PRad-II/X17 Collaboration Meeting

Data Acquisition and Online Monitoring

Chao Peng Argonne National Laboratory

11/11/2024

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

Challenges to the PRad-II DAQ System

- High rates
 - Statistics requirement from its scientific goals
 - Up to 25 kHz with reading thousands of channels
 - In PRad, the highest rates reached ~ 5 kHz
 - Data rate at 600-700 Mbytes/s, mostly from GEM
- Need for precision improvement
 - More sophisticated triggers
 - Better monitoring of the detector/data-taking status
 - Resolve some issues that were "minor" in PRad-I
 - Deal with pile-ups with waveform data

DAQ System for HyCal

7 Crates of FADC250

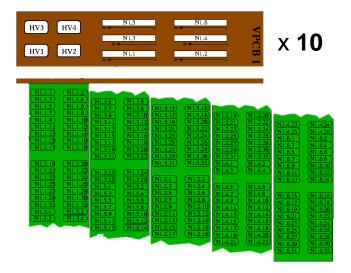
- ROC, TI/TS
- Up to 16 FADC per crate (112 in total)
- Some spare channels for scintillators
- Trigger formed from FADC data with pipeline data-taking
- Test with one FADC module ongoing (Ashot's talk)

VXS Crate – FADC250	VXS Crate – FADC250	VXS Crate – FADC250
256 Channels	256 Channels	256 Channels
VXS Crate – FADC250	VXS Crate – FADC250	VXS Crate – FADC250
256 Channels	256 Channels	256 Channels

DAQ System for GEM Credit: Xinzhan Bai

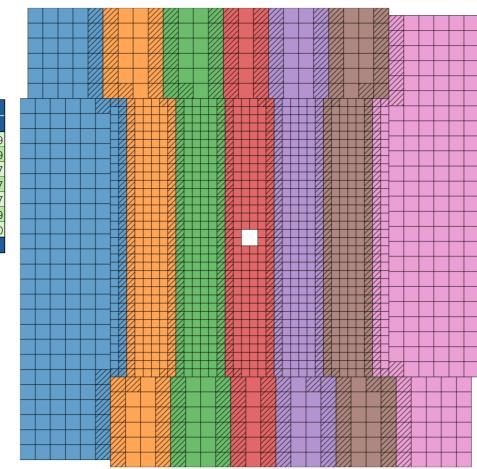
- An improved DAQ system is critical for the targeted event rates: 25 kHz
 - Bandwidth bottleneck to transfer data from thousands of GEM channels
 - Zero suppression or more MPDs (more details from Xinzhan's talk)
 - Expected start of the work for testing and integration in the 2024/12
- A factor of 5 needed for the rates
 - fewer APVs per MPD
 - Increase of the bandwidth
 - Online zero-suppression

Proposed PRad-II/X17 Triggers


- Pulsar/internal triggers
 - Internal triggers
 - Random pulsar (from alpha source in the LMS system)
 - Fixed-frequency pulsar (from function generator that drives the LMS system)
- FADC triggers
 - Total energy sum
 - [x] MeV (need calibration)
 - Cluster triggers
 - Number of clusters [x]
 - Energy threshold for each cluster [y] MeV (need calibration)
 - Energy sum of the clusters [z] MeV
 - Scintillator veto

Clustering Trigger – Module Segment

- VPCB boards at HyCal back
 - 10 boards x 180 connectors each
 - Connect to 1152 + 576 = 1728 modules
- FADC modules, each has 16 channels
 - Better to have all modules of the same type
- Connections between crates
 - Needed for clustering (3x3) at trigger level
 - To communicate with adjacent crates
 - Each crate has 1 VTP with 4 optical links
 - Each optical links send/receive 32 FADC channels from other crates (128 TX/RX in total)
 - If two adjacent crates, each boundary should have <= 64 modules

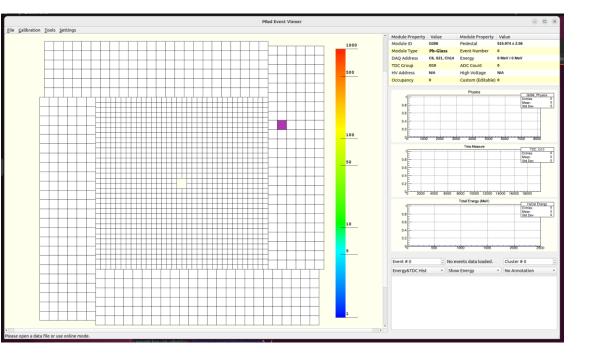

Segment of HyCal

Croto No	No. of Ch.			No. of FADCs		Optical Links		
Crate No.	All	PbWO4	LG	All	PbWO4	LG	To Left	To Right
1	242	68	174	16	5	11	0	49
2	252	204	48	16	13	3	49	49
3	252	204	48	16	13	3	47	47
4	236	200	36	16	13	3	47	47
5	252	204	48	16	13	3	47	47
6	252	204	48	16	13	3	49	49
7	242	68	174	16	5	11	49	0
Total: 7	1728	1152	576	112				

