Study of Neutron Structure with Spectator Tagging via $eD \rightarrow e'NX$ in MEIC

Kijun Park ¹

¹Old Dominion University/Jefferson Lab

March 9, 2015

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 1 / 33

Electron Ion Collider

• Importance of low x physics

- Gluon and sea quark (transverse) imaging of the nucleon
- Nucleon Spin (ΔG vs. log Q^2 , transverse momentum)
- Nucleon QCD (gluons in nuclei, quark/gluon energy loss)
- QCD vacuum and Hadron Structure and formation

Electron Ion Collider \rightarrow Spectator Tagging

Figure : A Schematic of Reaction $eD \rightarrow e' p_s X$

No Free Neutron Target

- Neutron Structure (flavor decomposition of quark spin, sea quarks, gluon pol.)
- Spectator Nucleon Tagging (forward detection/unique for collider)
- Polarized Deuterium (a simple wave function/pol. neutron spin/limited FSI/coherence N = 2,...)

K.Park (ODU/JLAB)

Spectator Tagging \rightarrow Extrapolating Neutron Structure

[[]by courtesy of C. Weiss]

• Light-Cone momentum fraction, Transverse momentum of recoil proton:

$$\alpha_R = 2 \frac{E_R + p_R^z}{M_D}, \quad \vec{p}_{RT}$$

Cross-section in the IA

$$\frac{d\sigma}{dx dQ^2 d\alpha_R d^3 p_R / E_R} = f_{Flux} \times S_D(\alpha_R, p_{RT}) \times F_{2n}\left(\frac{x}{2 - \alpha_R}, Q^2\right)$$

- On-shell extrapolation: $t \to M_N^2$ $(t M_N^2 \equiv t' \to 0)$
 - Free neutron structure at pole
 - FSI does not affect to pole value
 - Model-independent method

K.Park (ODU/JLAB)

Spectator Tagging: Coherent Effects at $x \ll 0.1$

- Shadowing effect important in inclusive DIS $x \ll 0.1$
- Diffractive scattering on single nucleon
- Interference between scattered p and n

- Shadowing in Tagged DIS
- Coherent effect is clean (N = 2)
- Systematics is important (unpol./pol.) in *p-n*
- FSI between p and n → distortion of p_T, spin

[by courtesy of C. Weiss]

Far-forward Detection in EIC

- Good acceptance for all ion fragments rigidity different from beam Large magnet apertures (small gradients a fixed maximum peak field)
- Good acceptance for low-p_T recoils rigidity similar to beam
 - Small beam size detection point (downstream focus, efficient cooling)
 - Large dispersion (generated after the IP, D=D'=0 the IP)
- Good momentum and angular resolution
 - Longitudinal $dp/p \approx 4 \cdot 10^{-4}$
 - Angular in θ , for all ϕ : \approx 0.2mrad
 - $p_{RT} \approx 15 {\rm MeV/c}$ resolution for tagged nucleon in 100GeV deuterium beam
 - Long, instrumented drift space (no apertures, magnet, ...)
- Sufficient beam line separation (≈ 1 m)

Basic configuration:

- $E_e = 5$ GeV, $E_D = 100$ GeV, $p_R < 300$ MeV, cross-angle: 50 mrad
- Normal. Emittances: $dp/p = 3 \times 10^{-4}$, $d\theta = 2 \times 10^{-4}$,
- Luminosity= 10^{33} cm⁻²sec⁻¹, Time= 10^{6} (sec), [e.g: HERA config.]
- User inputs: cross-section model
 - nucleon Struc.Func./deuteron Wav.Func./deuteron Residue Spect.Func.

Known facts:

- Initial State Smearing (ISS) is $\ll \pm 1\%$
- Intrinsic MC Statistical Uncertainty is $\leq 1\%$
- Sufficient t' resolution for the extrapolation
- F_{2D} structure function on-shell extrapolation with experimental uncertainty estimation

$$\Delta\sigma_{MC} = \sum N_i \Delta t' \frac{d\sigma}{dx dQ^2 dt'} \Gamma \cdot J/N_0 \ , \ count = L \cdot T \cdot \Delta\sigma_{MC} \ , \ \sigma(\Delta\sigma_{MC}) = \frac{\Delta\sigma_{MC}}{\sqrt{count}} = \sqrt{\frac{\Delta\sigma_{MC}}{L \cdot T}}$$

