Experimental Program at Jefferson Lab to Explore Tensor-TMDs in Deuteron

Nathaly Santiesteban

On behalf of the SIDIS-Tensor collaboration

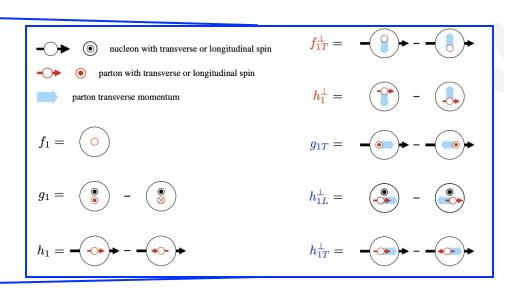
QCD Evolution Workshop

Today's talk

• Spin-1 TMDs

Tensor SIDIS with a longitudinal polarized target

 Tensor SIDIS measurements at JLAb with a longitudinal polarized target.


Status of the tensor target

Spin-1/2: Leading twist distribution functions

Quark	U (γ ⁺)		$L(\gamma^+\gamma_5)$		$T(i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					$[h_1^{\perp}]$
L			$g_{1\mathrm{L}}$		$[h_{1 ext{L}}^{ot}]$	
T		$f_{1 ext{T}}^{\scriptscriptstyle \perp}$	$g_{1\mathrm{T}}$		$[h_1],[h_{ ext{IT}}^{ot}]$	

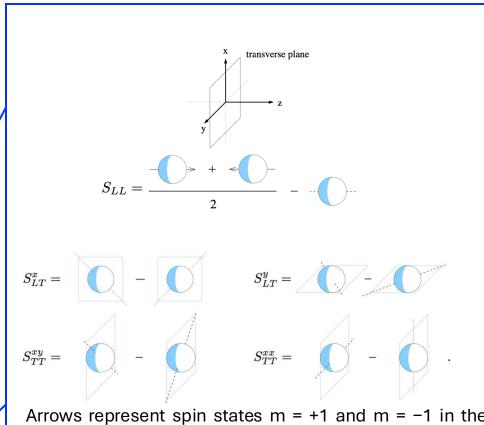
After integration upon p_T

Quark	U (γ ⁺)		L (y	$^{+}\gamma_{5}$)	$T(i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					
L			$g_{1L}(g_1)$			
Т					[<i>h</i> ₁]	

Phys. Rev. D 62, 114004 (2000)

Spin-1

Theory developments


- •Leading twist (thesis): arXiv:hep-ph/0212025
- •Leading twist: Phys. Rev. D 62 (2000)
- •Polarized deuteron DIS with spectator tagging: Phys. Rev. C 102, 065204 (2020)
- •Up to twist 4: Phys. Rev. D 103 (2021)
- •Formalism and covariant calculations: Phys. Rev. C 96, no.4, 045206 (2017)

Spin-1: Leading twist distribution functions

Quark	U (γ ⁺)		$L(\gamma^+\gamma_5)$		$T(i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					$[h_1^{\perp}]$
L			$g_{1\mathrm{L}}$		$[h_{1 ext{L}}^{ot}]$	
Т		$f_{1 ext{T}}^{\scriptscriptstyle \perp}$	$g_{1\mathrm{T}}$		$[h_1],[h_{ ext{IT}}^ot]$	
LL	$f_{ m 1LL}$					$[h_{\mathrm{1LL}}^{\perp}]$
LT	$f_{1 \rm LT}$			g_{1LT}		$[h_{1 ext{LT}}], [h_{1 ext{LT}}^{\perp}]$
ТТ	$f_{ m ITT}$			$g_{1\mathrm{TT}}$		$[h_{1 ext{TT}}], [h_{1 ext{TT}}^{\perp}]$

