Rapidity factorization and rapidity evolution in QCD

Ian Balitsky

QCD evolution 2025 23 May 2025

Ian Balitsky

Outline

- Part 1: High-energy scattering and rapidity evolution of color dipoles:
 - Rapidity factorization for small-x DIS
 - Shock-wave picture of high-energy scattering.
 - Non-linear rapidity evolution of color dipoles
 - Rapidity evolution of color dipoles at the NLO
- 2 Part 2: Rapidity-only TMD factorization and power corrections
 - TMD factorization for particle production in hadron collisions.
 - Leading-*N_c* power corrections for DY hadronic tensor.
 - Results for Z-boson production: angular asymmetries.
 - Estimates for unpolarized SIDIS at EIC.

3 Part 3: Rapidity factorization and rapidity evolution of TMDs:

- Rapidity-only cutoff vs UV+rapidity regularization
- Rapidity evolution of TMDs in the Sudakov region.
- Argument of coupling constant by BLM.
- Rapidity-only factorization at one loop.

4 Conclusions

DIS at high energy

• At high energies, particles move along straight lines \Rightarrow the amplitude of $\gamma^*N \rightarrow \gamma^*N$ scattering reduces to the matrix element of a two-Wilson-line operator (color dipole).

Space-time picture in the target (proton) frame.

DIS at high energy

• At high energies, particles move along straight lines \Rightarrow the amplitude of $\gamma^*N \rightarrow \gamma^*N$ scattering reduces to the matrix element of a two-Wilson-line operator (color dipole).

Space-time picture in the target (proton) frame.

Energy dependence of amplitude is governed by the rapidity evolution of color dipoles

Spectator frame: propagation in the shock-wave background.

Each path is weighted with the gauge factor $Pe^{ig \int dx_{\mu}A^{\mu}}$. Quarks and gluons do not have time to deviate in the transverse space \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

[$x \rightarrow z$: free propagation]× [$U^{ab}(z_{\perp})$ - instantaneous interaction with the $\eta < \eta_2$ shock wave]× [$z \rightarrow y$: free propagation]

I. Balitsky (JLAB & ODU)

Rapidity factorization

USM seminar

4/47

Rapidity factorization for DIS at small *x*

η - rapidity factorization scale

Rapidity Y > η - coefficient function ("impact factor") Rapidity Y < η - matrix elements of (light-like) Wilson lines with rapidity divergence cut by η

$$U_x^{\eta} = \operatorname{Pexp}\left[ig \int_{-\infty}^{\infty} dx^+ A_+^{\eta}(x_+, x_\perp)\right]$$
$$A_{\mu}^{\eta}(x) = \int \frac{d^4k}{(2\pi)^4} \theta(e^{\eta} - |\alpha_k|) e^{-ik \cdot x} A_{\mu}(k)$$

High-energy OPE in color dipoles

The high-energy operator expansion is

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^2 z_1 d^2 z_2 \ I^{\text{LO}}_{\mu\nu}(z_1, z_2, x, y) \text{Tr}\{\hat{U}^{\eta}_{z_1}\hat{U}^{\dagger\eta}_{z_2}\}$$

+ NLO contribution

High-energy OPE in color dipoles

η - rapidity factorization scale

Evolution equation for color dipoles

$$\frac{d}{d\eta} \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} = \frac{\alpha_s}{2\pi^2} \int d^2 z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} [\operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} - N_c \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \}] + \alpha_s K_{\mathrm{NLO}} \operatorname{tr} \{ U_x^{\eta} U_y^{\dagger \eta} \} + O(\alpha_s^2)$$

(Linear part of $K_{\rm NLO} = K_{\rm NLO BFKL}$)

To get the evolution equation, consider the dipole with the rapidies up to η_1 and integrate over the gluons with rapidities $\eta_1 > \eta > \eta_2$. This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidities up to η_2).

Evolution equation in the leading order

 $U_z^{ab} = \operatorname{Tr}\{t^a U_z t^b U_z^\dagger\} \quad \Rightarrow (U_x U_y^\dagger)^{\eta_1} \to (U_x U_y^\dagger)^{\eta_1} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^\dagger U_z U_y^\dagger)^{\eta_2}$

 \Rightarrow Evolution equation is non-linear

Non linear evolution equation

$$\hat{\mathcal{U}}(x,y) \equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\}$$

BK equation

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,z) - \hat{\mathcal{U}}(x,z) \hat{\mathcal{U}}(z,y) \Big\}$$

I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK (1997-2000)

Non-linear evolution equation

$$\hat{\mathcal{U}}(x,y) \equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\}$$

