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Nuclear shadowing: experiment  
Nuclear shadowing is a high-energy (small x) coherent nuclear effect that σA <A σN.
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1 Introduction

1.1 Nuclear shadowing in lepton–nucleus DIS

Nuclear shadowing is a high-energy nuclear effect consisting in the observation that the scattering cross
section of an energetic probe (hadron, real or virtual photon) on a nucleus is smaller than the sum of the
scattering cross sections of the probe on individual nucleons of the nucleus target [1, 2, 3].

An example of nuclear modifications of the total lepton–nucleus deep inelastic scattering (DIS) cross
section in the fixed-target kinematics is shown in Fig. 1: the suppression of σA/σD for x < 0.1 is nuclear
shadowing. (The ratio is normalized so that σA/σD = 1 in the absence of all nuclear effects.)
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Figure 1: The pattern of nuclear modifications of the σA/σD cross section ratio as a function of Bjorken
x for 56Fe and 64Cu.

The nuclear shadowing suppression factor of R(x) = σA/σD increases with an decrease of Bjorken x
(energy) and with an increase of A. As to the Q2 dependence, at first R decreases rapidly as one increases
Q2 from the Q2 = 0 photoproduction limit to Q2 ∼ few GeV2, but then R decreases logarithmically with
an increase of Q2 due to QCD (DGLAP) evolution.

For heavy nuclei, the nuclear shadowing suppression can be as large as ≈ 20% at x = 5 × 10−3 and
Q2 of the order of few GeV2. For deuterium, the shadowing suppression of F2D(x,Q2)/F2p(x,Q2) is a
1− 2% effect for x > 5× 10−3 and Q2 > 1.7 GeV2, see [3] for references.

1.2 Nuclear shadowing in nuclear parton distributions

By virtue of the QCD collinear factorization theorem, nuclear modifications of R(x) and of other nuclear
observables can be translated into modifications of nuclear parton distributions (PDFs) [4, 5, 6, 7, 8]
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Fig. 3.5. The structure function ratio F!
!
/F"

!
. Data from E665 [92] and NMC [93].

the order of a few percent. For carbon and calcium it amounts to typically 3% [72]. The most
precise measurement of this enhancement has been obtained for F"#

!
/F#

!
shown in Fig. 3.4.

Within the accuracy of the data no signi"cant Q!-dependence of this e!ect has been found in this
region.

! Region of `EMC ewecta: The region of intermediate 0.2(x(0.8 has been explored extensively
at CERN and SLAC. In the range 2 GeV!(Q!(15GeV!, data were taken by the E139
collaboration [73] for a large sample of nuclear targets between deuterium and gold. The
measured structure function ratios decrease with rising x and have a minimum at x+0.6. The
magnitude of this depletion grows approximately logarithmically with the nuclear mass number.
The observed e!ect agrees well with data for the ratios of iron and nitrogen to deuterium
structure functions from BCDMS taken at large Q! values, 14GeV!(Q!(200 GeV! [74,94].
These data imply that a strong Q!-dependence of the structure function ratios is excluded.

! Fermi motion region: At x'0.8 the structure function ratios rise above unity [73], but experi-
mental information is rather scarce. The free nucleon structure function F$

!
is known to drop as

(1!x)% when approaching its kinematic limit at x"1. Clearly, even minor nuclear e!ects
appear arti"cially enhanced in this kinematic range when presented in the form of the ratio
F&

!
/F$

!
.

! The region x'1: Data at large Bjorken x and large momentum transfer, 0.7(x(1.3 and
50GeV!( Q!(200GeV!, have been taken for carbon and iron by the BCDMS [95] and
CCFR [96] collaborations, respectively. The results disagree with model calculations at x&1
which account for Fermi motion e!ects only. For Q!(10GeV! data have been taken at SLAC
for various nuclei [97}101]. Both quasielastic scattering from nucleons as well as inelastic
scattering turns out to be important here.

3.4. Moments of nuclear structure functions
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For heavy nuclei, the shadowing  
suppression is as large as 20%. For deuterium, shadowing is 1-2% effect.

In extraction of nuclear parton distribution functions (PDFs), some groups ignore all 
nuclear effects in deuterium (EPS09, DSSZ), some include them (HKN07, nCTEQ). 

Even 1-2% shadowing matters for the extraction of F2p-F2n from deuterium data 
because F2p-F2n is small at small x → implications for global fits for proton PDFs. 
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Nuclear shadowing: theory  
• At small x, a high-energy probe interacts coherently (simultaneously) with all 
nucleons of the nucleus target. 

• Nuclear shadowing is a result of destructive interference among the amplitudes for 
the interaction with 1, 2, 3, etc. nucleons of the target. 

• Total pion-deuteron cross section: 

The shadowing term can be expressed in 
terms of pion-proton diffractive cross section

characterized by the factor of Rj(x) = fj/A(x)/[Afj/N (x)], where fj/A(x) is the parton (quark or gluon)
distribution of flavor j in a nucleus and fj/N is the parton distribution of a free nucleon.

Note that in studies of nuclear shadowing in inclusive scattering, one always assumes that in the
impulse approximation, F2A(x) = ZF2p(x) +NF2n(x) for x < 0.1, i.e., the effects of nuclear binding and
off-shellness can be safely neglected. This is based on the estimate of [1] that in the absence of non-
nucleonic degrees of freedom (e.g., extra nuclear pions) and nuclear modifications of the bound nucleon:

R(x) = 1 +
⟨T ⟩n(n+ 1)x

3mN (1− x)2

(

x−
2

n+ 1

)

, (1)

where n ≈ 3 and ⟨T ⟩ is the average bound nucleon kinetic energy. Taking kN = 200 MeV/c, we obtain
⟨T ⟩ = k2N/(2mN ) = 0.02 GeV and, hence, R(x) = 1 + 0.09x(x − 0.5). Thus, for x < 0.1, the effect
of nuclear binding binding is less than 1%. Therefore, nuclear shadowing and the effects modifying
the impulse approximation live in different regions of x and, hence, can be considered separately and
additively.

When performing global fitting and extraction of nuclear PDFs from the data, the EPS09 and DSSZ
analyses ignored nuclear effects in deuterium, while the HKN07 and nCTEQ took them into account. In
general, since F2p(x) and F2n(x) differ by a few percent at small x, even 1 − 2% nuclear modifications
of F2D(x) matter for the extraction of F2p(x) − F2n(x) from the data and for global fits of the nucleon
PDFs. This makes our project relevant for modern global analyses of proton PDFs in the LHC era, see
e.g., [9].

1.3 Models of nuclear shadowing

Theoretically, nuclear shadowing is well understood. In the target rest frame, the virtual photon–nucleus
interaction is a three-step process: (i) long before the target, the virtual photon fluctuates into a super-
position of states, (ii) these fluctuations interact strongly with the target, which leads to their absorp-
tion/attenuation causing nuclear shadowing, (iii) long after the target, the fluctuations combine together
to form the observed final state (virtual photon, vector meson, real photon).

Nuclear shadowing arises due to destructive quantum-mechanical interference among the scattering
amplitudes corresponding to the interaction of a given fluctuation with one, two, three, etc. nucleons of the
nuclear target. The resulting nuclear cross section is given by a series (the so-called Glauber series [10]),
where each term corresponds to the interaction with a given number of nucleons. For instance, for the
pion–deuteron scattering, there two graphs shown in Fig. 2: the left one is the impulse approximation
corresponding to the interaction with a single nucleon and the right one is the shadowing correction
arising from the simultaneous interaction of the pion with both nucleons.
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Figure 2: Graphs for pion-deuteron scattering.

The nuclear shadowing term can be expressed in terms of the elementary pion–nucleon diffractive
cross section [11], which in graphical form is shown in Fig. 3. In the figure, the zigzag lines denote the
diffractive interaction (Pomeron exchange) of the pion with the nucleons of the nuclear target.

The resulting total pion–deuteron cross section reads:

σπD
tot = 2σπN

tot − 2
1− η2

1 + η2

∫

dk⃗2ρD
(

4k⃗2
) dσπN

diff (k⃗)

dk⃗2
, (2)

2

IPIP

Figure 3: Graphical representation of the imaginary part of the nuclear shadowing scattering amplitude
in terms of Pomeron exchanges in the t-channel.

where η is the ratio of the real to imaginary parts of the pion–nucleon diffractive scattering amplitude;
ρD is the deuteron spherical form factor.

Note that the underlying space-time picture of the strong interaction is based on the general property
that the lifetime of the fluctuations, which is also called the coherence length lc, increases with an increase
of the beam momentum, lc ∝ p, and exceeds the target diameter for p of the order of a few GeV/c.

There are many ways to model hadronic fluctuations of the virtual photon, which leads to different
models for nuclear shadowing. For the kinematics of EIC, the following two approaches are relevant: the
color dipole formalism and the model of leading twist shadowing.

In the dipole formalism, the virtual photon fluctuates into quark-antiquark, quark-antiquark-gluon,
etc. dipoles of a given transverse size dt. The advantages of this approach are the following: (i) it is
intuitive, (ii) once the dipole model parameters are fixed for the free proton case, one obtains the dipole–
nucleus cross section “for free” using the eikonal approximation, (iii) it can be applied down to rather
low values of Q2, (iv) it can be used to test saturation models. The main disadvantages of the approach
is that (i) its degree of freedom is the dipole cross section, which makes it difficult to make connection
with the language of parton distributions and use the powerful machinery of perturbative QCD in form
of factorization theorems and (ii) the dipoles interact with target nucleons successively, which in the
situation when small-dt dipoles dominate, lead to small (higher-twist) nuclear shadowing.

The second approach to nuclear shadowing is the model of leading twist shadowing [12]. The advan-
tages of this approach is that (i) it uses the language of parton distributions and the QCD factorization
theorems, which allows one to predict separate quark and gluon nuclear PDFs at small x, (ii) it is based
on the theorem, which unambiguously gives the shadowing correction in terms of diffraction in ep DIS.
The main disadvantage of the approach, which is associated with modeling the interaction with N ≥ 3
nucleons, disappears in the case of the deuteron target.

If one uses the version of the dipole model which correctly describes diffraction in ep DIS, the dipole
and leading twist approaches should give identical results for shadowing in eD scattering.

2 Leading twist nuclear shadowing in unpolarized inclusive and tagged

eD DIS

2.1 Inclusive scattering

The imaginary part of the forward γ∗D scattering amplitude is proportional to the deuteron inclusive
structure function F2D(x,Q2). It is shown in Fig. 4: graph a is the impulse approximation contribution
and graph b is the nuclear shadowing correction.

