# High Momentum Nucleons: where have we been and where are we going



#### **Nadia Fomin**

High Energy Nuclear Physics with Spectator Tagging March 10<sup>th</sup>, 2015



#### High momentum nucleons – where do they come from?

**Independent Particle Shell Model :** 

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$





Proton  $E_m, p_m$  distribution modeled as sum of independent shell contributions (arbitrary normalization)

**Independent Particle Shell Model :** 

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

- For nuclei, S<sub>α</sub> should be equal to 2j+1
   => number of protons in a given orbital
- However, it as found to be only ~2/3 of the expected value
- The bulk of the missing strength it is thought to come from short range correlations







#### **High momentum nucleons**

#### - Short Range Correlations



#### High momentum tails in A(e,e'p)

- E89-004: Measure of <sup>3</sup>He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

#### **Difficulty**

 High momentum pair can come from SRC (initial state)

#### OR

 Final State Interactions (FSI) and Meson Exchange Contributions (MEC)





A(e,e'p)

#### <sup>2</sup>H(e,e'p) Mainz PRC 78 054001 (2008)

E =0.855 GeV θ = 45° E'=0.657 GeV Q<sup>2</sup>=0.33 GeV<sup>2</sup> x=0.88

#### Unfortunately: FSI, MECs overwhelm the high momentum nucleons



FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for  $Q^2 = 0.33$  $(\text{GeV/c})^2$ [4] compared to calculations [5] with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low  $p_m$  data have been re-analyzed and used in this work to determine  $f_{LT}$  (color online).

### Past A(e,e'p) experiments in Hall A

| E89-003 | Study of the Quasielastic $(e, e'p)$ reaction in <sup>16</sup> O at High Recoil Momentum                             |  |
|---------|----------------------------------------------------------------------------------------------------------------------|--|
| E89-044 | Selected Studies of the ${}^{3}$ He and 4He Nuclei through                                                           |  |
| E97-111 | Systematic Probe of Short-Range Correlations via the Reaction ${}^4\mathrm{He}(e,e'p){}^3H$                          |  |
| E00-102 | Testing the limits of the Single Particle Model in $^{16}\mathrm{O}(e,e'p)$                                          |  |
| E03-104 | Probing the Limits of the Standard Model of Nuclear Physics with the ${}^{4}\text{He}(e,e'p){}^{3}\text{H}$ Reaction |  |
| E04-004 | In-Plane Separations and High Momentum Structure in $d(e, e'p)n$                                                     |  |
| E06-007 | Impulse Approximation limitations to the $(e, e'p)$ on <sup>208</sup> Pb,                                            |  |



2

0

2

0

0

p\_=820 MeV/c

20 40 60 80 100 120 140

 $E_m - E_{thr}$  (MeV)

(color online). Cross-section results for the FIG. 2: <sup>3</sup>He(e, e'p)pn reaction versus missing energy  $E_m$ . The vertical arrow gives the peak position expected for disintegration of correlated pairs. The dotted curve presents a PWIA calculation using Salme's spectral function and  $\sigma_{cc1}$  electron-proton off-shell cross section. Other curves are recent theoretical predictions of J. M. Laget [19] from the PWIA (dash dot) to PWIA + FSI (long dash) to full calculation (solid), including meson exchange current and final state interactions. In the 620 MeV/c panel, the additional short dash curve is a calculation with PWIA + FSI only within the correlated pair.



#### **High momentum nucleons**

#### - Short Range Correlations



Try inclusive scattering! Select kinematics such that the initial nucleon momentum  $> k_f$ 

#### **High momentum nucleons**

$$\frac{d\sigma^{QE}}{d\Omega dE'} \propto \int d\vec{k} \int dE \sigma_{ei} S_i(k, E) \delta(Arg)$$

$$Arg = v + M_A - \sqrt{M^2 + p^2} - \sqrt{M_{A-1}^{*2} + k^2}$$

$$F(y, \mathbf{q}) = \frac{d^2\sigma}{d\Omega dv} \frac{1}{(Z\overline{\sigma}_p + N\overline{\sigma}_n)} \frac{\mathbf{q}}{\sqrt{M^2 + (y+q)^2}}$$

$$= 2\pi \int_{|y|}^{\infty} n(k)kdk \quad \mathbf{Ok} \text{ for } \mathbf{A=2}$$

Fomin et al, PRL **108** (2012)  $10^{-4}$ 0  $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$ k [GeV/c]

ions

**3N SRC** 

Paris

-----

Nijmegen

Argonne V14





#### **Short Range Correlations**

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
  - J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
  - L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
  - C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
  - C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{2} a_3(A) \sigma_3(x, Q^2) + \dots$$

.)