BK equation

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,z) - \hat{\mathcal{U}}(x,z) \hat{\mathcal{U}}(z,y) \Big\}$$

I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \Rightarrow BFKL

(LLA: $\alpha_s \ll 1, \alpha_s \eta \sim 1$)

Non-linear evolution equation

$$\hat{\mathcal{U}}(x,y) \equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\}$$

BK equation

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z) \hat{\mathcal{U}}(z,y) \Big\}$$

I. B. (1996), Yu. Kovchegov (1999) Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \Rightarrow BFKL (LLA: $\alpha_s \ll 1, \alpha_s \eta \sim 1$) LLA for DIS in sQCD \Rightarrow BK eqn (LLA: $\alpha_s \ll 1, \alpha_s \eta \sim 1, \alpha_s A^{1/3} \sim 1$) (s for semiclassical)

Sample diagrams for NLO BK kernel

$$\begin{aligned} \text{I. B. and G. Chiril} \\ a\frac{d}{da}[\text{tr}\{U_{z_1}U_{z_2}^{\dagger}\}]_a^{\text{comp}} &= \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \left([\text{tr}\{U_{z_1}U_{z_3}^{\dagger}\}\text{tr}\{U_{z_3}U_{z_2}^{\dagger}\} - N_c \text{tr}\{U_{z_1}U_{z_2}^{\dagger}\}]_a^{\text{comp}} \right. \\ &\times \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[1 + \frac{\alpha_s N_c}{4\pi} \left(b \ln z_{12}^2 \mu^2 + b \frac{z_{13}^2 - z_{23}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{13}^2}{z_{23}^2} + \frac{67}{9} - \frac{\pi^2}{3}\right)\right] \\ &+ \frac{\alpha_s}{4\pi^2} \int \frac{d^2 z_4}{z_{34}^4} \left\{ \left[-2 + \frac{z_{14}^2 z_{23}^2 + z_{24}^2 z_{13}^2 - 4z_{12}^2 z_{34}^2}{2(z_{14}^2 z_{23}^2 - z_{24}^2 z_{13}^2)} \ln \frac{z_{14}^2 z_{23}^2}{z_{24}^2 z_{13}^2}\right] \right] \\ &\times \left[\text{tr}\{U_{z_1}U_{z_3}^{\dagger}\}\text{tr}\{U_{z_3}U_{z_4}^{\dagger}\}\{U_{z_4}U_{z_2}^{\dagger}\} - \text{tr}\{U_{z_1}U_{z_3}^{\dagger}U_{z_4}U_{z_2}^{\dagger}U_{z_3}U_{z_4}^{\dagger}\} - (z_4 \rightarrow z_3)\right] \\ &+ \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2} \left[2 \ln \frac{z_{12}^2 z_{34}^2}{z_{23}^2 z_{14}^2} + \left(1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{23}^2 z_{14}^2}\right) \ln \frac{z_{13}^2 z_{24}^2}{z_{23}^2 z_{14}^2}\right] \\ &\times \left[\text{tr}\{U_{z_1}U_{z_3}^{\dagger}\}\text{tr}\{U_{z_3}U_{z_4}^{\dagger}\}\text{tr}\{U_{z_4}U_{z_2}^{\dagger}\} - \text{tr}\{U_{z_1}U_{z_4}^{\dagger}U_{z_3}U_{z_4}^{\dagger}U_{z_4}U_{z_3}^{\dagger}\} - (z_4 \rightarrow z_3)\right]\right\} \\ &\left. b = \frac{11}{3}N_c - \frac{2}{3}n_f \right] \end{aligned}$$

 $K_{NLO BK}$ = Running coupling part + Conformal "non-analytic" (in j) part + Conformal analytic (N = 4) part

Linearized $K_{\rm NLO\ BK}$ reproduces the known result for the forward NLO BFKL kernel.

Argument of coupling constant

$$\begin{aligned} \frac{d}{d\eta} \hat{\mathcal{U}}(z_1, z_2) &= \\ \frac{\alpha_s(?_\perp)N_c}{2\pi^2} \int dz_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \Big\{ \hat{\mathcal{U}}(z_1, z_3) + \hat{\mathcal{U}}(z_3, z_2) - \hat{\mathcal{U}}(z_1, z_2) - \hat{\mathcal{U}}(z_1, z_3) \hat{\mathcal{U}}(z_3, z_2) \Big\} \end{aligned}$$