Taking the imaginary part of graph b in Fig. 4 one notices that several distinguishable final states
contribute, see 5. However, the application of the Abramovski–Gribov–Kancheli (AGK) cutting rules [13]
allows one to express the sum of the graphs in Fig. 4 in terms of the diffractive intermediate state (the
upper left panel). This defines the weight in front of the shadowing term, see below. The weight will be
larger in the tagged case.
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Nuclear shadowing in unpolarized inclusive eD DIS  

Leading-twist proton diffractive 
structure function, measured at 
HERA 
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Figure 4: The forward γ∗D scattering amplitude: (a) the impulse approximation, (b) the nuclear shad-
owing correction.

The expression for the deuteron structure function F2D(x,Q2) in the shadowing region reads [14, 15]:

F2D(x,Q
2) = F2p(x,Q

2) + F2n(x,Q
2)

−2
1− η2

1 + η2
Bdiff

∫ 0.1

x
dxIP dk2t F

D(3)
2

(

β, Q2, xIP
)

e−Bdiff k2
t ρD

(

4k2t + 4(xIPmN )2
)

, (3)

where FD(3) is the proton diffractive structure function, which depends on the light-cone fractions xIP
(the fraction of the nucleon momentum carried by the Pomeron) and β = x/xIP ; Bdiff = 6 GeV−2 is the
slope of the t dependence of the diffractive ep DIS cross section; kt is the transverse component of the
momentum transfer to the nucleon so that |t| = k2t + (xIPmN )2; η ≈ 0.17 is the ratio of the real to the
imaginary parts of the diffractive scattering amplitude. The integration over xIP = (M2

X+Q2)/(W 2+Q2)
corresponds to the summation over intermediate diffractive states. The lower limit on xIP is the kinematic
limit; the upper limit on xIP is essentially defined by the absence of diffraction for xIP > 0.1. Note also
that the region of large xIP in the integral in Eq. (3) is suppressed by the deuteron form factor. Therefore,
by construction, the leading twist shadowing goes to zero in the x → 0.1 limit.

The deuteron form factor ρD of the double argument can be written as an overlap between the initial
and final state deuteron wave functions:

ρD
(

4k2t + 4(xIPmN )2
)

=

∫

d3p⃗

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (4)

where u and w are the S-wave and D-wave components of the deuteron wave function, respectively;
k⃗ = k⃗t + (xIPmN )ez.

The result of the calculation of leading twist nuclear shadowing for the deuterium structure function
F2D(x,Q2) using Eq. (3) is presented in the left panel of Fig. 6. One can see that the nuclear shadowing
effect is a 1− 2% effect.

In the right panel of the figure, we compare the absolute value of the shadowing correction |δF2D(x)| =
|F2D(x)− F2p(x)− F2n(x)| to the F2p(x)− F2n(x) difference. Since F2p(x)− F2n(x) is small at small x,
even small δF2D(x) affects the extraction of F2p(x)− F2n(x) from the deuteron data. Indeed, writing

F2D(x) = F2p(x) + F2n(x)− δF2D(x) ≡ 2F2p(x)−∆− δF2D(x) ,

F2D(x) = F2p(x) + F 0
2n(x) = 2F2p(x)−∆0 , (5)

where ∆ = F2p(x) − F2n(x) and ∆0 = F2p(x) − F 0
2n(x). Therefore, ∆ − ∆0 = δF2D(x) and, hence, the

shadowing correction to ∆ is two times as large as that for F2D(x)/(F2p(x) + F2n(x)).
The case of DIS on deuterium presents a very important testing ground for the leading twist theory of

nuclear shadowing since the shadowing correction can be calculated in a model-independent way, without
the necessity to model multiple scatterings. Conversely, precise measurements of the deuterium structure

4

NN

X

D D D D

b)

γ∗

N

γ∗

a)

γ∗
γ∗

N

Figure 4: The forward γ∗D scattering amplitude: (a) the impulse approximation, (b) the nuclear shad-
owing correction.

The expression for the deuteron structure function F2D(x,Q2) in the shadowing region reads [14, 15]:

F2D(x,Q
2) = F2p(x,Q

2) + F2n(x,Q
2)

−2
1− η2

1 + η2
Bdiff

∫ 0.1

x
dxIP dk2t F

D(3)
2

(

β, Q2, xIP
)

e−Bdiff k2
t ρD

(

4k2t + 4(xIPmN )2
)

, (3)

where FD(3) is the proton diffractive structure function, which depends on the light-cone fractions xIP
(the fraction of the nucleon momentum carried by the Pomeron) and β = x/xIP ; Bdiff = 6 GeV−2 is the
slope of the t dependence of the diffractive ep DIS cross section; kt is the transverse component of the
momentum transfer to the nucleon so that |t| = k2t + (xIPmN )2; η ≈ 0.17 is the ratio of the real to the
imaginary parts of the diffractive scattering amplitude. The integration over xIP = (M2

X+Q2)/(W 2+Q2)
corresponds to the summation over intermediate diffractive states. The lower limit on xIP is the kinematic
limit; the upper limit on xIP is essentially defined by the absence of diffraction for xIP > 0.1. Note also
that the region of large xIP in the integral in Eq. (3) is suppressed by the deuteron form factor. Therefore,
by construction, the leading twist shadowing goes to zero in the x → 0.1 limit.

The deuteron form factor ρD of the double argument can be written as an overlap between the initial
and final state deuteron wave functions:

ρD
(

4k2t + 4(xIPmN )2
)

=

∫

d3p⃗

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (4)

where u and w are the S-wave and D-wave components of the deuteron wave function, respectively;
k⃗ = k⃗t + (xIPmN )ez.

The result of the calculation of leading twist nuclear shadowing for the deuterium structure function
F2D(x,Q2) using Eq. (3) is presented in the left panel of Fig. 6. One can see that the nuclear shadowing
effect is a 1− 2% effect.

In the right panel of the figure, we compare the absolute value of the shadowing correction |δF2D(x)| =
|F2D(x)− F2p(x)− F2n(x)| to the F2p(x)− F2n(x) difference. Since F2p(x)− F2n(x) is small at small x,
even small δF2D(x) affects the extraction of F2p(x)− F2n(x) from the deuteron data. Indeed, writing

F2D(x) = F2p(x) + F2n(x)− δF2D(x) ≡ 2F2p(x)−∆− δF2D(x) ,

F2D(x) = F2p(x) + F 0
2n(x) = 2F2p(x)−∆0 , (5)

where ∆ = F2p(x) − F2n(x) and ∆0 = F2p(x) − F 0
2n(x). Therefore, ∆ − ∆0 = δF2D(x) and, hence, the

shadowing correction to ∆ is two times as large as that for F2D(x)/(F2p(x) + F2n(x)).
The case of DIS on deuterium presents a very important testing ground for the leading twist theory of

nuclear shadowing since the shadowing correction can be calculated in a model-independent way, without
the necessity to model multiple scatterings. Conversely, precise measurements of the deuterium structure

4

D

p

a)

n

b)

n
p

c)

γ∗

p

d)

γ∗

n

γ∗

p

γ∗

n

γ∗

γ∗

D D D

γ∗

D

D D

γ∗

D

Figure 5: Unitarity cuts of the imaginary part of the double scattering contribution to the forward γ∗D
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Figure 6: Leading twist nuclear shadowing for the deuterium structure function F2D(x,Q2).

function F2D(x,Q2) at low x and Q2 of the order of a few GeV2 will constrain the nucleon diffractive

structure function FD(4)
2 .

To do: Due to the deuteron D-wave, the shadowing correction depends on the deuteron polariza-
tion. In addition to the fully unpolarized case considered above, we can consider different deuteron
polarizations.

2.2 Tagged scattering

By tagging the final proton in DIS on deuterium, one measures the dσγ∗D→pX/d3p cross section, which can
be expressed in terms of the tagged deuteron structure function F2D(x,Q2, p⃗), where p⃗ is the momentum
of the final proton. In the graphical form, F2D(x,Q2, p⃗) is shown in Fig. 7: graph a gives the impulse
approximation; graphs b and c is the nuclear shadowing correction.

The expression for F2D(x,Q2, p⃗) corresponding to the sum of graphs a, b, and c in Fig. 7 reads [14, 15]

5

Impulse approx. Shadowing correction Imaginary part of shadowing is given by 
diffractive cut due to AGK cutting rules

deuteron FF from  
wave functionη=Re/Im ≈ 0.17

4

• Forward Compton scattering amplitude:

• Calculation using Gribov-Glauber theory or direct evaluation of Feynman graphs in 
the virtual nucleon approximation (VNA):

Abramowski, Gribov, Kancheli (1973)

Frankfurt, VG, Strikman (2012)

Bdiff ≈ 6 GeV-2 ± 15% (HERA) 



Nuclear shadowing in unpolarized inclusive eD DIS (2)

1-2% leading-twist shadowing shadowing compatible to F2p-F2n

D

p

a)

n

b)

n
p

c)

γ∗

p

d)

γ∗

n

γ∗

p

γ∗

n

γ∗

γ∗

D D D

γ∗

D

D D

γ∗

D

Figure 5: Unitarity cuts of the imaginary part of the double scattering contribution to the forward γ∗D
scattering amplitude: (a) diffractive cut, (b) and (c) single multiplicity cuts, (d) double multiplicity cut.

 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01
 1.02

10-4 10-3 10-2 10-1

F 2
D

/(F
2 2

p+
F 2

n)

x

Q2=4 GeV2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

10-4 10-3 10-2 10-1

x

|δF2D|
F2p-F2n

Figure 6: Leading twist nuclear shadowing for the deuterium structure function F2D(x,Q2).

function F2D(x,Q2) at low x and Q2 of the order of a few GeV2 will constrain the nucleon diffractive

structure function FD(4)
2 .

To do: Due to the deuteron D-wave, the shadowing correction depends on the deuteron polariza-
tion. In addition to the fully unpolarized case considered above, we can consider different deuteron
polarizations.

2.2 Tagged scattering

By tagging the final proton in DIS on deuterium, one measures the dσγ∗D→pX/d3p cross section, which can
be expressed in terms of the tagged deuteron structure function F2D(x,Q2, p⃗), where p⃗ is the momentum
of the final proton. In the graphical form, F2D(x,Q2, p⃗) is shown in Fig. 7: graph a gives the impulse
approximation; graphs b and c is the nuclear shadowing correction.

The expression for F2D(x,Q2, p⃗) corresponding to the sum of graphs a, b, and c in Fig. 7 reads [14, 15]

5

• Even 1-2% shadowing is important for the extraction of Δ=F2p-F2n:

NN

X

D D D D

b)

γ∗

N

γ∗

a)

γ∗
γ∗

N

Figure 4: The forward γ∗D scattering amplitude: (a) the impulse approximation, (b) the nuclear shad-
owing correction.