MC Simulation $\rightarrow F_{2D}(x, Q^2, \alpha_R, t')$

- Intrinsic momentum spread in **Ion beam** smears recoil momentum
- Dominant uncertainty for MEIC
- Effect on t' (angular spread)
- Smearing < t' bin-size</p>

- F_{2D} vs. t' : take out f_{Flux}
- α_R : cut around 1.0 \pm 0.02
- Excellent resolution allows to reach smaller t'
- Feasible on-shell extrapolation
- blue vertical dash line: t'_{min} = 0.00416 GeV²

< 3 > < 3 >

MC Simulation \rightarrow Detector Simulation [GEMC]

Sample Tracks in Detector Simulation

Figure : Examples of 10 physics events from $eD \rightarrow e' p_s X$, red color rays: spectator protons, light-blue rays: scattered electrons. This configuration has no solenoid field.

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 9 / 33

Polarization (\vec{e}, \vec{D}) , $hel = \pm 1$ along each beam

• Asymmetry
$$\left(A_{||} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}\right)$$
 and $A_{1} \left(=A_{||}/D'\right)$, $\delta A = \sqrt{\frac{1 - A^{2}}{N_{+} + N_{-}}}$
• $D' = \frac{1 - \epsilon}{y} \left(2 - y \left[1 + \frac{y \cdot \gamma_{s}}{2}\right]\right)$: Depolarization, or $\left(=\frac{(1 - \epsilon)(2 - y)}{y(1 + \epsilon R)}\right)$
, where $\gamma_{s} = 4x_{D}^{2}M_{D}^{2}/Q^{2}$, $y = Q^{2}/x_{D}/(s_{eD} - M_{D}^{2})$, $R = \sigma_{L}/\sigma_{T}$

Depolarization dependence x_{BJ} , Q^2

• Simple Check with certain variables at $x_{BJ} = 0.06 - 0.08$, $Q^2 = 15 - 20 \text{ GeV}^2$

•
$$D' = \frac{1-\epsilon}{y} \left(2 - y \left[1 + \frac{y \cdot \gamma_s}{2}\right]\right)$$

•
$$\gamma_s = 4x_D^2 M_D^2 / Q^2,$$

 $y = Q^2 / x_D / (s_{eD} - M_D^2)$

• D' in given x_{BJ} , Q^2 bins

Diffractive Effects

- Kinematics I: $x_{BJ} = 0.01 - 0.02,$ $Q^2 = 15 - 20 \text{ GeV}^2$
- Diffractive Effect shows a stronger impact in large t' than low
- $-9\%, t' = 0.08 \text{ GeV}^2$ +1%, $t' = 0.01 \text{ GeV}^2$

- Kinematics II: $x_{BJ} = 0.0009 - 0.0012,$ $Q^2 = 15 - 20 \text{ GeV}^2$
- Diffractive Effect shows a stronger impact in smaller x_{BJ}
- $-19\%, t' = 0.08 \text{ GeV}^2$ and $-1.8\%, t' = 0.01 \text{ GeV}^2$

[Vadim's shadowing corrections]

K.Park (ODU/JLAB)

Systematic uncertainty: momentum smearing effect

 $x_{BJ} = 0.04-0.06$, $Q^2 = 30-40 \text{ GeV}^2$, $S_{eD} = 2002.442 \text{ GeV}^2$

- Exact calculation (Red) and nominal smearing (Black)
- Up to 30% difference at lower p_{RT}
- Fixed Point p_{RT} = 0.45 GeV (vertical dashed line)
- Difference between no-smearing and nominal smearing of Ion beam Trans. emittances

 $x_{BJ} = 0.0499 - 0.0501, Q^2 = 34.99 - 35.01 \text{ GeV}^2$

- The systematic uncertainty from the uncertainty in the beam rms is $\pm 2.5\%$
- Check the relation between t' and p_{RT} in Code (make sure print out same values)

•
$$|\vec{P_R}|^2 = \frac{-t'}{2} \left(1 - \frac{t'}{2M_D^2} \right) + \frac{M_D^2}{4} - M_N^2,$$

where $t' = M_N^2 - t$

•
$$\vec{P_{RT}} = \sqrt{|\vec{P_R}|^2 - pSpec_Rest_z^2} = invts.pPerpS$$

• Relative Error (Rel.Err.)