Argument of coupling constant

$$\begin{aligned} \frac{d}{d\eta}\hat{\mathcal{U}}(z_1, z_2) &= \\ \frac{\alpha_s(?_\perp)N_c}{2\pi^2} \int dz_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \Big\{ \hat{\mathcal{U}}(z_1, z_3) + \hat{\mathcal{U}}(z_3, z_2) - \hat{\mathcal{U}}(z_1, z_2) - \hat{\mathcal{U}}(z_1, z_3)\hat{\mathcal{U}}(z_3, z_2) \Big\} \end{aligned}$$

BLM or renormalon approach: summation of quark bubbles

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\} = \frac{\alpha_{s}(z_{12}^{2})}{2\pi^{2}} \int d^{2}z \left[\operatorname{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{3}}^{\dagger}\}\operatorname{Tr}\{\hat{U}_{z_{3}}\hat{U}_{z_{2}}^{\dagger}\} - N_{c}\operatorname{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\}\right] \times \left[\frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} + \frac{1}{z_{13}^{2}}\left(\frac{\alpha_{s}(z_{13}^{2})}{\alpha_{s}(z_{23}^{2})} - 1\right) + \frac{1}{z_{23}^{2}}\left(\frac{\alpha_{s}(z_{23}^{2})}{\alpha_{s}(z_{13}^{2})} - 1\right)\right] + \dots \\ I.B.; Yu. \text{ Kovchegov and H. Weigert (2006)}$$

When the sizes of the dipoles are very different the kernel reduces to:

$\frac{\alpha_s(z_{12}^2)}{2\pi^2} \frac{z_{12}^2}{z_{13}^2 z_{23}^2}$	$ z_{12} \ll z_{13} , z_{23} $
$\frac{\alpha_s(z_{13}^2)}{2\pi^2 z_{13}^2}$	$ z_{13} \ll z_{12} , z_{23} $
$rac{lpha_{s}(z_{23}^{2})}{2\pi^{2}z_{23}^{2}}$	$ z_{23} \ll z_{12} , z_{13} $

 \Rightarrow the argument of the coupling constant is given by the size of the smallest dipole.

I. Balitsky (JLAB & ODU)

Rapidity factorization

Part 2: Rapidity-only TMD factorization and power corrections

TMD factorization

TMD factorization formula for particle production in hadron-hadron scattering looks like

$$rac{d\sigma}{d\eta d^2 q_\perp} \;=\; \sum_{
m flavors} e_f^2 \int d^2 k_\perp \mathcal{D}_{f/A}(x_A,k_\perp) \mathcal{D}_{f/B}(x_B,q_\perp-k_\perp) C(q,k_\perp)$$

+ power corrections + "Y - terms"

- $\mathcal{D}_{f/A}(x_A, k_{\perp})$ is the TMD density of a parton *f* in hadron *A* with fraction of momentum x_A and transverse momentum k_{\perp} ,
- $\mathcal{D}_{f/B}(x, q_{\perp} k_{\perp})$ is a similar quantity for hadron *B*,
- $C_i(q,k)$ are determined by the cross section $\sigma(ff \to \mu^+ \mu^-)$ of production of DY pair of invariant mass q^2 in the scattering of two partons.

Examples: Drell-Yan process with Q being the mass of DY pair and Higgs production by gluon-gluon fusion

TMD approach is relevant when the transverse momentum $q_\perp \ll Q$

$$\frac{d\sigma}{d\eta d^2 q_{\perp}} = \sum_{\text{flavors}} e_f^2 \int d^2 k_{\perp} \mathcal{D}_{f/A}(x_A, k_{\perp}) \mathcal{D}_{f/B}(x_B, q_{\perp} - k_{\perp}) C(q, k_{\perp})$$

+ power corrections + "Y - terms"

The quantities $\mathcal{D}_{f/A}(x_A, k_{\perp})$, $\mathcal{D}_{f/B}(x_B, q_{\perp} - k_{\perp})$, and $C(q, k_{\perp})$ are defined with cutoffs. The dependence on the cutoffs cancels in their product order by order in α_s .

At moderate x_A, x_B : CSS/SCET approach. The TMDs $\mathcal{D}_{f/A}(x_A, k_{\perp})$ are defined with a combination of UV and rapidity cutoffs.

At $x_A, x_B \ll 1$: k_T -factorization approach. The TMDs are defined with rapidity-only cutoffs.