The expression for the deuteron structure function F2D(x,Q2) in the shadowing region reads [14, 15]:

F2D(x,Q
2) = F2p(x,Q

2) + F2n(x,Q
2)

−2
1− η2

1 + η2
Bdiff

∫ 0.1

x
dxIP dk2t F

D(3)
2

(

β, Q2, xIP
)

e−Bdiff k2
t ρD

(

4k2t + 4(xIPmN )2
)

, (3)

where FD(3) is the proton diffractive structure function, which depends on the light-cone fractions xIP
(the fraction of the nucleon momentum carried by the Pomeron) and β = x/xIP ; Bdiff = 6 GeV−2 is the
slope of the t dependence of the diffractive ep DIS cross section; kt is the transverse component of the
momentum transfer to the nucleon so that |t| = k2t + (xIPmN )2; η ≈ 0.17 is the ratio of the real to the
imaginary parts of the diffractive scattering amplitude. The integration over xIP = (M2

X+Q2)/(W 2+Q2)
corresponds to the summation over intermediate diffractive states. The lower limit on xIP is the kinematic
limit; the upper limit on xIP is essentially defined by the absence of diffraction for xIP > 0.1. Note also
that the region of large xIP in the integral in Eq. (3) is suppressed by the deuteron form factor. Therefore,
by construction, the leading twist shadowing goes to zero in the x → 0.1 limit.

The deuteron form factor ρD of the double argument can be written as an overlap between the initial
and final state deuteron wave functions:

ρD
(

4k2t + 4(xIPmN )2
)

=

∫

d3p⃗

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (4)

where u and w are the S-wave and D-wave components of the deuteron wave function, respectively;
k⃗ = k⃗t + (xIPmN )ez.

The result of the calculation of leading twist nuclear shadowing for the deuterium structure function
F2D(x,Q2) using Eq. (3) is presented in the left panel of Fig. 6. One can see that the nuclear shadowing
effect is a 1− 2% effect.

In the right panel of the figure, we compare the absolute value of the shadowing correction |δF2D(x)| =
|F2D(x)− F2p(x)− F2n(x)| to the F2p(x)− F2n(x) difference. Since F2p(x)− F2n(x) is small at small x,
even small δF2D(x) affects the extraction of F2p(x)− F2n(x) from the deuteron data. Indeed, writing

F2D(x) = F2p(x) + F2n(x)− δF2D(x) ≡ 2F2p(x)−∆− δF2D(x) ,

F2D(x) = F2p(x) + F 0
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where ∆ = F2p(x) − F2n(x) and ∆0 = F2p(x) − F 0
2n(x). Therefore, ∆ − ∆0 = δF2D(x) and, hence, the

shadowing correction to ∆ is two times as large as that for F2D(x)/(F2p(x) + F2n(x)).
The case of DIS on deuterium presents a very important testing ground for the leading twist theory of

nuclear shadowing since the shadowing correction can be calculated in a model-independent way, without
the necessity to model multiple scatterings. Conversely, precise measurements of the deuterium structure
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The expression for the deuteron structure function F2D(x,Q2) in the shadowing region reads [14, 15]:
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where u and w are the S-wave and D-wave components of the deuteron wave function, respectively;
k⃗ = k⃗t + (xIPmN )ez.

The result of the calculation of leading twist nuclear shadowing for the deuterium structure function
F2D(x,Q2) using Eq. (3) is presented in the left panel of Fig. 6. One can see that the nuclear shadowing
effect is a 1− 2% effect.

In the right panel of the figure, we compare the absolute value of the shadowing correction |δF2D(x)| =
|F2D(x)− F2p(x)− F2n(x)| to the F2p(x)− F2n(x) difference. Since F2p(x)− F2n(x) is small at small x,
even small δF2D(x) affects the extraction of F2p(x)− F2n(x) from the deuteron data. Indeed, writing

F2D(x) = F2p(x) + F2n(x)− δF2D(x) ≡ 2F2p(x)−∆− δF2D(x) ,

F2D(x) = F2p(x) + F 0
2n(x) = 2F2p(x)−∆0 , (5)

where ∆ = F2p(x) − F2n(x) and ∆0 = F2p(x) − F 0
2n(x). Therefore, ∆ − ∆0 = δF2D(x) and, hence, the

shadowing correction to ∆ is two times as large as that for F2D(x)/(F2p(x) + F2n(x)).
The case of DIS on deuterium presents a very important testing ground for the leading twist theory of

nuclear shadowing since the shadowing correction can be calculated in a model-independent way, without
the necessity to model multiple scatterings. Conversely, precise measurements of the deuterium structure
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Nuclear shadowing in unpolarized tagged eD DIS  

Nuclear shadowing is larger in the tagged DIS than in the inclusive case due to: 

 - AGK enhancement 
 - IA drops with spectator momentum faster than the shadowing term
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Figure 7: Graphs depicting the contributions to the deuteron tagged structure function F2D(x,Q2, p⃗):
(a) the impulse contribution, (b)+(c) the nuclear shadowing correction.

[compare to Eq. (3)]:

F2D(x,Q
2, p⃗) = F IA

2D(x,Q
2, p⃗)−

3− η2

1 + η2
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x
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d2k⃗t
π

FD(4)
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β, Q2, xIP , t
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×
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u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (6)

where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) for the inclusive case due to the AGK rules. (Recall
that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in the inclusive
case.

For the impulse approximation, we use:

F IA
2D(x,Q

2, p⃗) =

(

1 +
qz
q0

pz
mN

)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (7)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions.

We quantify the effect of nuclear shadowing on the spectrum of the produced proton by the ratio
R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (8)

Figure 8 presents the ratio R(x,Q2, p⃗) of Eq. (8) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 8 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

From the experimental point of view, several strategies of the extraction of the neutron structure
function F2n(x,Q2) from the deuteron data using the proton tagging are possible (the text below is
copied from our papers on the subject). As our analysis above shows, by selecting only very low pt
protons, the distortion of the proton spectrum by the nuclear shadowing and FSI effects will be minimal.
However, the drawback of this approach is the gross loss of statistics. The other, more promising approach
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Figure 7: Graphs depicting the contributions to the deuteron tagged structure function F2D(x,Q2, p⃗):
(a) the impulse contribution, (b)+(c) the nuclear shadowing correction.

[compare to Eq. (3)]:
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where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) for the inclusive case due to the AGK rules. (Recall
that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in the inclusive
case.

For the impulse approximation, we use:

F IA
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1 +
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)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (7)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions.

We quantify the effect of nuclear shadowing on the spectrum of the produced proton by the ratio
R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (8)

Figure 8 presents the ratio R(x,Q2, p⃗) of Eq. (8) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 8 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

From the experimental point of view, several strategies of the extraction of the neutron structure
function F2n(x,Q2) from the deuteron data using the proton tagging are possible (the text below is
copied from our papers on the subject). As our analysis above shows, by selecting only very low pt
protons, the distortion of the proton spectrum by the nuclear shadowing and FSI effects will be minimal.
However, the drawback of this approach is the gross loss of statistics. The other, more promising approach
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≈ 50% enhancement  
due to AGK rules (only  
partial cancellation)

• Forward Compton scattering amplitude for tagged DIS on D (proton detected):

• Direct calculation, same framework as in the inclusive case: 
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and 2006 

= F2n(x)⇢D(p, p)



Nuclear shadowing in unpolarized tagged eD DIS (2) 
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Figure 7: Graphs depicting the contributions to the deuteron tagged structure function F2D(x,Q2, p⃗):
(a) the impulse contribution, (b)+(c) the nuclear shadowing correction.
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F2D(x,Q
2, p⃗) = F IA

2D(x,Q
2, p⃗)−

3− η2

1 + η2

∫ 0.1

x
dxIP

d2k⃗t
π

FD(4)
2

(

β, Q2, xIP , t
)

×

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (6)

where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) for the inclusive case due to the AGK rules. (Recall
that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in the inclusive
case.

For the impulse approximation, we use:

F IA
2D(x,Q

2, p⃗) =

(

1 +
qz
q0

pz
mN

)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (7)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions.

We quantify the effect of nuclear shadowing on the spectrum of the produced proton by the ratio
R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (8)

Figure 8 presents the ratio R(x,Q2, p⃗) of Eq. (8) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 8 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

From the experimental point of view, several strategies of the extraction of the neutron structure
function F2n(x,Q2) from the deuteron data using the proton tagging are possible (the text below is
copied from our papers on the subject). As our analysis above shows, by selecting only very low pt
protons, the distortion of the proton spectrum by the nuclear shadowing and FSI effects will be minimal.
However, the drawback of this approach is the gross loss of statistics. The other, more promising approach
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• Nuclear shadowing increases with an increase of spectator momentum: 
- larger pt correspond to smaller transverse distance between p and n → more shadowing 
- no symmetry along z; forward-moving spectator corresponds to larger shadowing

• Two strategies of extraction F2n(x): 
- select small p and neglect shadowing correction 
- measure proton spectrum as function of p → determine/verify the shadowing correction 
→ correct data for the shadowing effect 

 0.8

 0.85

 0.9

 0.95

 1

10-5 10-4 10-3 10-2 10-1

R
(x

,Q
2 ,p

)

x

pz=0
pt=0

pt=50 MeV/c
pt=100 MeV/c

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02

10-3 10-2 10-1

R
(x

,Q
2 ,p

)
x

Q2=4 GeV2

pt=0
pz=0

pz=-100 MeV/c
pz=100 MeV/c

Figure 9: Nuclear shadowing in the tagged deuteron structure function F2D(x,Q2, p⃗). The ratio
R(x,Q2, p⃗) of Eq. (35) as a function of Bjorken x at fixed Q2 = 4 GeV2. The left panel corresponds to
pz = 0 and |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds to |p⃗t| = 0 and pz = ±100 MeV/c.

[compare to Eq. (3)]:

F2D(x,Q
2, p⃗) = F IA

2D(x,Q
2, p⃗)−

3− η2

1 + η2

∫ 0.1

x
dxIP

d2k⃗t
π

FD(4)
2

(

β, Q2, xIP , t
)

×

[

u(p⃗)u(p⃗ + k⃗) + w(p⃗)w(p⃗ + k⃗)

(

3

2

(p⃗ · (p⃗+ k⃗))2

p2(p+ k)2
−

1

2

)]

, (33)

where F IA
2D(x,Q

2, p⃗) is the impulse approximation. Note that the weight of the shadowing correction
(3 − η2)/(1 + η2) is larger than 2(1 − η2)/(1 − η2) that we had for the inclusive case due to the AGK
rules. (Recall that η ≈ 0.17.) Thus, the nuclear shadowing correction is larger in the tagged case than in
the inclusive case.

