Possible measurement of $\alpha_s(M_{Z_0})$ at EIC with the Bjorken sum rule

A. Deur Jefferson Lab

A. Deur. High-energy nuclear physics with spectator tagging. ODU 03/9-11/2015

A. Deur. High-energy nuclear physics with spectator tagging. ODU 03/9-11/2015

 \Rightarrow Two possibilities to measure $\alpha_{s}(M_{Z0})$:

•Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve it for $\alpha_s(Q^2)$.

•One α_s per Γ_1^{p-n} point.

•Poor systematic accuracy: Such absolute measurements have typically at best a 5% accuracy. Good measurements of α_s should be 2% accurate or better. \Rightarrow Not competitive.

•Measurement of Q²-dependence of $\Gamma_1^{p-n}(Q^2)$.

•Need several Γ_1^{p-n} points. Only one value of $\alpha_{s.}$

•Good accuracy: 1990's CERN/SLAC data yielded: α_s(M_{Z0})=0.120±0.009

Jefferson Lab Thomas Jefferson National Accelerator Facil Exploring the Nature of Matter

A. Deur. High-energy nuclear physics with spectator tagging. ODU 03/9-11/2015

Altarelli, Ball, Forte, Ridolfi, Nucl. Phys. B496 337 (1997)

Measurement at 6 GeV in JLab Hall B

EGI dvcs experiment:

- •Cebaf Large Acceptance Spectr. 18-48° polar coverage, ~full azimuthal coverage.
- •Polarized NH₃ (50%-64% pol.) and ND₃ (~23% pol.) targets. 0.75 cm eff. length, Ig/cm^2 ;
- •Polarized beam (75%-85%);
- •High inclusive statistics (DVCS process meas.): 6 months, 7 nA \Rightarrow 2×10¹⁷ e⁻ on target.

Used "only" EGI dvcs data to avoid uncorrelated systematics between experiments. •Point-to-point correlated systematics (e.g. polarimetries, nuclear corrections) have minimal impact on uncertainties.

- •EGI dvcs data largely dominates world data for statistics.
- •Restricted Q² range: $2.32 < Q^2 < 4.74 \text{ GeV}^2$ rather than $2.< Q^2 < 10 \text{ GeV}^2$.

•"only" not accurate: important missing low-x contribution from models fitting world data.

$\begin{array}{c} Q^2 \\ (\text{GeV}^2) \end{array}$	x-range (p)	x-range (d)	$\Gamma^{p-n}_{1,meas}$	$\Gamma^{p-n}_{1,meas+hi.x}$	σ_{meas}^{syst}	$\sigma_{hi.x}^{syst}$	$\Gamma^{p-n}_{1,tot}$	σ^{syst}	σ^{stat}	$\Gamma_{1,meas+hi.x}^{p-n} / \Gamma_{1,tot}^{p-n}$
2.316	0.263-0.864	0.271-0.798	0.0523	0.0515	0.0177	0.0001	0.1621	0.0188	0.0008	0.317
2.707	0.304-0.825	0.326-0.769	0.0398	0.0388	0.0157	0.0008	0.1636	0.0173	0.0006	0.237
3.223	0.362-0.901	0.385-0.799	0.0322	0.0311	0.0152	0.0000	0.1697	0.0171	0.0005	0.183
3.871	0.438-0.893	0.463 - 0.762	0.0227	0.0206	0.0121	0.0002	0.1721	0.0150	0.0004	0.120
4.739	0.531 - 0.909	0.663-0.738	0.0145	0.0113	0.0081	0.0002	0.1684	0.0126	0.0002	0.067

Measurement at 6 GeV in JLab Hall B

Wednesday, March 11, 2015

Uncertainties

Experimental systematic uncertainty: Separate it between point-to-point correlated and point-to-point uncorrelated parts:

- •Fit data with expected pQCD form.
- •Force χ^2 to 1 by scaling down uncertainties ("unbiased estimate").
- •The scaled downed uncertainties is the point-to-point uncorrelated uncert.
- •Point-to-point correlated \oplus uncorrelated = full syst. uncertainties.

Prescription may introduces bias and has assumptions.

Low-x systematic uncertainties: Separate between Q²-dependent and independent parts. •<u>Assume</u> Q²-dependent part=(low-x contribution) $\frac{1}{\Gamma_1^{p-n}} \frac{d\Gamma_1^{p-n}}{dQ^2}$ Q²-bin size: $\Gamma_1^{p-n} \frac{1}{Q^2}$ Q²-bin size: Q² Add point-to-point correlated uncertainty to Q²-dependent low-x part. Use it

as uncertainties for χ^2 minimization of the fit.