It is impossible to extend CSS to small *x*. (Recently: LO BFKL from SCET)

It *is* possible to study TMD factorization at moderate *x* using small-*x* methods (rapidity-only factorization etc.) (A. Tarasov, G. Chirilli, I.B, 2015-2023)

Example: full list of power corrections $\sim \frac{1}{Q^2}$ for DY hadronic tensor. They are not obtained (yet?) by CSS or SCET

Classical example: DY hadronic tensor

DY cross section is given by the product of leptonic tensor and hadronic tensor. The hadronic tensor $W_{\mu\nu}$ is defined as

$$W_{\mu
u}(p_A, p_B, q) = \frac{1}{(2\pi)^4} \int d^4x \; e^{-iqx} \langle p_A, p_B | J_\mu(x) J_\nu(0) | p_A, p_B \rangle$$

 p_A, p_B = hadron momenta, q = the momentum of DY pair, and J_{μ} is the electromagnetic or Z-boson current.

There are four tensor structures W_T , W_L , W_{Δ} , $W_{\Delta\Delta}$

Sudakov variables:

$$p = \alpha p_1 + \beta p_2 + p_\perp, \qquad p_1 \simeq p_A, \ p_2 \simeq p_B, \ p_1^2 = p_2^2 = 0$$

The result of the integration over "central" fields in the background of projectile and target fields is a series of TMD operators made from projectile (or target) fields multiplied by powers of $\frac{1}{O^2} \Rightarrow$ power corrections

TMD representation for W_i

The hadronic tensor in the Sudakov region $q^2 \equiv Q^2 \gg q_{\perp}^2$ can be studied by TMD factorization. For example, functions W_T and $W_{\Delta\Delta}$ can be represented as

 $W_{i} = \sum_{\text{flavors}} e_{f}^{2} \int d^{2}k_{\perp} \mathcal{D}_{f/A}^{(i)}(x_{A}, k_{\perp}) \mathcal{D}_{f/B}^{(i)}(x_{B}, q_{\perp} - k_{\perp}) C_{i}(q, k_{\perp})$ + power corrections + Y - terms

There is, however, a problem with this equation for the functions W_L and W_Δ .

 W_T and $W_{\Delta\Delta}$ are determined by leading-twist quark TMDs, but W_{Δ} and W_L start from terms $\sim \frac{q_{\perp}}{Q}$ and $\sim \frac{q_{\perp}^2}{Q^2}$ determined by quark-quark-gluon TMDs.

The power corrections $\sim \frac{q_{\perp}}{Q}$ were found more than two decades ago but there was no calculation of power corrections $\sim \frac{q_{\perp}^2}{Q^2}$ until recently.

TMD factorization formula structure :

$$\begin{aligned} \langle p'_{A}, p'_{B} | J(x_{1}) J(x_{2}) | p_{A}, p_{B} \rangle &= \sum_{\text{TMD operators}} \int dz_{1}^{-} dz_{2}^{-} dw_{1}^{+} dw_{2}^{+} \mathfrak{C}_{i}(x_{1}, x_{2}; z_{i}^{-}, w_{i}^{+}; \sigma_{p}, \sigma_{t}) \\ &\times \langle p'_{A} | \hat{\mathcal{O}}_{i}^{\sigma_{p}}(z_{2}^{-}, x_{2\perp}; z_{1}^{-}, x_{1\perp}) | p_{B} \rangle \langle p'_{B} | \hat{\mathcal{O}}_{i}^{\sigma_{i}}(z_{2}^{+}, x_{2\perp}; z_{1}^{+}, x_{1\perp}) | p'_{B} \rangle \end{aligned}$$

 $q_{\perp}^2 \ll Q^2 \Rightarrow$ no dynamics in the transverse space (to be demonstrated below)

 $\hat{\mathcal{O}}_i^{\sigma_p}$ - "projectile" TMD operators with $\beta < \sigma_p$ cutoff, e.g

$$\mathcal{O}(z_{1-}, z_{1_{\perp}}, z_{2-}, z_{2_{\perp}}) \equiv \bar{\psi}(z_{1-}, z_{1_{\perp}})[z_{1-}, -\infty]_{z_{1_{\perp}}}\Gamma[-\infty, z_{2+}]_{z_2}\psi(z_{2+}, z_{2_{\perp}})$$

 $\hat{\mathcal{O}}_i^{\sigma_p}$ - "target" TMD operators with $\alpha < \sigma_t$ cutoff, e.g

$$\mathcal{O}(z_{1+}, z_{1\perp}, z_{2+}, z_{2\perp}) \equiv \bar{\psi}(z_{1+}, z_{1\perp})[z_{1+}, -\infty]_{z_{1\perp}} \Gamma[-\infty, z_{2+}]_{z_{2\perp}} \psi(z_{2+}, z_{2\perp}).$$