For the impulse approximation, we use:

F IA
2D(x,Q

2, p⃗) =

(

1 +
qz
q0

pz
mN

)αIP (0)−1

[u2(p) + w2(p)]F2n(x̃, Q
2) , (34)

where x̃ = (1 − pz/mN )x which takes into account the effect of Fermi motion; αIP (0) = 1.11. The
(1 + qz/q0 pz/mN )αIP (0)−1 factor reflects the different invariant energies of the virtual photon–deuteron
and the virtual photon–neutron interactions [1]. We quantify the effect of nuclear shadowing on the
spectrum of produced protons by the ratio R(x,Q2, p⃗):

R(x,Q2, p⃗) =
F2D(x,Q2, p⃗)

F IA
2D(x,Q

2, p⃗)
. (35)

Figure 9 presents the ratio R(x,Q2, p⃗) of Eq. (35) as a function of Bjorken x at fixed Q2 = 4 GeV2.
The left panel corresponds to the case of the zero longitudinal momentum of the final proton, pz = 0, and
different values of the transverse momentum, |p⃗t| = 0, 50, and 100 MeV/c; the right panel corresponds
to |p⃗t| = 0 and pz = ±100 MeV/c.

A comparison of Figs. 9 and 6 shows that the shadowing correction to the tagged deuteron structure
function is much larger than that for the inclusive structure function. This happens because of the
following two features of the tagged case. First, the weight of the shadowing correction is larger because
of the AGK cutting rules (see the discussion above). Second, the impulse approximation decreases
with increasing |p⃗| faster than the shadowing term, which enhances the relative magnitude of nuclear
shadowing.

This feature is illustrated by the results presented in Fig. 9 which show that the deviation of R(x,Q2, p⃗)
from unity increases as |p⃗| is increased. Also, another particular feature of our predictions for R(x,Q2, p⃗)
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Nuclear shadowing in polarized eD DIS 

Q2=4, 25, 100 GeV2

8
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• By analogy with unpolarized case, shadowing correction to deuteron spin structure 
function g1D(x):
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Nuclear Shadowing and Extraction of F p
2 − F n

2 at Small x 29

Q2 ≤ 1 GeV2, one expects a significant enhancement of the nuclear shadowing
effect due to the enhancement of diffraction at small Q2 by higher twist effects such
as vector meson production. This will increase nuclear shadowing by approximately
a factor of two.19

Since the diffractive structure function F D(4)
2 is known with accuracy of approx-

imately 20%,23 the accuracy of the calculation of the nuclear shadowing correction
to the deuteron structure function F D

2 is 20 × 0.03 = 0.6%. Correspondingly, the
theoretical uncertainty for the ratio of F n

2 /F p
2 extracted from the deuteron data

will be 2 × 0.6 = 1.2%, which is likely to be smaller than possible experimental
systematic errors.

For completeness, we also list predictions for the polarized deuteron structure
function gD

1 . Unlike the unpolarized case considered above when the shadowing
correction was important for the extraction of F p

2 /Fn
2 from deuterium data because

F p
2 and Fn

2 are very close at small x, the polarized gp
1 ≈ −gn

1 at small x, which
makes the shadowing effect a very small correction in the extraction of gn

1 from
polarized deuteron data, see e.g. Refs. 32 and 33. In almost complete analogy with
the unpolarized case, the deuteron structure function gD

1 can be written as a sum
of the impulse approximation and nuclear shadowing (interference) contributions

gD
1 (x, Q2) =

(
1 − 3

2
PD

)
(gp

1(x, Q2) + gn
1 (x, Q2))

− 2
1 − η2

1 + η2

∫ x0

x
dxP dq2

t ∆FD(4)(β, Q2, xP, t)ρ11
D (4q2

t + 4(xPmN )2) , (5)

where 1 − 3/2PD is the effective polarization of the proton and neutron in the
deuteron, which differs from unity due to the deuteron D-wave contribution (PD =
0.06 for the Paris nucleon–nucleon potential); ρ11

D is the electric form factor of the
deuteron polarized in the longitudinal direction, which contains the charge and
quadrupole form factor contributions34; ∆FD(4) = FD(4)

↑↑ − FD(4)
↑↓ is the difference

of the diffractive polarized nucleon structure functions. The first arrow stands for
the helicity of the photon; the second arrow indicates the helicity of the nucleon.
The ρ11

D form factor has the following representation in terms of the deuteron S
and D-wave components34

ρ11
D (4q2

t + 4(xPmN )2) =
∫

d3p

[
u(p)u(p + q) +

u(p)w(p + q)√
2

(
3
2

(pz + qz)2

(p + q)2
− 1

2

)

+
u(p + q)w(p)√

2

(
3
2

p2
z

p2
− 1

2

)

+ w(p)w(p + q)
(

9
2

(pt · (pt + qt))(p · (p + q))
p2(p + q)2

+
3
4

p2
z

p2
+

3
4

(pz + qz)2

(p + q)2
− 1
)]

. (6)
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Fig. 4. The ratio gD
1 /[(1 − 3/2PD)gN

1 ] as a function of x. The solid curve corresponds to Q =
2 GeV; the dashed curve corresponds to Q = 5 GeV; the dash-dotted curve corresponds to
Q = 10 GeV.

Since ∆F D(4) is a new and unmeasured quantity (it can be measured in polarized
diffractive DIS on the nucleon), we cannot directly use the leading twist theory of
nuclear shadowing to estimate the shadowing correction to gD

1 . However, making an
assumption that the relative strength of diffraction mediated by the non-vacuum
exchange (responsible for the polarized structure function g1 at small x) is the
same as that of the exchange with vacuum quantum numbers (responsible for the
unpolarized F2 at small x), one obtains that

∆FD(4)

gN
1

= 2
FD(4)

2

FN
2

, (7)

where gN
1 = (gp

1 + gn
1 )/2 and F N

2 = (F p
2 + Fn

2 )/2. This assumption allows one to
express the shadowing correction to the ratio of the deuteron and nucleon spin
structure functions in terms of unpolarized diffraction on the nucleon

gD
1 (x, Q2)

2
(
1 − 3

2PD

)
gN
1

= 1 − 4
1 − η2

1 + η2

1(
1 − 3

2PD

) 1
FN

2 (x, Q2)

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ11

D (4q2
t + 4(xPmN )2) . (8)

The assumption of Eq. (7) corresponds to the maximal shadowing correction. The
additional factor of two is a source of the generic combinatoric enhancement of
nuclear shadowing in polarized structure functions of few-nucleon nuclei compared
to the unpolarized case.35
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1 ] as a function of x. The solid curve corresponds to Q =
2 GeV; the dashed curve corresponds to Q = 5 GeV; the dash-dotted curve corresponds to
Q = 10 GeV.

Since ∆F D(4) is a new and unmeasured quantity (it can be measured in polarized
diffractive DIS on the nucleon), we cannot directly use the leading twist theory of
nuclear shadowing to estimate the shadowing correction to gD

1 . However, making an
assumption that the relative strength of diffraction mediated by the non-vacuum
exchange (responsible for the polarized structure function g1 at small x) is the
same as that of the exchange with vacuum quantum numbers (responsible for the
unpolarized F2 at small x), one obtains that

∆FD(4)

gN
1

= 2
FD(4)

2

FN
2

, (7)

where gN
1 = (gp

1 + gn
1 )/2 and F N

2 = (F p
2 + Fn

2 )/2. This assumption allows one to
express the shadowing correction to the ratio of the deuteron and nucleon spin
structure functions in terms of unpolarized diffraction on the nucleon

gD
1 (x, Q2)

2
(
1 − 3

2PD

)
gN
1

= 1 − 4
1 − η2

1 + η2

1(
1 − 3

2PD

) 1
FN

2 (x, Q2)

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ11

D (4q2
t + 4(xPmN )2) . (8)

The assumption of Eq. (7) corresponds to the maximal shadowing correction. The
additional factor of two is a source of the generic combinatoric enhancement of
nuclear shadowing in polarized structure functions of few-nucleon nuclei compared
to the unpolarized case.35

longitudinally-polarized  
deuteron form factor

unknown polarized proton diffractive 
structure function. Assumption:

• Shadowing correction to g1D(x) is a few % effect 
→ negligible since g1p(x) ≈ - g1n(x) at small x

Agrees with earlier calculations by 
Edelmann, Piller, Weise (1998)



Nuclear shadowing in polarized eD DIS (2)

9

Frankfurt, VG, Strikman (2003) 

• In eD DIS with unpolarized beam and polarized target, shadowing correction gives 
rise to T20(x) asymmetry:

polarized deuteron  
form factor

proton diffractive 
structure function

• Nuclear shadowing gives rise to ≈ 1% T20(x) 

Agrees with earlier calculations by 
Edelmann, Piller, Weise (1998)
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Figure 4 presents the results of the calculation using Eq. (8). The solid curve
corresponds to Q = 2 GeV, the dashed curve corresponds to Q = 5 GeV and the
dot-dashed curve corresponds to Q = 10 GeV.

As can be seen from Fig. 4, the shadowing correction to gD
1 could be as large as

8% at x ≈ 10−5. Needless to say that in order to achieve such low values of Bjorken x
simultaneously with Q2 ≥ 1 GeV2, one needs a collider with the polarized deuteron
beam. The available fixed-target data36 can probe gD

1 only down to x ≈ 0.004,
where the shadowing correction is very small.

It was noticed in Ref. 16 that for a spin-one target (deuteron), the cross-section
of DIS depends on the deuteron polarization even with the unpolarized beam. The
associated asymmetry

T20 =
σ+ − σ0

1
2 (σ+ + σ0)

, (9)

where σ+,0 denotes the γ∗-deuteron cross-section and the superscript denotes the
deuteron helicity, was estimated for x > 0.1 in the impulse approximation.16 Next, it
was pointed out in Ref. 37 that nuclear shadowing in unpolarized DIS on deuterium
leads to the values of the T20 asymmetry at the level of one percent at small-x.

This can be estimated as follows. The definition (9) allows one to immediately
write the expression for T20 by replacing the deuteron charge form factor in Eq. (1)
by ρ20

D ,

T20(x, Q2) =
2

FD
2 (x, Q2)

1 − η2

1 + η2

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ20

D (4q2
t + 4(xPmN )2) , (10)

where

ρ20
D (4q2

t + 4(xPmN )2) =
3
2

∫
d3p

[
u(p)w(p + q)√

2

(
1 − 3(pz + qz)2

(p + q)2

)

+
u(p + q)w(p)√

2

(
1 − 3p2

z

p2

)

+ w(p)w(p + q)

(
1 − 3

2

[
(pz + qz)2

(p + q)2
+

p2
z

p2

+
(p · (p + q))(p · (p + q) − 3pz(pz + qz))

p2(p + q)2

])]
. (11)

Note that T20 vanishes, if one ignores the D-wave component of the deuteron wave
function or the nuclear shadowing correction.

