Tag! You're It! Bound Nucleon Structure at JLab

Lawrence Weinstein Old Dominion University

Brief Tour of Nuclear Structure

Nucleons:

- ~65% in single particle orbitals
- ~25% in NN correlations
 - Almost all high momentum nucleons

L. Lapikas, NP **A553** (1993) 297c N. Fomin et al, PRL **108**, 092502 (2012)₂

Short Range Correlations (SRCs)

→ High momentum tails: $k > k_F$

Calculable for $A \le 12$ Not well constrained at $k >> k_f$

- High momentum part of the nuclear wave function
- Short distance behavior of nucleons modification??
- Cold dense nuclear matter
- Neutron Stars

Nucleons are like people ...

Correlations and High Momentum

Ciofi degli Atti, PRC 53 (1996) 1689

0.8

0

L.B. Weinstein, ODU

.З

5

X

6

Tagging Workshop 2015

1.0

0.9

EMC Effect: Theory

- Nuclear Effects:
 - Fermi motion
 - Binding energy
- Full Calculation
 - Nucleon modification
 - Nuclear pions
 - shadowing

Nucleon modification:

Phenomenological change to bound nucleon structure functions, change proportional to virtuality $v = (p^2 - M^2)/M^2$

Nucleon modification needed to describe data

EMC Effect and Correlations

SRC data from Fomin et al EMC data from Gomez et al and Seely et al

Weinstein et al, PRL**106**, 052301 (2011) Hen et al, PRC**85**, 047301 (2012)

EMC Effect and Correlations

SRC data from Fomin et al EMC data from Gomez et al and Seely et al

Weinstein et al, PRL**106**, 052301 (2011) Hen et al, PRC**85**, 047301 (2012)

EMC-SRC Connection

If we are right, we should measure a large EMC effect by selecting highmomentum nucleons!?

Deuteron

- Is there an "EMC" effect in the deuteron?
- Is it bigger at high-momentum?
- Does the structure function F₂ depend on nucleon momentum (virtuality)?

Suggested Explanation of Correlation between SRC and EMC

- > EMC effect does not occur (or is very small) for mean-field nucleons
- Both SRC and EMC are related to high-momentum (high virtuality) nucleons
- High momentum (high virtuality) nucleons in the medium are modified Hmm..
- \succ Let's measure the in-medium modified(?) structure function F_2 in DIS

$$\frac{d^{3}\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{1}{\omega}F_{2}(x_{B},Q^{2}) + \frac{2}{M}F_{1}(x_{B},Q^{2}) \cdot \tan^{2}\left(\frac{\theta_{e}}{2}\right)\right]$$

(F_1 and F_2 are related by R, the measured ratio of longitudinal and transverse cross sections. Thus measuring the cross section yields F_2 .)

F₂ Momentum Dependence

Tagging Nucleon Structure Functions

- 6 GeV: $d(e,e'p_s)$ Hall B (Kuhn, Griffeon)
- 12 GeV: E12-11-107 Hall C (Hen, Weinstein, Gilad, Wood)

Experimental method

- > DIS on a deuteron target
- Tag high-momentum nucleons with high-momentum backward-recoiling ("spectator") partner nucleon d(e,e'N_S)

Recalculate struck nucleon kinematics (x', W')

Minimize nucleon rescattering (FSI)

A. V. Klimenko et al., PRC 73, 035212 (2006)

FSI:

- \succ Decrease with Q^2
- \succ Increase with W
- > Not sensitive to x'
- > Small for $\theta_{pq} > 107^{\circ}$

 $cos(\theta_{pq})$

cos(θ_{pg})

cos(θ_{po})

Tagging Workshop 2015

Experimental Method

 $d(e,e'N_S)$ cross section Factorizes into the cross section $(\sigma \sim F_2)$ times the distorted momentum distribution.