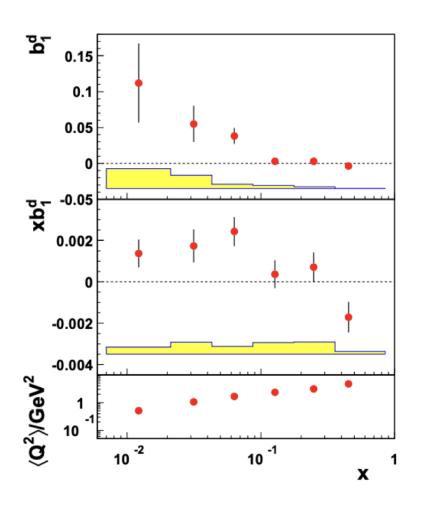
After integration upon p_T

Quark	U (γ ⁺)		L (y	$^{+}\gamma_{5}$)	$T (i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					
L			$g_{1L}(g_1)$			
Т					$[h_1]$	
LL	$f_{1LL}(b_1)$					
LT						*1
TT						

Arrows represent spin states m = +1 and m = -1 in the direction of the arrow itself, while dashed lines denote spin state m = 0 again in the direction of the line itself

Spin-1: Leading twist distribution functions

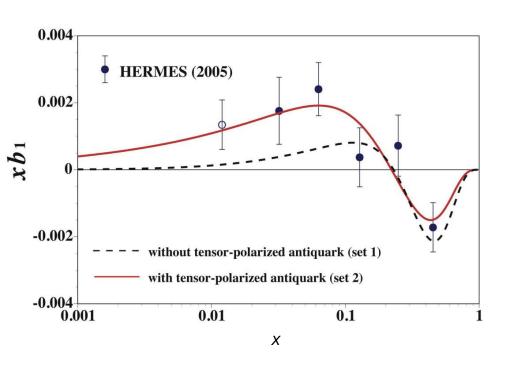
Quark	U (γ ⁺)		$L(\gamma^{+}\gamma_{5})$		$T(i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					$[h_1^{\perp}]$
L			$g_{1\mathrm{L}}$		$[h_{1 ext{L}}^{ot}]$	1
Т		$f_{1 ext{T}}^{\scriptscriptstyle \perp}$	$g_{1\mathrm{T}}$		$[h_1],[h_{\rm IT}^\perp]$	
LL	$f_{ m 1LL}$					$[h_{1 ext{LL}}^{ot}]$
LT	$f_{1\mathrm{LT}}$			g_{1LT}		$[h_{1\mathrm{LT}}],[h_{1\mathrm{LT}}^{\perp}]$
TT	f_{1TT}			$g_{1\mathrm{TT}}$		$[h_{1 ext{TT}}], [h_{1 ext{TT}}^{\perp}]$

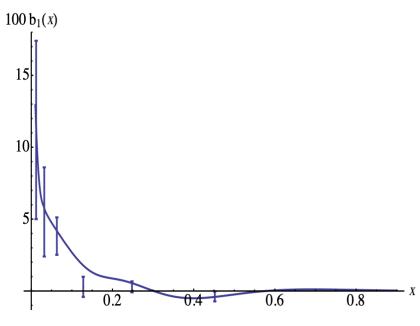

After integration upon p_T

Quark	U (γ ⁺)		L (γ	$^{+}\gamma_{5}$)	$T (i\sigma^{i+}\gamma_5/\sigma^{i+})$	
Hadron	T-even	T-odd	T-even	T-odd	T-even	T-odd
U	f_1					
L			$g_{1L}(g_1)$			
Т					$[h_1]$	
LL	$f_{1 ext{LL}}(b_1)$					
LT						*1
ТТ						

- •Only b_1 has been measured by HERMES <u>Phys.Rev.Lett. 95 (2005)</u>.
- •A new measurement of b_1 will be done at JLab (E12-13-011).

SIDIS spin-1 measurements open the door to a complete new set of observables that can tell us about color degrees of freedom and beyond standard hadron physics.