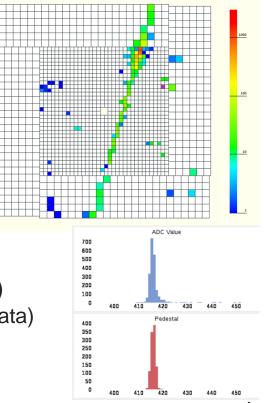
In total: 7 crates and 112 FADC modules

- <= 16 FADC modules per crate</p>
- <= 16 channels per FADC module</p>
- <= 64 channels to link between adjacent crates</p>
- ✓ Single type of modules in each FADC

Detailed DAQ assignment (crate, slot, channel) can be found at https://github.com/JeffersonLab/prad2_dag



PRad Software and Online Monitoring


- PRadAnalyzer: still working <u>https://github.com/JeffersonLab/PRadAnalyzer</u>
- Event Reconstruction
 - Clustering for both HyCal and GEM
 - Non-linearity correction
 - Energy-leakage correction
 - Detector location and rotation correction
- Online monitoring
 - Read data from CODA ET
 - Read scalers info injected into the data stream
 - High-voltage control and monitoring

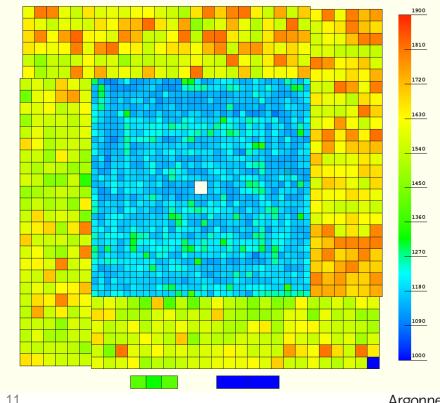
Online-monitoring Experimental Data

- Event visualization in the GUI
 - Energy deposit on modules
 - Occupancy of the whole HyCal
 - Pedestal mean and sigma
- Histograms
 - Energy sum spectrum (crystal, LG, and all)
 - ADC spectrum for each channel
 - TDC spectrum for each TDC group
- Planned work (need a fully running DAQ to test)
 - Update viewer/histograms for FADC (waveform data)
 - Add more physics-related histograms
 - May modernize the GUI

High-voltage Control

High voltage crates are controlled via the network using CAEN library

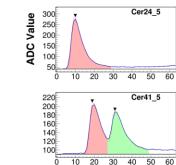
This configuration file tells the program to add CAEN high voltage crate # The CAEN HV channel is presumed to have the same name of the connected HyCal module # Crate name crate ip crate id PRadHV 1 129.57.160.67 PRadHV 2 129.57.160.68 2 PRadHV 3 3 129.57.160.69 PRadHV 4 129.57.160.70 PRadHV 5 129.57.160.71


A list of channels are pre-defined (on the crate, the software reads it)

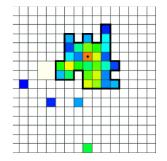
#	crate	slot	channel	name	VMon	VSet
	PRadHV_1	0	0	PRIMARY1_0	1887.8	1900
	PRadHV_1	0	1	G235	1657	1668.4
	PRadHV_1	0	2	G118	1541.2	1552
	PRadHV_1	0	3	G25	1637.4	1649
	PRadHV_1	0	4	G177	1608.8	1620
	PRadHV_1	0	5	G60	1676.4	1687.8
	PRadHV_1	0	6	G236	1599	1610.2
	PRadHV_1	0	7	G119	1541	1552
	PRadHV_1	0	8	G26	1801.4	1814
	PRadHV_1	0	9	G178	1676.2	1687.8
	PRadHV_1	0	10	G85	1560.8	1571.4
	PRadHV_1	0	11	G237	1599.2	1610.2
	DD aduly 1	0	10	C130	1 - 41 4	1550

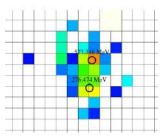
Online-monitoring the Detector

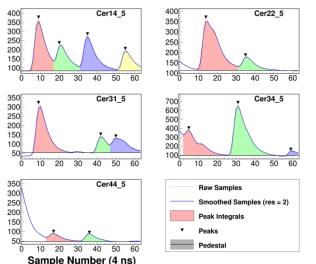
- Existing monitoring
 - High-voltage
 - EPICS channels values
- Need to implement
 - HyCal temperature monitoring
 - Visualizations for EPICS channels
 - HyCal temperature
 - Target status
 - Scalers reading


Data Analysis Framework

- PRadAnalyzer is also used for cooking data
 - Decode the evio file written by the DAQ system
 - Reconstruct raw detector outputs to hit information
 - Clustering for HyCal and GEM
 - Event matching


Planned updates


- Decoding FADC data
- Waveform analysis
 - Pedestal fitting
 - Separate peaks
 - Timing, integral
- Ready as standalone code
 - Need to be integrated



Clustering for HyCal

Plans and Milestones for the DAQ and Software

- Single channel DAQ
- Full HyCal DAQ
 - High-voltage, LMS
 - Connections to FADC
 - Trigger implementation
- Cosmic gain-matching
- Integration of GEM DAQ

- Decoder and waveform analysis for FADC
- Validate HV control
- Integration of GEM decoder
- Online Monitoring Updates
 - HyCal temperature
 - Scalers visualization
 - More physics histograms