This effect can also be formulated in terms of the third deuteron structure
function, bD

1 , which has the following probabilistic interpretation in terms of
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As can be seen from Fig. 4, the shadowing correction to gD
1 could be as large as

8% at x ≈ 10−5. Needless to say that in order to achieve such low values of Bjorken x
simultaneously with Q2 ≥ 1 GeV2, one needs a collider with the polarized deuteron
beam. The available fixed-target data36 can probe gD

1 only down to x ≈ 0.004,
where the shadowing correction is very small.

It was noticed in Ref. 16 that for a spin-one target (deuteron), the cross-section
of DIS depends on the deuteron polarization even with the unpolarized beam. The
associated asymmetry

T20 =
σ+ − σ0

1
2 (σ+ + σ0)

, (9)

where σ+,0 denotes the γ∗-deuteron cross-section and the superscript denotes the
deuteron helicity, was estimated for x > 0.1 in the impulse approximation.16 Next, it
was pointed out in Ref. 37 that nuclear shadowing in unpolarized DIS on deuterium
leads to the values of the T20 asymmetry at the level of one percent at small-x.

This can be estimated as follows. The definition (9) allows one to immediately
write the expression for T20 by replacing the deuteron charge form factor in Eq. (1)
by ρ20

D ,

T20(x, Q2) =
2

FD
2 (x, Q2)

1 − η2

1 + η2

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ20

D (4q2
t + 4(xPmN )2) , (10)

where

ρ20
D (4q2

t + 4(xPmN )2) =
3
2

∫
d3p

[
u(p)w(p + q)√
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(
1 − 3(pz + qz)2

(p + q)2

)

+
u(p + q)w(p)√
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(
1 − 3p2
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p2

)

+ w(p)w(p + q)

(
1 − 3
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[
(pz + qz)2

(p + q)2
+

p2
z

p2

+
(p · (p + q))(p · (p + q) − 3pz(pz + qz))

p2(p + q)2

])]
. (11)

Note that T20 vanishes, if one ignores the D-wave component of the deuteron wave
function or the nuclear shadowing correction.

This effect can also be formulated in terms of the third deuteron structure
function, bD

1 , which has the following probabilistic interpretation in terms of

σ+ and σ0 are 𝛾-D cross sections,  
+ and 0 are deuteron helicity
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the quark distributions38

bD
1 (x) =

1
2

∑
e2

q

[
q0(x) + q̄0(x) − 1

2
(q1(x) + q̄1(x) + q−1(x) + q̄−1(x))

]
, (12)

where qλ is the unpolarized quark distribution in the deuteron with helicity λ. The
connection between bD

1 and T20 is readily obtained using their definitions:

bD
1 (x, Q2) = −FD

2 (x, Q2)
2x

T20(x, Q2) . (13)

The factor 1/(2x) in Eq. (13) indicates that the often discussed bD
1 structure func-

tion is a rather inappropriate quantity: even small values of the physically measured
T20 asymmetry correspond to huge values of bD

1 .
The results of the calculation of the tensor asymmetry T20 and the deuteron

structure function bD
1 are presented in Fig. 5. The solid curve corresponds to Q =

2 GeV; the overlapping dashed and dash-dotted curves correspond to Q = 5 GeV
and Q = 10 GeV.

As one can see from Fig. 5(a), the obtained T20 is at the level of 0.6–0.7%.
This agrees with the analyses of Refs. 32 and 37. At the same time, bD

1 is large at
small x, as can be seen from Fig. 5(b). This is a purely kinematic effect due to the
1/(2x) factor in the definition of bD

1 , (13). The observation of surprisingly large bD
1

at small x was first presented in Refs. 32, 33 and 39.
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Fig. 5. The tensor asymmetry T20 and the bD
1 (x, Q2) structure function as functions of x. The

solid curve corresponds to Q = 2 GeV; the overlapping dashed and dash-dotted curves correspond
to Q = 5 GeV and Q = 10 GeV.
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Directions for future work:

! Application of this formalism to polarized tagged eD DIS. 

! Coherent diffraction eD DIS: 

- inclusive diffraction: direct implementation of leading twist nuclear shadowing  

- VM production, DVCS: requires theoretical work 

• Final state interactions (FSI) for unpolarized tagged eD DIS:

Estimates using non-relativistic S-wave  
NN potential made Frankfurt, VG, Strikman (2006),  
but more theoretical work is required. 

January 6, 2006 22:23 WSPC/146-MPLA 01938

Nuclear Shadowing and Extraction of F p
2 − F n

2 at Small x 33

The HERMES measurement40 of bD
1 indicates a (rapid) growth of bD

1 when one
reduces Bjorken x from x ≈ 0.5 down to x ≈ 10−2. However, the corresponding
values of Q2 are of the order of 1 GeV2 and the values of Bjorken x are not small
enough to see the predicted dramatic rise of bD

1 towards small x. Once again, the
study of the behavior of bD

1 at small x will greatly benefit from the collider kine-
matics.

3. Nuclear Shadowing and Final State Interactions in
the Tagged Deuteron Structure

A strategy, which is complimentary to the inclusive measurement of F D
2 , is the use of

the neutron and proton tagging. The scattering on the neutron of deuterium is then
tagged by detecting a slow (spectator) proton. The usefulness of the tagged deuteron
structure function for the extraction of the neutron F n

2 at large x was discussed in
Ref. 41. In this work, we concentrate on the small-x region of nuclear shadowing.
We extend the analysis15 by taking into account the final state interactions (FSI)
between the final nucleons.

In the impulse approximation, the tagged deuteron structure function is given
by the imaginary part of Fig. 6(a).

The corresponding expression is

FD
2 (x, Q2,p)|IA =

(
1 +

pz

mN

)αP(0)

Fn
2 (x, Q2)ρD(p, p) , (14)

where p is the momentum of the spectator proton; αP(0) is the intercept of the ef-
fective “Pomeron” trajectory; ρD(p, p) = u2(p)+w2(p), where u(p) and w(p) are the
S-wave and the D-wave components of the deuteron wave function, is the unpolar-
ized deuteron density matrix34 (with equal momenta). The factor (1+pz/mN )αP(0)

comes from different invariant energies of the virtual photon–nucleus and the virtual
photon–neutron interactions. Thus, the (1 + pz/mN)αP(0) factor is the flux factor
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Fig. 6. The impulse approximation and the final state correction to the tagged deuteron structure
function F D

2 .
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! In inclusive unpolarized DIS, nuclear shadowing is a 1-2% effect, which is 
nevertheless important for the extraction of F2p(x)-F2n(x) from F2D(x).  

! In inclusive polarized DIS, the shadowing corrections is larger, but is small 
correction for extraction of g1n(x) from g1D(x). However, gives rise to 1% T20(x). 

! In tagged DIS, the shadowing correction is enhanced by the AGK combinatoric 
factor and has slower dependence on the spectator momentum than impulse 
approximation. 
  
! Two strategies of extraction of F2n(x): (i) measurement at small p, where 
shadowing is small, and (ii) measurement in a wide range of p to determine 
shadowing and correct the data. 

! This conclusion is affected by FSI which need to be estimated. 

! Leading twist nuclear shadowing formalism can be straightforwardly applied to 
coherent diffraction in eD DIS. 

! Exclusive vector meson production and DVCS is an important direction, but 
requires additional theoretical work.  
  

Conclusions:



Additional Slides



Deuteron form factors used in this talk
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transferred to the proton; ρD is the deuteron charge form factor; |t| = q2
t +(xPmN )2.

The deuteron charge form factor can be written as an overlap of the initial and final
state deuteron wave functions

ρD(4q2
t + 4(xPmN )2)

=
∫

d3p

[
u(p)u(p + q) + w(p)w(p + q)

(
3
2

(p · (p + q))
p2(p + q)2

− 1
2

)]
, (2)

where u is the S-wave component of the deuteron wave function; w is the D-wave
component. Note the argument of the deuteron form factor, which is a consequence
of the correct treatment of the deuteron center of mass. Since the t-dependence
of ρD is rather moderate (compared to heavier nuclei), the integral in Eq. (1) is
sensitive to F D(4)

2 (t) up to −t ≤ 0.05 GeV2. The ratio of the real to imaginary parts
of the diffractive scattering amplitudes η can be calculated using dispersion relations
over the energy or using the Regge-pole type parametrization sαP for the energy
dependence of the diffraction cross-section,26 even though the energy dependence
differs from that for soft QCD processes,

η = −π
2

∂ ln
(√

fD
i/N

)

∂ ln(1/x“P”)
≈ π

2
(αP(t = 0) − 1) , (3)

where αP(0) is the intercept of the effective “Pomeron” trajectory, which differs
from that of the actual Pomeron, which dominates soft QCD phenomena. Using
η ≈ 0.32,23 one readily observes that the correction for the real part of the diffractive
scattering amplitude reduces nuclear shadowing by almost 20%. Note that in the
Reggeon calculus derivation,5 it was assumed that η = 0, which is natural for the
amplitudes slowly increasing with energy. This is not the case for DIS and, hence,
the effect of η should be taken into account. One should note that the simple final
expression for F D

2 in Eq. (1) is due to the used closure relation for the final nuclear
states.

The use of the QCD factorization theorem for hard diffraction21 allows to extend
Eq. (1) for the structure function F D

2 to the deuteron parton distribution functions6

fj/D

fj/D(x, Q2) = fj/p(x, Q2) + fj/n(x, Q2)

− 2
1 − η2

1 + η2

∫ x0

x
dxP dq2

t fD
j/N (β, Q2, xP, t)ρD(4q2

t + 4(xPmN )2) . (4)

Note that we use x0 = 0.1 for quarks and x0 = 0.03 for gluons, see the discussion
in Ref. 18.

The results of the calculation of the ratio of the next-to-leading order (NLO)
structure functions F D

2 /(F p
2 +Fn

2 ) and the ratio of the NLO gluon PDFs gD/(2gN)
are presented in Fig. 3. The solid curves correspond to Q = 2 GeV; the dashed
curves correspond to Q = 5 GeV; the dash-dotted curves correspond to Q =
10 GeV. The two sets of curves for gD/(2gN) correspond to the two scenarios of

• Unpolarized deuteron form factor:

• Longitudinally-polarized  
deuteron form factor:
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Q2 ≤ 1 GeV2, one expects a significant enhancement of the nuclear shadowing
effect due to the enhancement of diffraction at small Q2 by higher twist effects such
as vector meson production. This will increase nuclear shadowing by approximately
a factor of two.19

Since the diffractive structure function F D(4)
2 is known with accuracy of approx-

imately 20%,23 the accuracy of the calculation of the nuclear shadowing correction
to the deuteron structure function F D

2 is 20 × 0.03 = 0.6%. Correspondingly, the
theoretical uncertainty for the ratio of F n

2 /F p
2 extracted from the deuteron data

will be 2 × 0.6 = 1.2%, which is likely to be smaller than possible experimental
systematic errors.

