750 (1.743)

³He and ³H magnetic f.f.'s – Piarulli *et al.*

- ► ³He and ³H μ 's used to fix the EM current; 10% correction from two-body currents
- Two-body current crucial to improve agreement with exp data

	3 He $< r >_{EXP} = 1.965 \pm 0.153$ fm		$^{3}\text{H} < r >_{EXP} = 1.840 \pm 0.181 \text{ fm}$	
Λ	500	600	500	600
LO	2.098 (2.092)	2.090 (2.092)	1.924 (1.918)	1.914 (1.918)
N3LO	1.927 (1.915)	1.913 (1.924)	1.808 (1.792)	1.794 (1.797)

³He and ³H magnetic f.f.'s – Piarulli *et al.*

► If model II is used (with LEC from $npd\gamma$ x-sec.) we get better agreement with exp but larger cutoff dependence and μ_V off by 3%

Magnetic moments in $A \leq 10$ nuclei

Predictions for A > 3 nuclei

$$\mu(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$

Magnetic moments in $A \le 10$ nuclei - bis

Predictions for A > 3 nuclei

▶ ⁹C (⁹Li) dominant spatial symmetry [s.s.] = [432] = $[\alpha, {}^{3}\text{He}({}^{3}\text{H}), pp(nn)] \rightarrow \text{Large MEC}$

▶ ⁹Be (⁹B) dominant spatial symmetry [s.s.] = [441] = $[\alpha, \alpha, n(p)]$

Summary

- We derived the EM charge and current operators up to one loop from χ EFT with π 's and *N*'s
- The charge operator does not involve unknown LECs and two-body corrections (of one-pion range) appear at N3LO
- The current operator depends on 5 LECs which have been fixed to EM data for A = 2 ad 3 systems with two-body corrections appearing at NLO (purely isovector)
- Electromagnetic form factors are well reproduced for $q < 3 \text{ fm}^{-1}$
- Sensitivity to cutoff variations and Hamiltonian models is observed at larger values of q
- Convergence pattern of the expansion is spoiled by N3LO EM currents of 'non-minimal' nature

Outlook

* The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for.

S. Bacca & S. P. - J. Phys. G: Nucl. Part. Phys. 41, 123002 (2014)

- * EM structure and dynamics of light nuclei
 - Charge and magnetic form factors of $A \le 10$ systems (ongoing)
 - M1/E2 transitions in light nuclei (ongoing)
 - Fully consistent χ EFT calculations with 'MEC' for A > 4
 - ► Role of Δ-resonances in 'MEC' !!!
- * Electroweak structure and dynamics of light nuclei
 - Text axial currents (chiral and conventional) in light nuclei
 - *v*-*d* pion-production at threshold from HB χ PT (ongoing)

EXTRA SLIDES

Deuteron A(q) structure function and tensor polarization $T_{20}(q)$ – Piarulli *et al.*

Deuteron B(q) structure function – Piarulli *et al.*

OPEP beyond the static limit

On-the-energy-shell, non-static OPEP at N2LO (Q^2) can be equivalently written as

$$\begin{aligned} \upsilon_{\pi}^{(2)}(\mathbf{v} = 0) &= \upsilon_{\pi}^{(0)}(\mathbf{k}) \; \frac{(E_1' - E_1)^2 + (E_2' - E_2)^2}{2 \, \omega_k^2} \\ \upsilon_{\pi}^{(2)}(\mathbf{v} = 1) &= -\upsilon_{\pi}^{(0)}(\mathbf{k}) \; \frac{(E_1' - E_1) (E_2' - E_2)}{\omega_k^2} \\ \upsilon_{\pi}^{(0)}(\mathbf{k}) &= -\frac{g_A^2}{F_{\pi}^2} \tau_1 \cdot \tau_2 \; \frac{\boldsymbol{\sigma}_1 \cdot \mathbf{k} \; \boldsymbol{\sigma}_2 \cdot \mathbf{k}}{\omega_k^2} \end{aligned}$$

v⁽²⁾_π(v) corrections are different off-the-energy-shell (E₁ + E₂ ≠ E'₁ + E'₂)
 TPE contributions are affected by the choice made for the parameter v

