

High Energy Nuclear Physics with Spectator Tagging Old Dominion University March 9, 2015

Tagged Structure Functions in Global PDF Analysis

Wally Melnitchouk

CTEQ-JLab (CJ) collaboration: <u>http://www.jlab.org/CJ</u> (with A. Accardi, E. Christy, C. Keppel, P. Monaghan, J. Owens, N. Sato)

Parton distributions in nucleons

 $\blacksquare Inclusive particle production AB \rightarrow CX$

$$\sigma_{AB\to CX}(p_A, p_B) = \sum_{a,b} \int dx_a \, dx_b \, f_{a/A}(x_a, \mu) \, f_{b/B}(x_b, \mu)$$
$$\times \sum_n \alpha_s^n(\mu) \, \hat{\sigma}_{ab\to CX}^{(n)}(x_a p_A, x_b p_B, Q/\mu)$$

 \rightarrow universal functions $f_{a/A}$ characterize internal structure of bound state A

Parton distributions in nucleons
 PDFs extracted in global QCD analyses of data from deep-inelastic *l-h* scattering; lepton-pair, weak boson & jet production in *h-h* scattering, ...

					χ^2	
	Experiment	Ref.	# points	CJ12min	CJ12mid	CJ12max
DIS F ₂	BCDMS (p)	[13]	351	434	436	437
	BCDMS (d)	[13]	254	294	297	302
	NMC (p)	[14]	275	434	432	430
	NMC (d/p)	[15]	189	179	177	182
	SLAC (p)	[16]	565	456	455	456
	SLAC (d)	[16]	582	394	388	396
	JLab (p)	[17]	136	170	169	170
	JLab (d)	[17]	136	124	125	126
DIS σ	HERA (NC e^-)	[18]	145	117	117	118
	HERA (NC ϵ^+)	[18]	384	595	596	596
	HERA (CC $\epsilon^-)$	[18]	34	19	19	19
	HERA (CC ϵ^+)	18	34	32	32	32
Drell-Yan	E866 (p)	[19]	184	220	221	221
	E866 (d)	[19]	191	297	307	306
W asymmetry	CDF 1998 (ℓ)	20	11	14	16	18
	CDF 2005 (ℓ)	[21]	11	11	11	10
	DØ 2008 (l)	22	10	4	4	4
	DØ 2008 (e)	23	12	40	36	34
	CDF 2009 (W)	[24]	13	20	25	41
Z rapidity	CDF(Z)	25	28	29	27	27
	DØ(Z)	[26]	28	16	16	16
jet	CDF run 1	27	33	52	52	52
	CDF run 2	[28]	72	14	14	14
	DØ run 1	[29]	90	21	20	19
	DØ run 2	[30]	90	19	19	20
γ+jet	DØ 1	[31]	16	6	6	6
	DØ 2	[31]	16	13	13	12
	DØ 3	[31]	12	17	17	17
	DØ 4	[31]	12	17	16	17
TOTAL 3958			4059	4055	4096	
TOTAL + norm				4075	4074	4117

~ 4,000 spin-averaged data points over large range of x and Q^2

(more if include A > 2 nuclear data)

Parton distributions in nucleons

- PDFs extracted in global QCD analyses of data from deep-inelastic *l-h* scattering; lepton-pair, weak boson & jet production in *h-h* scattering, ...
- In modern fits, PDFs typically parametrized as $xf(x,\mu) = Nx^{\alpha}(1-x)^{\beta} P(x)$ with polynomial e.g. $P(x) = 1 + \epsilon \sqrt{x} + \eta x$
- Needed to understand basic structure of QCD bound states and for backgrounds in searches for physics beyond the Standard Model at high-energy colliders
 Q² evolution feeds low *x*, high Q² from high *x*, low Q²

Parton distributions in nucleons

Several groups dedicated to global PDF analysis

- CTEQ (Coordinate Theoretical-Experimental Project on QCD)
 - -CT (CTEQ-Tung et al.) LHC focus
 - CJ (CTEQ-JLab) includes high x, low Q^2
 - nCTEQ nuclear PDFs
- MSTW (Martin-Stirling-Thorne-Watt) LHC focus, strong data cuts
- ABM (Alekhin-Bluemlein-Moch) LHC focus, some lower Q^2
- HERAPDF only H1 & ZEUS data
- JR (Jimenez-Delgado-Reya)

dynamically generated from low Q^2

- NNPDF "neural networks", strong data cuts
- most use NLO, some use NNLO (partially known)

Parton distributions in nucleons Example of recent PDFs, from CJ12 analysis

Owens, Accardi, WM PRD 87, 094012 (2013)

High-x region requires use of data at lower $W \& Q^2$

→ factor 2 increase in # of DIS data points when relax strong cut (excludes most SLAC, all JLab data) → weak cut