HERMES Experiment: First Measurement of b₁

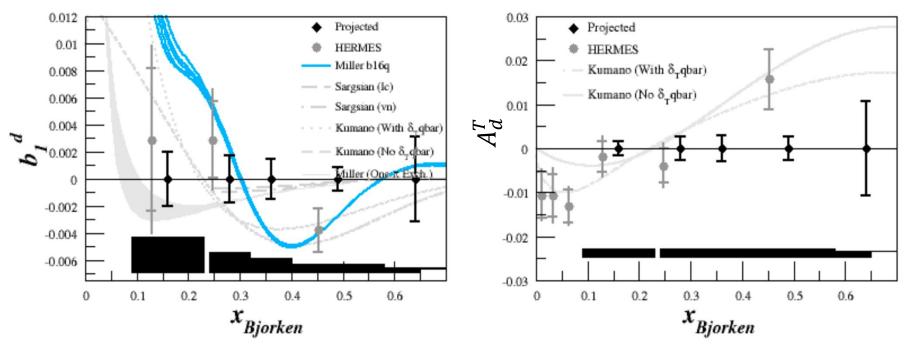


- •27.6 GeV/c positron beam of Hera
- •0.5 GeV 2 /c 2 < Q^2 < 5 GeV 2 /c 2
- $\bullet 0.01 < x < 0.45$
- •Positrons in the momentum range of 2.5 GeV/c to 27 GeV/c
- •The average target vector $\mathcal P$ and tensor $\mathcal Q$ polarizations are typically more than 80%
- •Polarized gas target (integrated luminosity 42 pb⁻¹)
- •The rise of b_1 for decreasing values of x can be interpreted to originate from the same mechanism that leads to nuclear shadowing in unpolarized scattering.

Phys. Rev. Lett. 95, 242001(2005)

Theory predictions of b₁

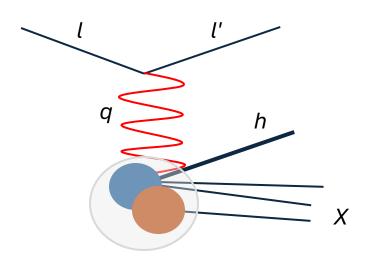
We found that a significant antiquark tensor polarization exists if the overall tensor polarization vanishes for the valence quarks although such a result could depend on the assumed functional form. Further experimental measurements are needed for b_1 such as at JLab as well as Drell-Yan measurements with tensor-polarized deuteron at hadron facilities, J-PARC and GSI-FAIR.


Hidden-color model: six-quark configurations (with $\sim 0.15\%$ probability to exist in the deuteron) proposed and found to give substantial contributions for values of x > 0.2.

Phys. Rev. D 82, 017501 (2010)

Phys. Rev. C 89, 045203 (2014)

E12-13-011Approved Experiment at Jefferson Lab


Inclusive Measurement

0.16 < x < 0.49 $0.8 5 \text{ GeV}^2/\text{c}^2 < Q^2 < 5.0 5 \text{ GeV}^2/\text{c}^2$ Incident beam (electrons): E= 11 GeV

Slifer, Chen, Kalantarians, Keller, Long, Rondon, Santiesteban, Solvignon

Semi-Inclusive Deep Inelastic Scattering

Longitudinally polarized target

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2\,(1-\varepsilon)}\,\left(1+\frac{\gamma^2}{2x}\right) \\ & \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} \right. \\ & \left. + \varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} \right. \\ & \left. + S_{\parallel}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h}\right] \right. \\ & \left. + S_{\parallel}\lambda_e\,\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \right. \\ & \left. + T_{\parallel\parallel}\left[F_{U(LL),T} + \varepsilon F_{U(LL),L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{U(LL)}^{\cos\phi_h}\right] \right. \\ & \left. + \varepsilon\cos(2\phi_h)\,F_{U(LL)}^{\cos\,2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{L(LL)}^{\sin\phi_h}\right] \right\}. \end{split}$$

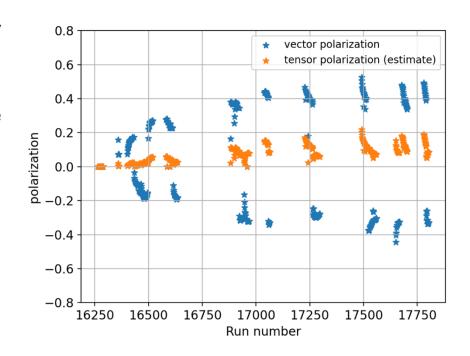
, S_{\parallel} is the vector polarization, and $T_{\parallel\parallel}$ is the tensor polarization of target in parallel to the virtual photon direction which are related with ${\cal P}$ and ${\cal Q}$ along the direction of electron beam

Courtesy of A. Bacchetta (2023).