For completeness, we also list predictions for the polarized deuteron structure
function gD

1 . Unlike the unpolarized case considered above when the shadowing
correction was important for the extraction of F p

2 /Fn
2 from deuterium data because

F p
2 and Fn

2 are very close at small x, the polarized gp
1 ≈ −gn

1 at small x, which
makes the shadowing effect a very small correction in the extraction of gn

1 from
polarized deuteron data, see e.g. Refs. 32 and 33. In almost complete analogy with
the unpolarized case, the deuteron structure function gD

1 can be written as a sum
of the impulse approximation and nuclear shadowing (interference) contributions

gD
1 (x, Q2) =

(
1 − 3

2
PD

)
(gp

1(x, Q2) + gn
1 (x, Q2))

− 2
1 − η2

1 + η2

∫ x0

x
dxP dq2

t ∆FD(4)(β, Q2, xP, t)ρ11
D (4q2

t + 4(xPmN )2) , (5)

where 1 − 3/2PD is the effective polarization of the proton and neutron in the
deuteron, which differs from unity due to the deuteron D-wave contribution (PD =
0.06 for the Paris nucleon–nucleon potential); ρ11

D is the electric form factor of the
deuteron polarized in the longitudinal direction, which contains the charge and
quadrupole form factor contributions34; ∆FD(4) = FD(4)

↑↑ − FD(4)
↑↓ is the difference

of the diffractive polarized nucleon structure functions. The first arrow stands for
the helicity of the photon; the second arrow indicates the helicity of the nucleon.
The ρ11

D form factor has the following representation in terms of the deuteron S
and D-wave components34

ρ11
D (4q2

t + 4(xPmN )2) =
∫

d3p

[
u(p)u(p + q) +

u(p)w(p + q)√
2

(
3
2

(pz + qz)2

(p + q)2
− 1

2

)

+
u(p + q)w(p)√

2

(
3
2

p2
z

p2
− 1

2

)

+ w(p)w(p + q)
(

9
2

(pt · (pt + qt))(p · (p + q))
p2(p + q)2

+
3
4

p2
z

p2
+

3
4

(pz + qz)2

(p + q)2
− 1
)]

. (6)

Frankfurt, VG, Strikman (2003) 

• Polarized deuteron  
form factor for T20(x):
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Figure 4 presents the results of the calculation using Eq. (8). The solid curve
corresponds to Q = 2 GeV, the dashed curve corresponds to Q = 5 GeV and the
dot-dashed curve corresponds to Q = 10 GeV.

As can be seen from Fig. 4, the shadowing correction to gD
1 could be as large as

8% at x ≈ 10−5. Needless to say that in order to achieve such low values of Bjorken x
simultaneously with Q2 ≥ 1 GeV2, one needs a collider with the polarized deuteron
beam. The available fixed-target data36 can probe gD

1 only down to x ≈ 0.004,
where the shadowing correction is very small.

It was noticed in Ref. 16 that for a spin-one target (deuteron), the cross-section
of DIS depends on the deuteron polarization even with the unpolarized beam. The
associated asymmetry

T20 =
σ+ − σ0

1
2 (σ+ + σ0)

, (9)

where σ+,0 denotes the γ∗-deuteron cross-section and the superscript denotes the
deuteron helicity, was estimated for x > 0.1 in the impulse approximation.16 Next, it
was pointed out in Ref. 37 that nuclear shadowing in unpolarized DIS on deuterium
leads to the values of the T20 asymmetry at the level of one percent at small-x.

This can be estimated as follows. The definition (9) allows one to immediately
write the expression for T20 by replacing the deuteron charge form factor in Eq. (1)
by ρ20

D ,

T20(x, Q2) =
2

FD
2 (x, Q2)

1 − η2

1 + η2

×
∫ x0

x
dxP dq2

t FD(4)
2 (β, Q2, xP, t)ρ20

D (4q2
t + 4(xPmN )2) , (10)

where

ρ20
D (4q2

t + 4(xPmN )2) =
3
2

∫
d3p

[
u(p)w(p + q)√

2

(
1 − 3(pz + qz)2

(p + q)2

)

+
u(p + q)w(p)√

2

(
1 − 3p2

z

p2

)

+ w(p)w(p + q)

(
1 − 3

2

[
(pz + qz)2

(p + q)2
+

p2
z

p2

+
(p · (p + q))(p · (p + q) − 3pz(pz + qz))

p2(p + q)2

])]
. (11)

Note that T20 vanishes, if one ignores the D-wave component of the deuteron wave
function or the nuclear shadowing correction.

This effect can also be formulated in terms of the third deuteron structure
function, bD

1 , which has the following probabilistic interpretation in terms of
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Diffraction in ep DIS at HERA

depend on x.

3.5.2 Diffractive structure functions and diffractive PDFs

Most of the HERA experimental studies were performed at small x. In this case, one
often uses the variable xIP = 1− z. The cross section for the process ep → e+ p+X (or
production of any other hadron), see Fig. 17, is usually parameterized in the following
form:

d4σD
ep

dxIP dt dx dQ2
=

2πα2

xQ4

[(

1 + (1− y)2
)

FD(4)
2 (x,Q2, xIP , t)− y2FD(4)

L (x,Q2, xIP , t)
]

,(83)

where Q2 is the virtuality of the exchanged photon; x = Q2/(2p·q) is the Bjorken variable;
y = (p · q)/(p · k) is the fractional energy loss of the incoming lepton. We follow here the

k
2

k'

X

q

p

X (M   )

γ∗

p'

(Q  )

Fig. 17. Diffractive production of a hadron with momentum p′ in the nucleon fragmentation
region in DIS.

notations commonly used for the description of phenomena in the small x kinematics; in
order to emphasize the role of small xIP processes, one introduces the superscript ”D”
denoting FD(4)

2 and FD(4)
L as the diffractive structure functions (the superscript ”(4)”

denotes that the structure functions depend on four variables). (Note that in the case of
generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xIP and t are expressed through the experimentally measured quantities:

t= (p′ − p)2 ,

xIP =
q · (p− p′)

q · p
≈

M2
X +Q2

W 2 +Q2
,

β=
Q2

2q · (p− p′)
=

x

xIP
≈

Q2

Q2 +M2
X

, (84)

53

• One of main HERA results is the discovery of large fraction of diffractive events (~10%) 
➞ diffraction is a leading twist phenomenon (H1 and ZEUS, 1994-2006)   

depend on x.
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Most of the HERA experimental studies were performed at small x. In this case, one
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d4σD
ep

dxIP dt dx dQ2
=

2πα2

xQ4

[(

1 + (1− y)2
)

FD(4)
2 (x,Q2, xIP , t)− y2FD(4)

L (x,Q2, xIP , t)
]

,(83)

where Q2 is the virtuality of the exchanged photon; x = Q2/(2p·q) is the Bjorken variable;
y = (p · q)/(p · k) is the fractional energy loss of the incoming lepton. We follow here the
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Fig. 17. Diffractive production of a hadron with momentum p′ in the nucleon fragmentation
region in DIS.

notations commonly used for the description of phenomena in the small x kinematics; in
order to emphasize the role of small xIP processes, one introduces the superscript ”D”
denoting FD(4)

2 and FD(4)
L as the diffractive structure functions (the superscript ”(4)”

denotes that the structure functions depend on four variables). (Note that in the case of
generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xIP and t are expressed through the experimentally measured quantities:

t= (p′ − p)2 ,

xIP =
q · (p− p′)

q · p
≈

M2
X +Q2

W 2 +Q2
,

β=
Q2

2q · (p− p′)
=

x

xIP
≈

Q2

Q2 +M2
X

, (84)
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• Collinear factorization (Collins ’97) ➞ diffractive parton distributions

• Measurement of the t-dependence of diffractive cross section: Bdiff = 6 GeV-2 ± 15%  

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 283

twist theory of nuclear shadowing predicts for x = 10�4 and b = 0 that gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.33 (FGS10_H)
and gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.51 (FGS10_L), see Fig. 41.

The discussed results give another illustration of the observation that realistic nuclei can be treated as rather dilute
systems in the processes involving nuclear shadowing with large fluctuations of the number of involved nucleons, even at
small impact parameters.

3.5. Diffraction in DIS and the QCD factorization theorem

3.5.1. Nucleon fragmentation in DIS
In DIS a struck parton is removed from the nucleon and moves with a large momentum relative to the spectator system.

The struck parton and spectator system fragment into separate groups of hadrons. (Hadrons at the central rapidities may
belong to either of the groups.) It is convenient to consider the process in the Breit frame where the nucleon momentum
P ! 1 and the photon momentum is aligned along the same axis: Eq = �2xEP and qµ = 0 for all other components. In
the parton model approximation, the final quark flies with the momentum �xP in the opposite direction with respect to
the residual system that carries the momentum (1 � x)P . As a result, a hadron in the target fragmentation region can be
produced with the maximal light-cone fraction z relative to the incident nucleon: z  (1� x). For large x � 0.1, the process
corresponds to the removal of the valence quark from the nucleon and creation of a color flow between the current and
target fragmentation regions. As a result, for such x, the distribution in the variable xF = z/(1 � x) should go to zero at the
kinematic limit xF ! 1 [123,139]. (This kinematic limit follows from the requirement that theminus component of the four
momentum of the system X should be positive. The actual dependence on xF follows from details of the QCD dynamics and
is often parameterized in terms of quark counting rules.) With a decrease of x, the dynamics changes; hence, the shape of
the distribution z(xF ) should depend on x.

3.5.2. Diffractive structure functions and diffractive PDFs
Most of the HERA experimental studies were performed at small x. In this case, one often uses the variable xP = 1 � z.