Magnetic moments in $A \leq 10$ nuclei

Predictions for A > 3 nuclei

$$\mu(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$

Magnetic moments in $A \le 10$ nuclei - bis

Predictions for A > 3 nuclei

▶ ⁹C (⁹Li) dominant spatial symmetry [s.s.] = [432] = $[\alpha, {}^{3}\text{He}({}^{3}\text{H}), pp(nn)] \rightarrow \text{Large MEC}$

▶ ⁹Be (⁹B) dominant spatial symmetry [s.s.] = [441] = $[\alpha, \alpha, n(p)]$

From amplitudes to potentials

The two-nucleon potential $v = v^{(0)} + v^{(1)} + v^{(2)} + \dots$ (with $v^{(n)} \sim Q^n$) is iterated into the Lippmann-Schwinger (LS) equation *i.e.*

$$v + v G_0 v + v G_0 v G_0 v + \dots$$
, $G_0 = 1/(E_i - E_I + i\eta)$

 $v^{(n)}$ is obtained subtracting from the transition amplitude $T_{\rm fi}^{(n)}$ terms already accounted for into the LS equation

$$\begin{aligned}
\boldsymbol{v}^{(0)} &= T^{(0)}, \\
\boldsymbol{v}^{(1)} &= T^{(1)} - \left[\boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)}\right], \\
\boldsymbol{v}^{(2)} &= T^{(2)} - \left[\boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)}\right] - \left[\boldsymbol{v}^{(1)} G_0 \, \boldsymbol{v}^{(0)} + \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(1)}\right], \\
\boldsymbol{v}^{(3)}(\boldsymbol{v}) &= T^{(3)} - \left[\boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)}\right] - \left[\boldsymbol{v}^{(1)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} + \text{permutations}\right] \\
&- \left[\boldsymbol{v}^{(1)} G_0 \, \boldsymbol{v}^{(1)}\right] - \left[\boldsymbol{v}^{(2)}(\boldsymbol{v}) G_0 \, \boldsymbol{v}^{(0)} + \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(2)}(\boldsymbol{v})\right]
\end{aligned}$$

LS terms

From amplitudes to potentials: an example with OPE and TPE only

• To each $v_{\pi}^{(2)}(\mathbf{v})$ corresponds a $v_{2\pi}^{(3)}(\mathbf{v})$

Unitary equivalence of $v_{\pi}^{(2)}(\mathbf{v})$ and $v_{2\pi}^{(3)}(\mathbf{v})$

 Different off-the-energy-shell parameterizations lead to unitarily equivalent two-nucleon Hamiltonians

$$H(\mathbf{v}) = t^{(-1)} + v_{\pi}^{(0)} + v_{2\pi}^{(2)} + v_{\pi}^{(2)}(\mathbf{v}) + v_{2\pi}^{(3)}(\mathbf{v})$$

 $t^{(-1)}$ is the kinetic energy, $v_{\pi}^{(0)}$ and $v_{2\pi}^{(2)}$ are the static OPEP and TPEP

The Hamiltonians are related to each other via

$$H(\mathbf{v}) = e^{-iU(\mathbf{v})} H(\mathbf{v} = 0) e^{+iU(\mathbf{v})}, \qquad i U(\mathbf{v}) \simeq i U^{(0)}(\mathbf{v}) + i U^{(1)}(\mathbf{v})$$

from which it follows

$$H(\mathbf{v}) = H(\mathbf{v} = 0) + \left[t^{(-1)} + v_{\pi}^{(0)}, i U^{(0)}(\mathbf{v})\right] + \left[t^{(-1)}, i U^{(1)}(\mathbf{v})\right]$$

 Predictions for physical observables are unaffected by off-the-energy-shell effects

From amplitudes to EM charge and current operators

• In presence of EM interaction the transition amplitude T_{γ} is expanded as

$$T_{\gamma} = T_{\gamma}^{(-3)} + T_{\gamma}^{(-2)} + T_{\gamma}^{(-1)} + \dots, \qquad T_{\gamma}^{(n)} \sim e Q^{n}$$

and the charge and current operators are related to $T_{\gamma}^{(n)}$ via

$$v_{\gamma}^{(n)} = A^0 \rho^{(n)} - \mathbf{A} \cdot \mathbf{j}^{(n)} = T_{\gamma}^{(n)} - \mathbf{LS}$$
 terms

that is

Technical issue II - Recoil corrections at N³LO

Reducible contributions

$$\begin{aligned} \mathbf{j}_{\text{red}} &\sim \int \upsilon^{\pi}(\mathbf{q}_2) \, \frac{1}{E_i - E_I} \, \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) \\ &- \int 2 \, \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \end{aligned}$$