Tensor-polarized structure functions

$$\begin{split} & F_{U(LL),T} = \mathcal{C} \big[f_{1LL} D_1 \big], \\ & F_{U(LL),L} = 0, \\ & F_{U(LL)}^{\cos\phi_h} = \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x h_{LL} \, H_1^\perp + \frac{M_h}{M} \, f_{1LL} \frac{\tilde{D}^\perp}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x f_{LL}^\perp D_1 + \frac{M_h}{M} \, h_{1LL}^\perp \frac{\tilde{H}}{z} \right) \right], \\ & F_{U(LL)}^{\cos 2\phi_h} = \mathcal{C} \left[-\frac{2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{M M_h} h_{1LL}^\perp H_1^\perp \right], \\ & F_{L(LL)}^{\sin\phi_h} = \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x e_{LL} \, H_1^\perp + \frac{M_h}{M} \, f_{1LL} \frac{\tilde{G}^\perp}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x g_{LL}^\perp D_1 + \frac{M_h}{M} \, h_{1LL}^\perp \frac{\tilde{E}}{z} \right) \right]. \end{split}$$

Spin-1 leading twist


Eur. Phys. J. A (2025) 61: 81

Experimental Measurements

Step 1: Exploratory measurement with CLAS12 data

Run Group C at CLAS12:

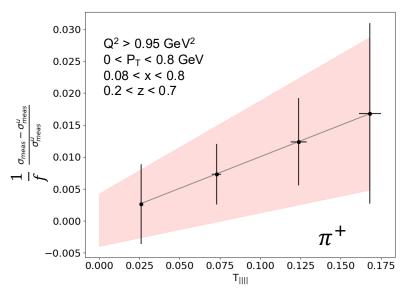
- 8 experiments using the CLAS12 to study the multidimensional partonic structure of nucleons
- Longitudinally polarized electrons are scattered from polarized ND₃ targets, dynamically polarized via DNP at 1 K in a 5 T magnetic field
- While the ND₃ target is not optimized for tensor polarization, the DNP process induces a measurable tensor component, allowing for estimates of tensor structure function contributions relevant to the dedicated tensor measurements.

Courtesy: P Pandey

CAA: Spin 1 Transverse Momentum Dependent Tensor Structure Functions in CLAS12

CAA: Spin 1 Transverse Momentum Dependent Tensor Structure Functions in CLAS12

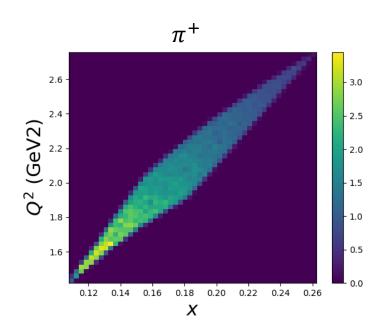
Data: Run Group C

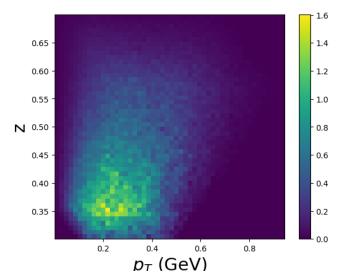

Simplified version:

Unpolarized Tensor
$$\sigma_{meas}^{total} = \sigma_{u}^{D} + \mathcal{P}\sigma_{v} + \mathcal{Q}\sigma_{T} + \sum_{\text{Other Nuclei}} \sigma_{i}$$
 Other Nuclei (N, He, etc)