The cross section for the process ep ! e + p + X (or production of any other hadron), see Fig. 17, is usually parameterized
in the following form:

d4� D
ep

dxP dt dx dQ 2 = 2⇡↵2

xQ 4

h�
1 + (1 � y)2

�
FD(4)
2 (x,Q 2, xP, t) � y2FD(4)

L (x,Q 2, xP, t)
i
, (83)

whereQ 2 is the virtuality of the exchanged photon; x = Q 2/(2p ·q) is the Bjorken variable; y = (p ·q)/(p ·k) is the fractional
energy loss of the incoming lepton. We follow here the notations commonly used for the description of phenomena in the
small x kinematics; in order to emphasize the role of small xP processes, one introduces the superscript ‘‘D’’ denoting FD(4)

2
and FD(4)

L as the diffractive structure functions (the superscript ‘‘(4)’’ denotes that the structure functions depend on four
variables). (Note that in the case of generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xP and t are expressed through the experimentally measured quantities:

t = (p0 � p)2,

xP = q · (p � p0)
q · p ⇡ M2

X + Q 2

W 2 + Q 2 ,

� = Q 2

2q · (p � p0)
= x

xP
⇡ Q 2

Q 2 + M2
X
, (84)

whereMX is the invariant mass of the produced final state;W 2 is the invariant mass squared of the � ⇤p system (see Fig. 17).
The variable xP describes the fractional loss of the proton longitudinal momentum; we also defined here � which is the
longitudinal momentum fraction with respect to xP carried by the interacting parton (to the leading order in ↵s). Note that
the contribution of the termproportional to FD(4)

L in Eq. (83) is kinematically suppressed and usually neglected in the analysis
of diffraction.

In pQCD a partonwith a virtualityQ 2
0 is resolved at higherQ 2 leading to the scaling violations. If a parton at the resolution

scale (x,Q 2) is removed, the final state in the fragmentation region will be changed as compared to the removal of a parent
parton at the scale (x0,Q 2

0 ). The difference is due to the emission of partons in the evolution process and fragmentation of the
struck quark. However, partons produced in the hard process of the evolution from scale Q0 to scale Q have the transverse
momenta�Q0 and, hence, their overlapping integral with a low pt and finite z hadron is suppressed by a power of Q 2

0 [121].
The quark–gluon system produced in the hard interaction is well localized in the transverse directions and, hence, should
interactwith the target in the sameway as the parton at (x0,Q 2

0 ). As a result, theQ 2 evolution of the fragmentation functions
for fixed t and z is given by the same DGLAP equations as those for the nucleon PDFs [59,121]. This result follows from the
fact that QCD evolution occurs in both cases off a single parton. The kinematical window appropriate for the onset of the
applicability of the QCD factorization theorem depends on the interplay between z and x: (i) the selection of smaller x
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Fig. 17. Diffractive production of a hadron with momentum p0 in the nucleon fragmentation region in DIS.

increases the contribution of higher-twist effects, and (ii) the products of the hard parton fragmentation tend to fill the
rapidity gap between the photon and target fragmentation regions, especially in the case when this parton carries a small
fraction z of the photon momentum. Thus, larger Q0 is necessary to suppress the both effects.

Similarly to the inclusive case, the factorization theorem for diffraction (production of a hadron with fixed z and t) in DIS
states that, at given fixed t and xP and in the leading twist approximation, the diffractive structure function FD(4)

2 is given by
the convolution of the same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)

j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (85)

where � = x/xP. The diffractive PDFs f D(4)
j are conditional probabilities to find a parton of flavor jwith a light-cone fraction

� in the proton that undergoes diffractive scattering characterized by the longitudinal momentum fraction xP and the
momentum transfer t , see Sections 3.5 and 3.6 for details.

3.5.3. Diffractive dynamics in DIS
DIS at finite x creates a color flow between the current and target fragmentation regions leading to a strong break-up of

the nucleon since a typical nucleon carries a relatively small light-cone fraction of the initial nucleonmomentum (remember
that z > 1 � x is kinematically forbidden in this case). Hence, the HERA observation of the significant diffraction in DIS at
small x came as a surprise to the theorists not used to the small x dynamics since pQCD and the confinement of color do not
allow rapidity gaps.

The key to resolving this puzzle has been provided long time ago by the aligned jet model (AJM) [122]. The model was
proposed to address the Gribov paradox consisting in the observation that if all configurations in the virtual photon wave
function interacted with large hadronic strengths with nuclei, the Bjorken scaling would be grossly violated at small x.
Bjorken has demonstrated that if one follows the spirit of the parton model and allows only the interactions of the partons
with small kt , the scaling is restored. The dominant configurations in the photon wave function are the qq̄ pairs with the
invariant masses of the order of Q 2 and transverse momenta ksoft. In the rest frame of the target, the partons carry the
momenta p1 ⇠ q0 and p2 = k2soft/(2xmN). In coordinate space, the process proceeds as follows: � ⇤ transforms into a qq̄ pair
with the momenta ±ksoft at a large distance 1/(2mNx) from the target. After covering this distance to the target, the qq̄ pair
has the transverse separation which is of the order of 1/ksoft and the system can interact with the typical hadronic strength.

In QCD one needs to modify the AJM to account for two effects [81]. One is the Sudakov form factor: � ⇤ cannot transform
into a qq̄ pair with small kt without gluon radiation. This effect is taken into account by the pQCD evolution (change of
x of the parton). It does not change the transverse size of the system and, as a result, the system interacts with the same
strength at largeQ 2. The secondmodification is the presence of large kt configurations that have small transverse sizes. Their
interaction is suppressed by the factor↵s(kt)2/k2t —the color transparency effect. However, due to a large phase volume, these
configurations give a contribution comparable to that of the AJM. (The estimate of [81,82] suggested that the AJM contributes
about 70% to F2p(x ⇠ 10�2,Q 2

0 ⇠ 2–3 GeV2).)
While diffraction for the AJM configurations is expected to be comparable to that of hadrons, it is strongly suppressed for

small size configurations for moderate x > 10�3 since the strength of the interaction enters quadratically in the diffractive
cross section.

The dominance of the AJM configurations leads to the expectation that the W dependence of diffraction at fixed Q 2 and
M2

X should be close to that for soft processes [138]. Another important contribution to diffraction is due to large size color
octet dipoles (qq̄g configurations in the virtual photon). These predictions are in a good agreement with the current HERA
data, see below.
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and the ZEUS data on xP�
D(3)
r , the normalization of the predictions of the H1 fit B is somewhat smaller than that of the ZEUS

fit [73].
One should also mention that the value of ↵P(0) at low virtualities Q 2 obtained by the H1 and ZEUS analyses are very

close: the H1 value of ↵P(0) in Eq. (91) should be compared to ↵P(0) = 1.11 � 1.12 ± 0.02 obtained by ZEUS [73].

3.6.2. Diffractive structure function FD(4)
2

The measurement of the t dependence of hard inclusive diffraction and the structure function FD(4)
2 can be performed by

detecting the final state proton. This was done using the forward proton spectrometer (FPS) by the H1 collaboration [62]
and the leading proton spectrometer (LPS) by the ZEUS collaboration [72]. In the following, we focus on the H1 results since
we used the H1 Fit B as an input for our calculations of nuclear shadowing.

In the kinematic range 2 < Q 2 < 50 GeV2 and xP < 0.02, the t dependence of FD(4)
2 was parameterized in a simple

exponential form with a constant slope,

FD(4)
2 (x,Q 2, xP, t) = eBdiff(t�tmin)FD(4)

2 (x,Q 2, xP, tmin), (92)

where Bdiff ⇡ 6 GeV�2 [62]. Note that this value is somewhat lower (but still consistent) than the ZEUS LPS result,
Bdiff = 7.0 ± 0.3 GeV�2 [72].

After the integration over t , the FPS data on �
D(3)
r [62] can be compared to the LRG data [61]. A point-by-point comparison

shows that

�
D(3)
r (LRG)

�
D(3)
r (FPS)

= 1.23 ± 0.03 (stat.) ± 0.16 (syst.). (93)

Eq. (93) is interpreted as that the excess of events in the LRG method compared to the FPS method must come from the
proton dissociation into the states with the invariant massMY < 1.6 GeV.

The FPSmethod also allows one to find the relation between the sub-leading cross sections obtained in the twomethods:

nR(LRG)

nR(FPS)
= 1.39 ± 0.48 (exp.) ± 0.29 (model). (94)

Eqs. (93) and (94) mean that the QCD prediction for the diffractive structure function FD(3)
2 , which would be consistent

with the H1 FPS data [62], is obtained by scaling down fits A and B for the Pomeron PDFs by the factor 1.23 and the constant
nR by the factor 1.39. This is illustrated in Fig. 21 (taken from Ref. [62]), where the scaled QCD predictions are compared to
the H1 FPS data. The solid curves correspond to fit A in the kinematic region used in the fit (see comments for Fig. 20); the
dashed curves correspond to fit A extrapolated beyond the kinematic region used in the fit; the dotted curves correspond
to the Pomeron contribution only. Since the FPS data extend to larger values of xP, Fig. 21 clearly indicates the need for the
sub-leading Reggeon contribution for xP > 0.01.

3.6.3. Tests of the QCD factorization using other diffractive DIS processes
The diffractive parton distributions (DPDFs) f D(4)

j are process-independent universal quantities that enter the pQCD
description of such diffractive processes as inclusive DIS diffraction [60–62,66,67,69,71–73], diffractive electroproduction
of jets [63,64,70], diffractive photoproduction of jets [64,151,152], diffractive electroproductions of heavy quarks [65,153],
and diffractive photoproduction of heavy quarks [154]. The Q 2 dependence of f D(4)

j is given by the DGLAP equations with
the same splitting functions as in the case of inclusive DIS. Hence, a wide range of processes (some of them are mentioned
above) can be described from the first principles in the framework of perturbative QCD using universal non-perturbative
DPDFs as input.

Measurements of diffractive DIS processes serve as stringent tests of theQCD factorization for hard diffraction and further
constrain diffractive PDFs. One example of such a diffractive process, which predominantly probes the gluon diffractive PDF,
is diffractive production of dijets, see Fig. 22. The figure depicts diffractive production of dijets in DIS. Replacing the virtual
photon by the real (quasi-real) one, it is possible to study diffractive photoproductions of dijets. In the latter process, the
hard scale is given by the transverse momenta of the jets.

Both H1 and ZEUS collaborations measured diffractive dijet production. In detail, the H1 collaboration measured
diffractive dijet production in DIS (4 < Q 2 < 80 GeV2) and photoproduction (Q 2 < 0.01 GeV2) in the reaction
ep ! e jet1 jet2 XY [64,151]. It was found that, in DIS, the data are described well by diffractive PDFs extracted from the
fits to the H1 data on inclusive diffraction in DIS [61,62]. The dijet data clearly favors fit B, which corresponds to a smaller
(compared to fit A) gluon diffractive PDF fg/P(�,Q 2) in the large � limit, see Fig. 19.