Irreducible contributions

$$\mathbf{j}_{\text{irr}} = \int 2 \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1) - \int 2 \frac{\omega_1^2 + \omega_2^2 + \omega_1 \omega_2}{\omega_1 \omega_2 (\omega_1 + \omega_2)} [V_{\pi NN}(2, \mathbf{q}_2), V_{\pi NN}(2, \mathbf{q}_1)]_{-} V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

 Observed partial cancellations at N³LO between recoil corrections to reducible diagrams and irreducible contributions

The box diagram: an example at N³LO

$$- f_c(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2)[V_a, V_b]_- V_c V_d$$

EM charge up to n = 0 (or up to N3LO)

$$\rho^{(-3)}(\mathbf{q}) = e(\mathbf{q})$$

$$\mathbf{p}^{(-3)}(\mathbf{q}) = e(\mathbf{q})$$

$$\mathbf{n} = -1:$$

$$(Q/m_N)^2 \mathbf{n}$$

$$\mathbf{N}^2 \mathbf{LO} : \rho^{(-1)} \sim \mathbf{eQ}^{-1} \mathbf{e}^{\mathbf{q}}$$

$$\rho^{(0)}_{\pi}(\nu) \qquad \mathbf{n} = 0:$$

$$\mathbf{N}^3 \mathbf{LO} : \rho^{(0)} \sim \mathbf{eQ}^0 \mathbf{e}^{\mathbf{q}} \mathbf{e}^{\mathbf{q}}$$

$$\mathbf{p}^{(0)}_{\pi}(\nu) \qquad \mathbf{n} = 0:$$

$$\mathbf{n} = \mathbf{0}:$$

$$\mathbf$$

► n = -3 $\rho^{(-3)}(\mathbf{q}) = e(2\pi)^3 \delta(\mathbf{p}_1 + \mathbf{q} - \mathbf{p}'_1)(1 + \tau_{1,z})/2 + 1 \rightleftharpoons 2$ ► n = -1: $(Q/m_N)^2$ relativistic correction to $\rho^{(-3)}$

i) 'static' tree-level current (originates from a $\gamma \pi N$ vertex of order eQ)

ii) 'non-static' OPE charge operators, $ho_{\pi}^{(0)}(v)$ depends on $\upsilon_{\pi}^{(2)}(v)$

• $\rho_{\pi}^{(0)}(\mathbf{v})$'s are unitarily equivalent

$$\rho_{\pi}^{(0)}(\mathbf{v}) = \rho_{\pi}^{(0)}(\mathbf{v}=0) + \left[\rho^{(-3)}, i U^{(0)}(\mathbf{v})\right]$$

► No unknown LECs up to this order (g_A, F_π)

EM charge @ n = 1 (or N4LO) 1.

- ▶ (a), (f), (d), and (i) vanish
- Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as they must since there are no counter-terms at N4LO
- ► $\rho_{\rm h}^{(1)}(\mathbf{v})$ depends on the parametrization adopted for $v_{\pi}^{(2)}(\mathbf{v})$ and $v_{2\pi}^{(3)}(\mathbf{v})$
- $\rho_{\rm h}^{(1)}(\mathbf{v})$'s are unitarily equivalent

$$\rho_{\rm h}^{(1)}(\mathbf{v}) = \rho_{\rm h}^{(1)}(\mathbf{v}=0) + \left[\rho^{(-3)}, i U^{(1)}(\mathbf{v})\right]$$

EM charge @ n = 1 (or N4LO) 2.

• Charge operators (v-dependent included) up to n = 1 satisfy the condition

$$\rho^{(n>-3)}(\mathbf{q}=0)=0$$

which follows from charge conservation

$$\rho(\mathbf{q}=0) = \int d\mathbf{x} \rho(\mathbf{x}) = e \frac{(1+\tau_{1,z})}{2} + 1 \rightleftharpoons 2 = \rho^{(-3)}(\mathbf{q}=0)$$

• $\rho^{(1)}$ does not depend on unknown LECs and it is purely isovector