High-x region requires use of data at lower $W \& Q^2$

 significant error reduction when cuts extended to low-W region

- Low- Q^2 data requires higher twist & target mass corrections
 - → higher twists usually parametrized phenomenologically

 $F_2(x, Q^2) = F_2^{\text{LT}}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$ C(x) polynomial

- *u*-quark PDF well constrained by proton data; *d*-quark PDF requires neutron data
 - → deuterium as "effective neutron" target, but need to correct for nuclear effects

Effect of nuclear corrections & statistics

→ significant uncertainties in *u* for x > 0.8, *d* for x > 0.6

Effect of nuclear corrections & statistics

- *increase* in PDF error from more realistic treatment of nuclear corrections
- \rightarrow reduction of error from larger database

Effect of nuclear corrections & statistics

• with same functional form for u & d, most PDF fits assume either 0 or ∞ for $x \to 1$ limit

Effect of nuclear corrections & statistics

- flexible parametrization for $x \to 1$ behavior $d \to d + a x^b u$
 - allows finite, nonzero x = 1 limit $d/u \rightarrow 0.22$ $\pm 0.20 (PDF)$ $\pm 0.10 (nucl)$

CJ12min: WJC-1 + mild off-shell (0.3% nucleon swelling)
 CJ12mid: AV18 + medium off-shell (1.2% swelling)
 CJ12max: CD-Bonn + large off-shell (2.1% swelling)

Owens, Accardi, WM PRD **87**, 094012 (2013) Large-x PDF uncertainties have implications for colliders

$$\rightarrow$$
 rapidity $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$

e.g. W^{\pm} asymmetry

Brady, Accardi, WM, Owens JHEP **1206**, 019 (2012)

I Large-x PDF uncertainties have implications for colliders

$$\rightarrow$$
 rapidity $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$

- New CJ15 analysis includes several new theoretical developments (better treatment of heavy quarks; off-shell corrections to valence and sea distributions; improved $\overline{d} / \overline{u}$ parametrization) and new data sets (D0 W asymmetries; BONuS F_2^n / F_2^d)
- Explore whether new data can constrain PDFs, and nuclear corrections, at large x
 - \rightarrow vary off-shell "rescaling" parameter λ within "spectator diquark" model

$$= \frac{\partial \log \Lambda^2}{\partial p^2}$$

Kulagin, Petti, NPA **765**, 126 (2006) Owens et al., PRD **87**, 094012 (2013)

 \rightarrow minimize χ^2 as a function of λ

Minimum total χ^2 for different deuteron wave function and off-shell models

models 2–15: $\lambda = \{-0.9\%, -0.8\%, ..., +0.4\%\}$

Nuclear EMC effect in the deuteron for different nuclear models

- \rightarrow larger off-shell effects for larger λ , and for KP model
- \rightarrow enhancement at $x \sim 0.2$ in KP model

SLAC deuteron data favor smaller off-shell corrections, disfavor (hardest) WJC-1 wave function

D0 W-asymmetry data disfavor large nucleon off-shell corrections at high x

→ larger asymmetry at high rapidity corresponds to <u>smaller *d*-quark</u> PDF (smaller EMC effect) at high *x*

D0 W-asymmetry data disfavor large nucleon off-shell corrections at high x

BONUS F_2^n/F_2^d data favor larger nucleon off-shell corrections (and harder deuteron wave function)

 $\rightarrow \lesssim 5\%$ improvement in χ^2 with KP model

Is χ^2 improvement from specific kinematics?

→ calculated F_2^n/F_2^d larger at high x with KP model

Is χ^2 improvement from specific kinematics?

→ calculated F_2^n/F_2^d larger at high x with KP model

CD-Bonn & $\lambda = -0.7\%$

 \rightarrow slightly larger neutron F_2 (hence d-quark) with BONuS

Outlook

"BONuS6" data demonstrated how spectator tagging can be used to constrain PDFs; impact not dramatic...

- "BONuS12" promises to extend range to $x \sim 0.85$ with reduced experimental & minimal nuclear uncertainties

Outlook

Parallel effort in global analysis of spin-dependent PDFs — Jefferson Lab Angular Momentum (JAM) Collaboration

(Nobuo Sato, A.Accardi, J. Ethier)

- → currently assessing impact of new JLab6 data (eg1b, eg1-DVCS, d2n, ...)
- \rightarrow full JAM15 analysis will include SIDIS & RHIC-spin data

Outlook

Upcoming 12 GeV experiments will measure inclusive and semi-inclusive polarization asymmetries up to $x \sim 0.8$

→ will significantly reduce PDF uncertainties at large x (~ 70% for x ~ 0.6-0.8)

The End