In photoproduction of dijets, theoretical predictions based on fit B overestimate the data by approximately a factor
of two (both for the direct and resolved contributions). This indicates the breakdown of the QCD factorization theorem
for the photoproduction, similarly to the case of factorization breaking in hadron-induced diffractive dijet production, see
e.g., [155]. One should note that while the factorization breaking is expected for the resolved component of the real photon
(since the resolved component consists of hadronic fluctuations interactingwith the targetwith typical, large hadronic cross
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It is also instructive to consider diffraction in the Breit frame. It is easy to see that the AJM contribution corresponds to
the following process: a parton with the light-cone fraction x absorbs � ⇤ and turns around so that it has the momentum
(xP, �xP). To produce a color neutral system with the typical mass squared M2

X ⇡ Q 2, it has to pick up a parton with the
momentum (x0P, x0P) leading to M2

X = Q 2(x0/x) and pull it out of the nucleon. This implies that although the diffraction
involves the absorption of � ⇤ by one parton, it requires the presence of a strong short-range correlation in rapidity between
the partons in the nucleon light-cone wave function [138]. A nearly hadron-level strength of the diffraction indicates that a
strong color screening takes place in the proton wave function for small x locally in x (in rapidity �Y = ln x0/x).

3.6. Summary of the QCD analysis of the data on hard diffraction at HERA

3.6.1. Diffractive structure function FD(3)
2

The bulk of the data on diffraction in DIS at HERA comes from inclusive measurements performed by H1 and ZEUS
collaborations [60–73]. When the t dependence of the diffractive cross section is not measured [60,61,67,71,73], the data
are analyzed in terms of the diffractive structure function FD(3)

2 :

FD(3)
2 (x,Q 2, xP) =

Z tmin

�1GeV2
dtFD(4)

2 (x,Q 2, xP, t), (86)

where FD(4)
2 is defined by Eq. (83); tmin = �m2

Nx
2
P/(1 � xP) ⇡ �m2

Nx
2(1 + M2

X/Q
2)2 with mN the nucleon mass.

The weak (logarithmic) Q 2 dependence of FD(3)
2 , which follows from the QCD evolution equations for diffractive PDFs,

was observed experimentally, see, e.g., Fig. 21 below.
As we discussed above the diffractive structure function FD(3)

2 is given in terms of the diffractive PDFs f D(3)
j :

FD(3)
2 (x,Q 2, xP) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(3)
j (y,Q 2, xP). (87)

Extensive studies of hard inclusive diffraction at HERA were performed both by H1 and ZEUS collaborations [60–73].
Within the normalization uncertainties, the measurements of the two collaborations are in good agreement, see, e.g., the
comparison in Ref. [72].

It was suggested in [149] that diffraction in hard process can be treated as scattering off a t-channel exchange – Pomeron
– which has the same properties for different xP. We have argued above that the dominant source of the diffraction in DIS is
the AJM-like configurations in the virtual photon. In a wide energy range, these hadron-like configurations should interact
through a coupling to a soft ladder. The properties of such a ladder (or a multiladder system), which are local in rapidity,
should weakly depend on its length in rapidity proportional to ln(x0/xP), where x0 ⇠ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make an additional soft/Regge
factorization assumption (which does not contradict the data) that DPDFs f D(3)

j can be presented as a sum of the leading
Pomeron-exchange term and the subleading Reggeon-exchange term (the latter plays a role only at large xP). Each of the
terms is given as the product of the corresponding flux factors and the parton distribution functions,

f D(3)
j (�,Q 2, xP) = fP/p(xP)fj/P(�,Q 2) + nRfR/p(xP)fj/R(�,Q 2), (88)

where fP/p(xP) is the Pomeron flux factor; fR/p is the Reggeon flux factor; fj/P(�,Q 2) can be interpreted as the PDF of flavor j
of the Pomeron; fj/R(�,Q 2) are PDFs of the subleading Reggeon; nR is a small free parameter determined from the fit to the
data. The Q 2 dependence of fj/P(�,Q 2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather a hypothesis of the soft matching
to the non-perturbative QCD, which is supported by the data (see the discussion below).

The schematic view of the separation of f D(3)
j into the flux factors and the corresponding PDFs used in Eq. (88) is presented

in Fig. 18. The figure also illustrates the physical interpretation of the variable �: � is the light-cone fraction of the Pomeron
(or Reggeon) momentum carried by the interacting parton.

It is important to emphasize that the words ‘‘Pomeron’’ and ‘‘Reggeon’’ are used in the analysis of the hard diffraction
in DIS only as bookkeeping terms since those terms are reserved for soft hadron–hadron interactions. The parameters
(intercepts, slopes, etc.) of the Pomeron and Reggeon exchanges as determined from the phenomenology of soft
hadron–hadron interactions may differ from the parameters obtained from the fits to the hard diffractive data at HERA.

In Eq. (88), the Pomeron and Reggeon flux factors have the following form:

fP/p(xP) =
Z tmin

�1GeV2
dt AP

eBPt

x2↵P(t)�1
P

, ↵P(t) = ↵P(0) + ↵0
Pt,

fR/p(xP) =
Z tmin

�1GeV2
dt AR

eBRt

x2↵R(t)�1
P

, ↵R(t) = ↵R(0) + ↵0
Rt. (89)
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Diffraction in ep DIS at HERA (2)
• It is convenient to use (supported by data):

argued above that the dominant source of the diffraction in DIS is the AJM-like config-
urations in the virtual photon. In a wide energy range, these hadron-like configurations
should interact through a coupling to a soft ladder. The properties of such a ladder (or
a multiladder system), which are local in rapidity, should weakly depend on its length in
rapidity proportional to ln(x0/xIP ), where x0 ∼ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make
an additional soft / Regge factorization assumption (which does not contradict the data)

that DPDFs fD(3)
j can be presented as a sum of the leading Pomeron-exchange term and

the subleading Reggeon-exchange term (the latter plays a role only at large xIP ). Each
of the terms is given as the product of the corresponding flux factors and the parton
distribution functions,

fD(3)
j (β, Q2, xIP ) = fIP/p(xIP )fj/IP (β, Q

2) + nIRfIR/p(xIP )fj/IR(β, Q
2) , (88)

where fIP/p(xIP ) is the Pomeron flux factor; fIR/p is the Reggeon flux factor; fj/IP (β, Q2)
can be interpreted as the PDF of flavor j of the Pomeron; fj/IR(β, Q2) are PDFs of the
subleading Reggeon; nIR is a small free parameter determined from the fit to the data.
The Q2 dependence of fj/IP (β, Q2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather
a hypothesis of the soft matching to the non-perturbative QCD, which is supported by
the data (see the discussion below).
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Fig. 18. A schematic representation of the factorization of the diffractive PDFs into the product
of the Pomeron or Reggeon flux factor and the corresponding PDFs, see Eq. (88).

The schematic view of the separation of fD(3)
j into the flux factors and the corresponding

PDFs used in Eq. (88) is presented in Fig. 18. The figure also illustrates the physical
interpretation of the variable β: β is the light-cone fraction of the Pomeron (or Reggeon)
momentum carried by the interacting parton.

It is important to emphasize that the words ”Pomeron” and ”Reggeon” are used in the
analysis of the hard diffraction in DIS only as bookeeping terms since those terms are
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argued above that the dominant source of the diffraction in DIS is the AJM-like config-
urations in the virtual photon. In a wide energy range, these hadron-like configurations
should interact through a coupling to a soft ladder. The properties of such a ladder (or
a multiladder system), which are local in rapidity, should weakly depend on its length in
rapidity proportional to ln(x0/xIP ), where x0 ∼ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make
an additional soft / Regge factorization assumption (which does not contradict the data)
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j can be presented as a sum of the leading Pomeron-exchange term and

the subleading Reggeon-exchange term (the latter plays a role only at large xIP ). Each
of the terms is given as the product of the corresponding flux factors and the parton
distribution functions,

fD(3)
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2) , (88)

where fIP/p(xIP ) is the Pomeron flux factor; fIR/p is the Reggeon flux factor; fj/IP (β, Q2)
can be interpreted as the PDF of flavor j of the Pomeron; fj/IR(β, Q2) are PDFs of the
subleading Reggeon; nIR is a small free parameter determined from the fit to the data.
The Q2 dependence of fj/IP (β, Q2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather
a hypothesis of the soft matching to the non-perturbative QCD, which is supported by
the data (see the discussion below).
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Fig. 18. A schematic representation of the factorization of the diffractive PDFs into the product
of the Pomeron or Reggeon flux factor and the corresponding PDFs, see Eq. (88).

The schematic view of the separation of fD(3)
j into the flux factors and the corresponding

PDFs used in Eq. (88) is presented in Fig. 18. The figure also illustrates the physical
interpretation of the variable β: β is the light-cone fraction of the Pomeron (or Reggeon)
momentum carried by the interacting parton.

It is important to emphasize that the words ”Pomeron” and ”Reggeon” are used in the
analysis of the hard diffraction in DIS only as bookeeping terms since those terms are
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“Pomeron”  
flux 

The results of the H1 QCD fit in terms of the diffractive quark and gluon PDFs, fu/IP (β, Q2)
and fg/IP (β, Q2), at Q2 = 2.5 GeV2 as functions of β are presented in Fig. 19. The solid
curves correspond to fit B; the dotted curves correspond to fit A. The difference between
fits A and B is that while the parameters Aj , Bj and Cj in Eq. (90) are free in fit A,
Cg = 0 for the gluon PDF in Fit B.
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Fig. 19. The diffractive quark and gluon PDFs fj/IP (β, Q
2) at Q2 = 2.5 GeV2 as functions of β.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is
determined from the scaling violations of FD(3)

2 . However, at large β, the scaling violations
of FD(3)

2 are predominantly determined by the quark diffractive PDFs. Therefore, the
gluon diffractive PDF at large β is very weakly constrained by the data, which allows one
(requires) to consider two scenarios (fits A and B) of the gluon diffractive PDFs with a
different behavior in the large-β limit, see the right panel of Fig. 19.

Note that the large support of the diffractive PDFs at large β means that the diffraction
is enhanced in the M2

X/Q
2 ∼ 1 region, resulting in a smaller relative contribution of the

triple Pomeron contribution to diffraction, see Sec. 5.1.3.

One should mention that both fits A and B correspond to very similar values of αIP (0)
and nIR:

Fit A : αIP (0)= 1.118± 0.008 , nIR = (1.7± 0.4)× 10−3 ,

Fit B : αIP (0)= 1.111± 0.005 , nIR = (1.4± 0.4)× 10−3 . (91)

It is important to note that these values of the Pomeron intercept αIP (0) are very close
to the one observed for soft hadron-hadron interactions, αIP (0) = 1.0808 [131]. As we
explained in Sec. 3.1, this justifies the use of the color fluctuation approximation for the
interaction with three and more nucleons of the nuclear target.

As seen from Fig. 19, the gluon diffractive PDF is much larger than the quark one. We shall
later show that this will lead to the prediction that the leading twist nuclear shadowing
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• H1 and ZEUS determined “Pomeron” PDFs:  

“Pomeron” PDFs

• Necessary information for numerical prections. 
   Important that gP >> qP .