$$= \frac{\left(\frac{d\sigma}{dxdQ^{2},...,p_{R}^{nom+\delta}}\right) - \left(\frac{d\sigma}{dxdQ^{2},...,p_{R}^{nom}}\right)}{\left(\frac{d\sigma}{dxdQ^{2},...,p_{R}^{nom}}\right)}$$

** Random number seed is randomized each run, the ran.num.seed error ${\ll}1\%$

F_{2D} ·Spec $(RES, (t')^2)$ as a function of t'

- Systematic uncertainty is dominated at lower t'
- On-shell extrapolation is about 0.5% change
- Extrapolation fitting uncertainty gets larger factor of ~2.4

On-shell extrapolation F_{2n} as a function of x_{BJ} , Q^2

• $E_e = 5 \text{ GeV}$, $E_D = 100 \text{ GeV}$, $s_{eD} = 2002.442 \text{ GeV}^2$ • $L = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, $T = 3 \times 10^6 \text{ s}$

Figure : (Left) Kinematic map of F_{2n} (2-axis) in terms of x_{BJ} , Q^2 , (right) F_{2n} vs. Q^2 . Band-(a): x_{BJ} dependence at fixed $Q^2 = 10.0 - 12.58 \text{ GeV}^2$, band-(b): Q^2 dependence at fixed $x_{BJ} = 0.1 - 0.126$

K.Park (ODU/JLAB)

Extrapolation F_{2n} : x_{BJ} -dependence at fixed $\langle Q^2 \rangle = 11.29 \text{GeV}^2$

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 17 / 33

On-shell extrapolation F_{2n} vs. x_{BJ} at fixed $\langle Q^2 \rangle = 11.29 \text{GeV}^2$

Figure : Magenta dots: F_{2n} model input, Blue solid/open circles: extrapolation (two α_R bins) from MC, Red open boxes: the relative difference ($\delta F_{2n}/F_{2n}$) of the result from the input at center of bin

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 18 / 33

Extrapolation F_{2n} : Q^2 -dependence at fixed $\langle x_{BJ} \rangle = 0.1129$

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 19 / 33

On-shell extrapolation F_{2n} vs. Q^2 at fixed $\langle x_{BJ} \rangle = 0.1129 \text{GeV}^2$

Figure : Magenta dots: F_{2n} model input, Blue open circles: extrapolation (averaged) from MC, Red open boxes: the relative difference $(\delta F_{2n}/F_{2n})$ of the result from the input at center of bin

K.Park (ODU/JLAB)

March 9, 2015 20 / 33

Extrapolation A_{\parallel} : x_{BJ} -dependence at fixed $\langle Q^2 \rangle = 11.29 \text{GeV}^2$

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 21 / 33

On-shell extrapolation $A_{||}$ vs. x_{BJ} at fixed $\langle Q^2 \rangle = 11.29 \text{GeV}^2$

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015

22 / 33

On-shell extrapolation $A_{||}$ vs. Q^2 at fixed $\langle x_{BJ} angle = 0.1129$

Figure : Black dots: $A_{||}$ model input, Blue solid/open circles: extrapolation (two α_R bins) from MC, Red open boxes: the absolute difference $(\delta A_{||})$ of the result from the input at center of bin

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 23 / 33

- Established the MC simulation with EIC configuration
- On-shell extrapolation of F_{2n} & $A_{||}$ have been obtained
- Overall 1% level of statistical uncertainty, Dominant uncertainty is the Systematics
- Global systematic uncertainty $\delta\sigma/\sigma$ = 2.5%, $\delta A/A$ = 1.7% Point-to-point systematic uncertainty (Gaussian randomization) ~ 0.5%
- Looking forward to seeing what pseudo-data can guide for the global fits

Thank you for your attention !