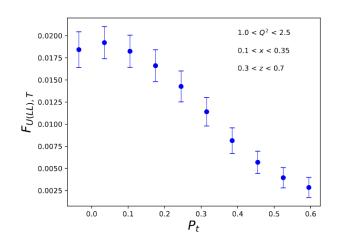
Summing over positive and negative vector polarization:

$$\frac{\sigma_T}{\sigma_u^D} = \frac{1}{f} \frac{\sigma_{meas}^{total} - \sigma_{meas}^u}{\sigma_{meas}^u}$$


f: Dilution factor due to all other nuclei in the target sample σ_i



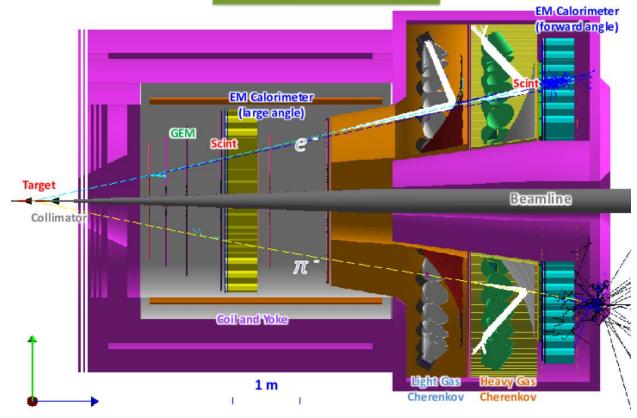
- This measurement will help to understand the tensor contribution.
- Currently assuming 10% of the unpolarized contribution as the inclusive measurement.
- Our predictions imply a 60% uncertainty.
- Crucial to propose new experiments.


Experimental Measurements

Step 2: Dedicated measurement with CLAS12 data

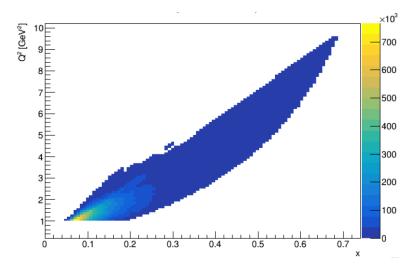
LOI: Spin-1 TMDs and Structure Functions of the Deuteron

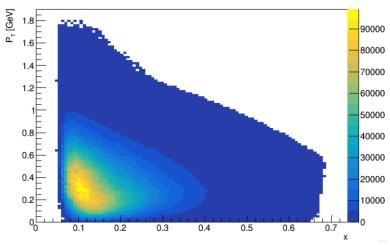
	$\theta \; (\mathrm{deg.})$	$\phi~({ m deg.})$	P (GeV)
Electron	10.3 - 12.4	-2.87 - 2.87	4.0 - 5.4
Hadron	5.0 - 15.0	167 - 193	2.0 - 4.0

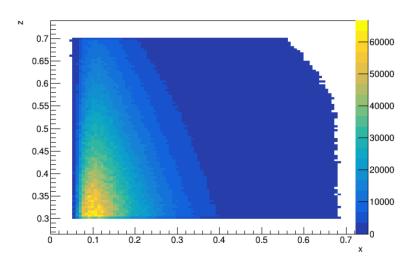

The kinematic ranges assumed for the chosen momentum setting in SHMS (electron) and SBS (hadron)

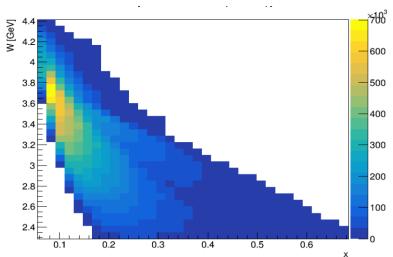
Ruth, Santiesteban, Chen, Slifer, Poudel, Fernando, Keller, Long, Bacchetta