#### **Before my time**



1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

$$\sigma(x, Q^{2}) = \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$
$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) +$$
$$\frac{A}{3} a_{3}(A) \sigma_{3}(x, Q^{2}) + \dots$$

 $2/\Delta \ \sigma^{I\!I\!0}(\mathbf{x},\mathbf{Q}^8)/\sigma^{I\!I}(\mathbf{x},\mathbf{Q}^8)$ 

 $2/\Delta \sigma^{Ie}(\mathbf{x},\mathbf{Q}^2)/\sigma^{D}(\mathbf{x},\mathbf{Q}^2)$ 

#### **Short Range Correlations**

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
  - J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
  - L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
  - C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
  - C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

 $\frac{1}{A}\frac{\sigma_A}{\tau} = a_2(A)$ 

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation



#### **Previous measurements**



1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation



#### **Kinematic cutoff is A-dependent**



- For heavy nuclei, the minimum momentum changes  $\rightarrow$  heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for  $A>2 \rightarrow MF$  contribution persists for longer

#### E02-019: 2N correlations in A/D ratios



<Q<sup>2</sup>>=2.7 GeV<sup>2</sup>

Fomin et al, PRL **108** (2012) Jlab E02-019

### **Q<sup>2</sup> dependence features**









#### E02-019: 2N correlations in A/D ratios

| А                      | $\theta_e = 18^{\circ}$ |
|------------------------|-------------------------|
| <sup>3</sup> He        | $2.14{\pm}0.04$         |
| $^{4}\mathrm{He}$      | $3.66{\pm}0.07$         |
| Be                     | $4.00 {\pm} 0.08$       |
| $\mathbf{C}$           | $4.88 {\pm} 0.10$       |
| $\mathbf{C}\mathbf{u}$ | $5.37 {\pm} 0.11$       |
| Au                     | $5.34 {\pm} 0.11$       |
| $\langle Q^2 \rangle$  | $2.7 \ {\rm GeV}^2$     |
| $x_{\min}$             | 1.5                     |



Fomin et al, PRL **108** (2012) Jlab E02-019



#### Look at nuclear dependence of NN SRCs





| Α                      | $\theta_e = 18^{\circ}$ |
|------------------------|-------------------------|
| $^{3}\mathrm{He}$      | $2.14{\pm}0.04$         |
| $^{4}\mathrm{He}$      | $3.66 {\pm} 0.07$       |
| Be                     | $4.00 {\pm} 0.08$       |
| $\mathbf{C}$           | $4.88 {\pm} 0.10$       |
| $\mathbf{C}\mathbf{u}$ | $5.37 {\pm} 0.11$       |
| Au                     | $5.34 {\pm} 0.11$       |
| $\langle Q^2 \rangle$  | $2.7 \ {\rm GeV}^2$     |
| $x_{\min}$             | 1.5                     |





### $(a_2 = \sigma_A / \sigma_D)!$ = Relative #of SRCs



### Both driven by a similar underlying cause? Separation Energy



For SRCs, a linear relationship with  $\langle \epsilon \rangle$  is less suggestive

S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)

### Both driven by a similar underlying cause? A <sup>-1/3</sup>



### Apply exact NM calculations to finite nuclei via LDA

- (A. Antonov and I. Petkov, Nuovo Cimento A 94, 68 (1986)
- (I. Sick and D. Day, Phys. Lett B 274, 16 (1992))
- For A>12, the nuclear density distribution has a common shape; constant in the nuclear interior (bulk)
   → Scale with A
- Nuclear surface contributions grow as A<sup>2/3</sup> (R<sup>2</sup>)
- σ per nucleon would be constant with small deviations that go with A<sup>-1/3</sup>