Cross section ratio at fixed nucleon momentum \rightarrow distorted spectral function cancels:

$$F_{2}^{*}(x_{1}',\alpha_{S},p_{T},Q_{1}^{2})/F_{2}^{*}(x_{2}',\alpha_{S},p_{T},Q_{1}^{2}) = \left(\frac{d^{4}\sigma}{dx_{1}'dQ^{2}d\vec{p}_{S}}/K_{1}\right) / \left(\frac{d^{4}\sigma}{dx_{2}'dQ^{2}d\vec{p}_{S}}/K_{2}\right)$$

Measure α_s dependence at $\theta_{pq} > 107^\circ$ (small FSI)

$$x' = \frac{Q^2}{2p_{\mu}q^{\mu}} = \frac{Q^2}{2[(M_d - E_s)\omega + \vec{p}_s \cdot \vec{q}]}$$

x' is *x*-Bjorken for the moving struck nucleon

$$\vec{p}_s$$
 maps to (α_s, p_T)

 $\alpha_{s} = (E_{s} - p_{s}^{z}) / m_{s}$

Experimental Method (cont.)

Minimize experimental and theoretical uncertainties by measuring cross-section ratios

$$\frac{\sigma_{DIS}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{\sigma_{DIS}(x_{low}^{'}, Q_{2}^{2}, \vec{p}_{s})} \cdot \frac{\sigma_{DIS}^{free}(x_{low}^{'}, Q_{2}^{2})}{\sigma_{DIS}^{free}(x_{high}^{'}, Q_{1}^{2})} \cdot R_{FSI} = \frac{F_{2}^{bound}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{F_{2}^{free}(x_{high}^{'}, Q_{1}^{2})}$$

x' = x from a moving nucleon

x' = x from a moving nucleon $x'_{high} \ge 0.45$

FSI correction factor

 $0.25 \ge x'_{low} \ge 0.35$ No EMC effect is expected

$$x'_{B} = \frac{Q^{2} (For d)}{2 p_{\mu} q^{\mu}} \stackrel{Q^{2}}{=} \frac{Q^{2}}{2[(M_{d} - E_{S})\omega + \vec{p}_{S} \cdot \vec{q}]}$$

$$x_{B} = \frac{Q^{2}}{2m_{N}\omega}$$

12 GeV – Hall C

E12-11-107: Hen, Weinstein, Gilad and Wood

HMS and SHMS detect electrons

LAD (132 reused CLAS6 TOF detectors, 1.5 sr, 20% neutron efficiency) detects recoiling nucleon

Low x'High x' $E_{in} = 10.9 \text{ GeV}$
E' = 4.4 GeV $E_{in} = 10.9 \text{ GeV}$
E' = 4.4 GeV $\theta_e = 13.5^o$
 $Q^2 = 2.65 \text{ GeV}^2$ $\theta_e = -17^0$
 $Q^2 = 4.19 \text{ GeV}^2$ $I \vec{q} \models 6.7 \text{ GeV/c}$ $I \vec{q} \models 6.8 \text{ GeV/c}$ $\theta_q = -8.8^0$
x = 0.217 $\theta_q = 10.8^0$
x = 0.34

Collect both LAD-HMS and LAD-SHMS coincidences

Tagging Workshop 2015

 x_{B}' vs. x_{B} (Why x'?)

CLAS6 TOF -> LAD

Refurbishing next door in the ODU high bay area.

Come see!

Tel Aviv, Kent State, MIT, JLab, ODU

Tagging Workshop 2015

LAD Performance

Momentum resolution (300 \approx 0.7\%

LAD Threshold Minimum ionizing

(e,e'p) Signal:Background					
α _s	1.2	1.3	1.4	1.5	
<i>x</i> ′ _B > 0.45	1:1	1:2	1:2	1:2	
x′ ₋ ≈ 0 3	3.1	1.1	1.1	1.1	

(The neutron is much worse)

JLab12: Expected Results

Collider Tagging Kinematics					
Spectator Momentum					
100 GeV <i>d</i> : γ = 50					
Center	Center of Mass		Lab		
P_z (CM) GeV/c	P_perp (CM) GeV/c	P_z (Lab) GeV/c	θ_p (Lab)		
0	0	50	0		
0.2	0	41	0		
0.4	0	34	0		
0.6	0	28	0		
0.6	0.2	29	0.007		
0.6	0.6	36	0.02		

Summary

- Bound neutron structure is probably modified, even in the deuteron
 - Modification should increase with momentum
- Measure with $d(e,e'N_s)$ spectator tagging
 - Ratio of cross sections
 - Inconclusive measurement at 6 GeV
 - Upcoming measurement at 12 GeV
 - Exciting possibilities at a collider (see Kijun's Monday talk)