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

March 9, 2015 25 / 33

Systematic uncertainty: Collider/Collinear

- pin down with a very narrow kinematic region
- x_{BJ} =0.0499-0.0501, Q^2 =34.9-35.1 GeV², S_{eD} =2002.442 GeV², $|\alpha_R 1| < 0.01$
- $\delta p_x = p_D_x^{Norm} p_D_x^{Smear}$ at Collider and Collinear

March 9, 2015 26 / 33

Comparison of pseudo-data: S.Kuhn vs. C.Weiss

- Beams : $E_e = 5$ GeV, $E_d = 100$ GeV
- Kinematics : $x_{BJ} = 0.02 0.04$, $Q^2 = 15 20 \text{ GeV}^2$

Cross-sections: S.Kuhn vs. C.Weiss

Beams : $E_e = 5$ GeV, $E_D = 100$ GeV Kinematics : $x_{BJ} = 0.02 - 0.04$, $Q^2 = 15 - 20$ GeV²

cross-section comparison as function of t'

- blue : MC data using C. Weiss model
- red : S.Kuhn MC data using C. Weiss model

On-shell extrapolation F_{2n} : models

Figure : On-shell extrapolation of F_{2n} using C.W. (left) and M.S. (right)

- Cross-section model : M. Sargsian (M.S.) Cross-section difference with C. Weiss (C.W.) $\sim 4\%$ On-shell extrapolation difference with C.W. $\sim 2\%$
- M.S. cross-sections are expected lower than one of C.W. model due to D-state (??%)
- extrapolation is larger because ...

K.Park (ODU/JLAB)

High Energy Physics with Spectator Tagging

A Sample Kinematic Region

Figure : Kinematic coverage: Q^2 vs. x_{BJ} at given MEIC configuration

- $E_e = 5 \text{ GeV}, E_D = 100 \text{ GeV}$ $s_{eD} = 2002.442 \text{ GeV}^2$
- $\frac{d\sigma}{dx_{BJ}dQ^2...} \cdot F_{spec}$ as a function t'where is $t' = M_N^2 - t$
- Various x_{BJ} bins from 0.02 to 0.1 at fixed Q² =10-20 GeV²

x _{BJ}	x_{BJ}^{MIN}	x_{BJ}^{MAX}	Δx_{BJ}
1	0.01995	0.02512	0.00517
2	0.02512	0.03162	0.00651
3	0.03162	0.03981	0.00819
4	0.03981	0.05012	0.01031
5	0.05012	0.06309	0.01297
6	0.06309	0.07943	0.01634
7	0.07943	0.10000	0.02057

F_{2D} ·Spec $(RES, (t')^2)$ as a function of t'

Figure : Examples: on-shell extrapolation of F_{2n} for two x_{BJ} bins with α cuts. $\alpha_R - 1 = 0.98 - 1.00$: $(F_{2D}/S)_L$, $\alpha_R - 1 = 1.00 - 1.02$: $(F_{2D}/S)_R$

March 9, 2015 31 / 33

On-shell extrapolation of neutron structure function

Figure : On-shell extrapolation of F_2^n from MC vs. input

• $x_{BJ} = 0.02 - 0.1$, $Q^2 = 10 - 20 \text{ GeV}^2$

- (black-dotted) C.Weiss' cross-section model
- Extrapolation from fit to on-shell point α_R =0.98-1.00(solid), α_R =1.00-1.02(open)
- (Red open boxes) Relative differences
- Statistical uncertaity only

K.Park (ODU/JLAB)

March 9, 2015 32 / 33

Systematic uncertainty: extrapolation

- Relative systematic uncertainty from smearing $\delta\sigma/\sigma = 0.1$
- $\frac{d\sigma}{dx_{BJ}dQ^2...}$ · F_{spec} as a function t', where is $t' = M_N^2 t$
- Converting between t' and p_R is followed by Eq.(35) from C.Weiss' note ("tag.pdf")

• total uncertainty =
$$\sqrt{\delta_{
m stat}^2 + \delta_{
m sys}^2}$$

• No data randomization taken into account in this step However, this effect is $\sim 1\%$

x _{BJ} bin	RMS wid. $(\alpha_{\textit{left}})$	RMS wid. (α_{right})	
1	0.0062	0.0062	
2	0.0064	0.0065	
3	0.0070	0.0068	
4	0.0072	0.0071	
5	0.0074	0.0077	
6	0.0078	0.0079	
7	0.0086	0.0086	
** RMS Width of $(F_{2D} - F_{2D}^{extract})/F_{2D}$			

Figure : $t'_{min} = 0.00416 \text{ GeV}^2$ (~ $p_{RT} = 0 \text{ GeV}$), $t'_{first} = 0.0125 \text{ GeV}^2$ is the first t' bin that we can access experimentally within finite t' resolution & α_R bin