### 10+ years ago....in Hall C



### **Physics Tend to Fill the Open Space**



slide courtesy of O. Hen

#### **2N knockout experiments establish NP dominance**

- Knockout high-initialmomentum proton, look for correlated nucleon partner.
- For 300 < P<sub>miss</sub> < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn)

R. Subedi et al., Science 320, 1476 (2008)



R. Shneor et al., PRL 99, 072501 (2007)

#### **2N knockout experiments establish NP dominance**



R. Subedi et al., Science 320, 1476 (2008)



R. Shneor et al., PRL 99, 072501 (2007)

### **NP dominance**



### **NP dominance: momentum dependent**



### Data mining using CLAS NP dominance continues for heavy nuclei

Slide courtesy O. Hen



#### Assuming scattering off 2N-SRC pairs:

- (e,e'p) is sensitive to *np* and *pp* pairs
- (e,e'pp) is sensitive to *pp* pairs alone
- => (e,e'pp)/(e,e'p) ratio is sensitive to the *np/pp* ratio

### Why not more nucleons in a correlation?

### **Further evidence of multi-nucleon correlations**



- Excellent agreement for x≤2
- Very different approaches to 3N plateau, later onset of scaling for E02-019
- Very similar behavior for heavier targets

### E08-014: Study 3N correlations

- Map Q<sup>2</sup> dependence of 3N plateau
- Verify Isospin Dependence with <sup>40</sup>Ca and <sup>48</sup>Ca

#### **Analysis in final stages**



If independent: 
$$\frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40} \xrightarrow{\sigma_p \approx 3\sigma_n} 0.92$$
  
If dependent: 
$$\frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20 \times 28)/48}{(20 \times 20)/40} \longrightarrow 1.17$$

### E08-014: Study 3N correlations



**Plot courtesy of Z. Ye** 

### Coming soon at 12 (well....11) GeV

### Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with <sup>3</sup>H and <sup>3</sup>He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei



### Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with <sup>3</sup>H and <sup>3</sup>He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei







#### **Jlab E12-06-105**

- short-range nuclear structure
  - Isospin dependence
  - A-dependence
- Super-fast quarks



### **In-Medium Nucleon Structure Functions**

[E11-107: O. Hen, L.B. Weinstein, S. Gilad, S.A. Wood]

- DIS scattering from nucleon in deuterium
- Tag high-momentum struck nucleons by detecting backward "spectator" nucleon in Large-Angle Detector





#### In-Medium Nucleon Form Factors [E11-002: E. Brash, G. M. Huber, R. Ransom, S. Strauch]



 Compare proton knockout from dense and thin nuclei: <sup>4</sup>He(e,e'p)<sup>3</sup>H and

<sup>2</sup>H(e,e'p)n

- Modern, rigorous
   <sup>2</sup>H(e,e'p)n calculations show reaction-dynamics effects and FSI will change the ratio at most 8%
- QMC model predicts 30% deviation from free nucleon at large virtuality

S. Jeschonnek and J.W. Van Orden, Phys. Rev. C 81, 014008 (2010) and Phys. Rev. C 78, 014007 (2008); M.M. Sargsian, Phys. Rev. C82, 014612 (2010)

### **Summary**

- SRCs have been under the microscope for many decades – 6GeV era at Jlab has yielded interesting data
- 12 GeV experiments continue the search
- New results in the next few years!

#### Overlapping nucleons $\rightarrow$ enhancement of $F_2$ structure function



## Small effect, possible contribution to EMC effect?

Noticeable effect at x>1

### "Superfast" quarks

Current data at highest Q<sup>2</sup> (JLab E02-019) already sensitive to partonic behavior at x>1

N. Fomin et al, PRL 105, 212502 (2010)



### Both driven by a similar underlying cause? Separation Energy



Separation energies were calculated from spectral functions, including MF and correlations

S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)