Experimental Measurements

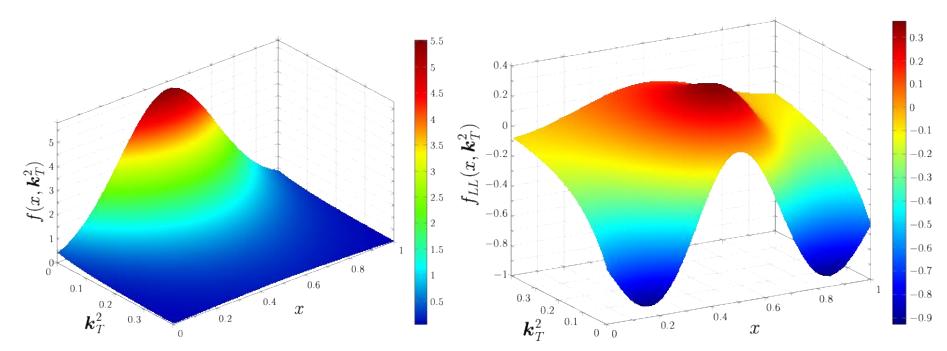

Step 3: Future program at SoLID


SoLID (SIDIS and J/ψ)


0.3 < z < 0.7 $Q^2 > 1.0 \,\text{GeV}^2$ $W > 2.3 \,\text{GeV}$


Unpolarized rates for π^-

1 week of running

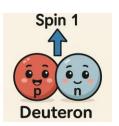


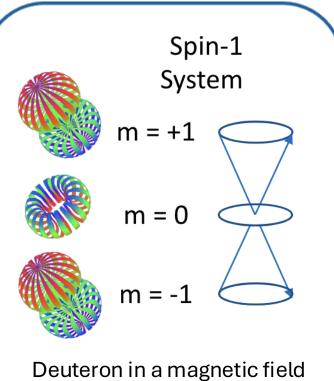
Assuming:

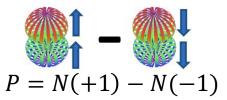
- •Luminosity 10³⁵ cm²/s
- •Pure D-> 1n + 1p

Currently incorporating covariant calculations

Spin-one ρ particle Next: Deuteron


Tensor polarized TMDs may have surprising features


Our path for the Spin-1 SIDIS program


- •Exploratory measurement Use Hall B data (Run group C \sim 12% tensor polarization) to estimate the rates and possible sensitivity to structure functions shape/structure.
- •Dedicated measurement: Propose a run in the short term (probably around the time of the already approved tensor experiments) to map the longitudinal distributions with better precision.
- •Continue target development and plan for all possible configurations of polarization and higher polarizations.
- •Formalize a plan to measure the distributions with the SoLID detector.

Status of the polarized target

Vector Polarization:

Tensor Polarization:

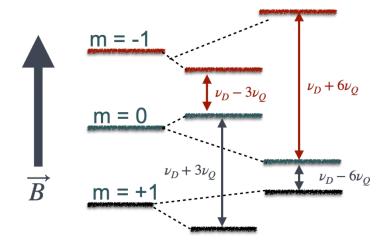
$$Q = N(+1) + N(-1) - 2N(0)$$

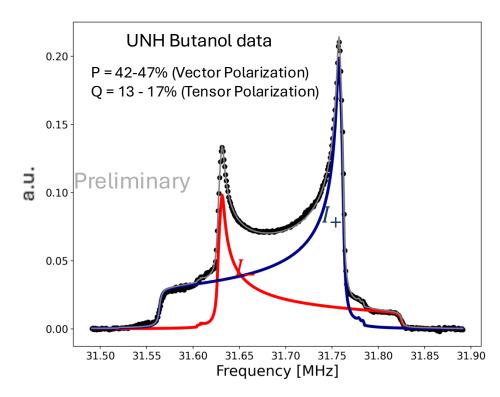
N(m): population density

$$N(+1) + N(-1) + N(0) = 1$$

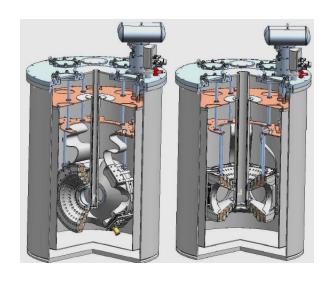
Normalization

Deuteron Polarization

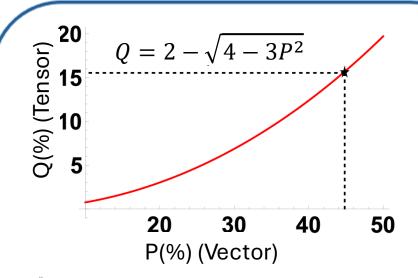

$$E_m = -h\nu_D m + h\nu_Q (\cos^2 \theta - 1)(3m^2 - 2)$$


eQ: Electric quadrupole interaction (shifts the energy levels)

eq: Electric field gradient


 θ : angle between eq and eQ

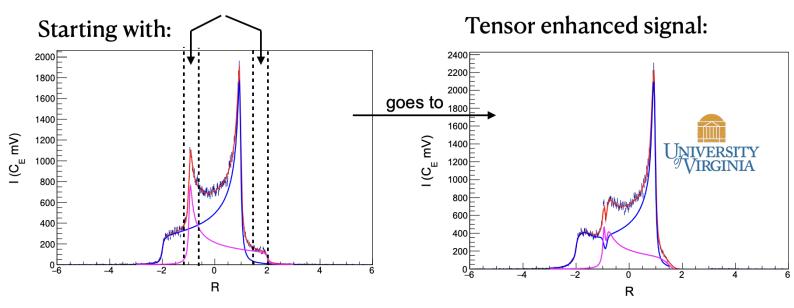
 v_D : deuteron Larmor frequency


Enhancing Vector polarization: DNP Technique

Requirements

- High magnetic field (at JLab typically 5T)
- Low temperature (~1K)
- Microwaves (induce spin transitions)
- CW NMR
- Irradiated material ND₃

Dynamic Nuclear Polarization (DNP): technique used to enhance vector polarization



DNP enhancement carries tensor polarization enhancement.

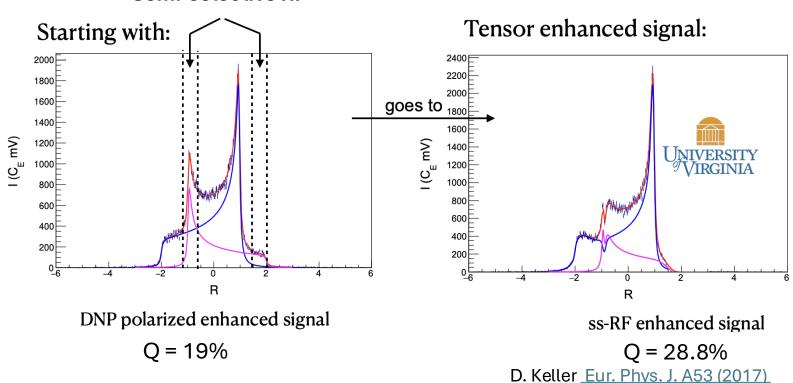
★ Typical average vector polarization in Jefferson lab $P \sim 45\%$ which corresponds to $Q \sim 16\%$

Enhancing tensor polarization

Semi-selective RF

DNP polarized enhanced signal

$$Q = 19\%$$


ss-RF enhanced signal

$$Q = 28.8\%$$

D. Keller <u>Eur. Phys. J. A53 (2017)</u>

Enhancing tensor polarization

- Low tensor polarization has limited physics experiments.
- New target developments are ongoing, with an enhancement of up to 30%.
- Two experiments to measure tensor observables have been approved.
- Several new experiments are underway.

Unlocking Spin-1 Structure: Key Questions & Future Directions

- How can we extract/interpret TMDs from the experiment?
 - How spin-1 will be different from spin-1/2?
 - What is QCD Evolution of Spin-1 TMDs?
 - What role do higher-twist or higher-order corrections play in the TMD description of the deuteron?

Join our efforts!

Experimentalist looking for

Thank you!