 \Rightarrow large parts of the low-x and exp. syst. uncertainties

are suppressed, but prescription makes assumptions.

Wednesday, March 11, 2015

Uncertainties

Leading uncertainties:

- Point-to-point uncorrelated uncertainties: 4.4%
- •Point-to-point correlated uncertainties:3.3%

Negligible uncertainties:

- •Twist-4 contributions: $\frac{M^2}{9Q^2} [a_2(\alpha_s)+4d_2(\alpha_s)+4f_2(\alpha_s)]$ a₂ (PDF fits) d₂ (meas.) f₂, (Sidorov-Weiss model, with 50% uncertainty). Twist>4 neglected. Uncertainties: <0.1%
- • β -series truncation. (Need it to evolve α_s to M_Z .): 0.1%

Uncertainties not accounted for:

•Bjorken twist-2 series truncation: 2.3%

EIC

Use the 5 GeV on 100 GeV, 5 GeV on 250 GeV and 20 GeV on 250 GeV

Wednesday, March 11, 2015

EIC

Fixed target experiment limitation: Elastic tails Ex: CLASI2 at II GeV:

Colliders: no external bremsstrahlung on incoming e⁻. \Rightarrow Radiative tails are suppressed.

A. Deur. High-energy nuclear physics with spectator tagging. ODU 03/9-11/2015

Measured fraction of the Bjorken sum

Measured fraction of the Bjorken sum

A. Deur. High-energy nuclear physics with spectator tagging. ODU $\,$ 03/9-11/2015 $\,$

Uncertainty budget

Statistics:

•Assume $\Delta \Gamma_1^{p-n}$ =0.5% (Q²=3 GeV²) to $\Delta \Gamma_1^{p-n}$ =0.05% (Q²=15 GeV²), not

counting other world data (JLab@6&12 GeV, SLAC, CERN, DESY)

Statistics assumed twice better than those of CLAS EGIb experiment:

- •Luminosity: 10³⁴/s,
- •PbPt:0.2-0.6
- •Dilution factor: ~80%
- •Duration: Analyzed data gathered in a few months.
- •Q² range for α_s fit: I <Q²<3 GeV²

With a collider:

- •Luminosity: 10³⁴/s,
- •P_{e-}P_N: 0.5-0.6
- Dilution factor: 0%
- Duration: a few months.
- •Q² range for α_s fit: 1.5<Q² <15 GeV²

Uncertainty budget

Systematics:

- •Nuclear corrections (³He, D): Neglected for tagged program. 4% otherwise.
- •Missing low-x part: Assume 100% uncertainty on it.
- •Polarimetries: A₁ data overlap with 12 GeV program \Rightarrow Normalize to 12 GeV polarimetry performance. Assume $\Delta P_{e} \Delta P_{N} = 5\%$.
- •Radiative corrections: Mostly internal RC on e⁻ line. Lower energy data exist. Assume 4%.
- •F₁ to form g_1 from A₁: 2.5% (assumed F_{2:} 2% for proton and neutron. R: 10%.)
- •Dilution/purity:0
- •Miss-PID contamination: Assumed negligible.
- •g2 contribution: Measured with transversally pol. ion beam.
- •Kinematic corrections for Q²: Assumed negligible.
- •Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

Extraction of $\alpha_s(M_{Z_0})$ For CLAS EGI dvcs, 60% of syst. is point-to-point uncorrelated (excluding the low-x error) \Rightarrow add to stat. uncert.

 \Rightarrow data may look like (assume no tagging, i.e. include nuclear correction uncertainty):

Wednesday, March 11, 2015

erson Lab

Extraction of $\alpha_{s}(M_{Z_{0}})$

Wednesday, March 11, 2015

Compared to EGI dvcs and best world data (PDG 2014):

Conclusion:

•Reasonable assumptions for EIC yield a very accurate measurement of acceptable precision. Tagging not necessary as long as we are statistics (really stat+point-to-point uncor.) dominated.

•Assumed statistics similar to a typical CLAS experiment aiming at measuring inclusive spin structure functions.

•Increasing statistics by factor I0 would yield: $\Delta \alpha_s(M_{Z_0})=\pm 0.0021\pm 0.0003$.

•Then, adding tagging would yield: $\Delta \alpha_s(M_{Z_0}) = \pm 0.0016 \pm 0.0003$. A very competitive measurement.

Jefferson Lab