Standard notation for straight-line gauge link

$$[x, y] \equiv \mathbf{P}e^{ig\int_0^1 du (x-y)^{\mu}A_{\mu}(ux+(1-u)y)} - \text{gauge link}$$

Convenient notations

$$[x_+, y_+]_{z_\perp} \equiv [x_+, 0_-, z_\perp; y_+, 0_-, z_\perp], \quad [x_-, y_-]_{z_\perp} \equiv [x_-, 0_+, z_\perp; y_-, 0_+, z_\perp]$$

Means: "double operator expansion"

Intermediate step: double operator expansion

$$\hat{J}(x_1)\hat{J}(x_2) = \sum_{I,J} \int dz_1^- dz_2^- dw_1^+ dw_2^+ \mathfrak{C}_{IJ}(x_1, x_2; z_i^-, w_i^+; \sigma_p, \sigma_t)$$

$$\times \hat{\mathcal{O}}_I^{\sigma_p}(z_2^-, x_{2\perp}; z_1^-, x_{1\perp}) \hat{\mathcal{O}}_J^{\sigma_t}(z_2^+, x_{2\perp}; z_1^+, x_{1\perp})$$

To find relevant operators and coefficients, it is convenient to consider "matrix" elements of the l.h.s. and r.h.s. in suitable background field

Suitable field \mathbb{A} : solution of classical YM equations with boundary condition that at the remote past the field is a sum of projectile and target fields

$$\begin{split} \langle \hat{J}(x_{1})\hat{J}(x_{2})\rangle_{\mathbb{A}} &= \sum_{I,J} \int dz_{1}^{-} dz_{2}^{-} dw_{1}^{+} dw_{2}^{+} \mathfrak{C}_{IJ}(x_{1},x_{2};z_{i}^{-},w_{i}^{+};\sigma_{p},\sigma_{t}) \\ &\times \langle \hat{\mathcal{O}}_{I}^{\sigma_{p}}(z_{2}^{-},x_{2_{\perp}};z_{1}^{-},x_{1_{\perp}}) \hat{\mathcal{O}}_{J}^{\sigma_{t}}(z_{2}^{+},x_{2_{\perp}};z_{1}^{+},x_{1_{\perp}}) \rangle_{\mathbb{A}} \end{split}$$

Method of solution:

Start with Ψ_{trial} = ψ_A + ψ_B and A_{trial} = Ā_μ + B_μ in the gauge A⁺ = 0, A⁻ = 0
 Correct by computing Feynman diagrams (with retarded propagators) with sources (𝒫 + m)(ψ_A + ψ_B) and J_ν = D^μF^{μν}(A + B)

I. Balitsky (JLAB & ODU)

ψ_C in the tree approximation

It is convenient to choose projectile/target fields as Projectile fields: $\beta = 0 \Rightarrow A(x^-, x_\perp), \ \psi_A(x^-, x_\perp)$ Target fields: $\alpha = 0 \Rightarrow B(x^+, x_\perp), \ \psi_B(x^-, x_\perp)$

Classical background fields: Ψ , \mathbb{A}_{μ}

 ψ_C = sum of tree diagrams in external A, ψ_A and B, ψ_B fields with sources

 $J_{\psi} = (P + m)(\psi_A + \psi_B), \quad J_{\nu} = D^{\mu}F^{\mu\nu}(A + B)$

Classical fields in the leading order in $p_{\perp}^2/p_{\parallel}^2 \sim q_{\perp}^2/Q^2$

The solution of such YM equations in general case is yet unsolved problem (goes under the name "glasma" \Leftrightarrow scattering of two "color glass condensates").

Fortunately, for our case of particle production with $\frac{q_{\perp}}{Q} \ll 1$ we can use this small parameter and construct the approximate solution.

At the tree level transverse momenta are $\sim q_{\perp}^2$ and longitudinal are $\sim Q^2 \Rightarrow$

$$\Psi, \mathbb{A} = \text{series in } \frac{q_{\perp}}{Q}: \quad \Psi = \psi^{(0)} + \psi^{(1)} + ..., \quad \mathbb{A} = A^{(0)} + A^{(1)} + ...$$

NB: After the expansion

٦

$$\frac{1}{p^2 + i\epsilon p_0} \; = \; \frac{1}{p_{\parallel}^2 - p_{\perp}^2 + i\epsilon p_0} \; = \; \frac{1}{p_{\parallel}^2} - \frac{1}{p_{\parallel}^2 + i\epsilon p_0} p_{\perp}^2 \frac{1}{p_{\parallel}^2 + i\epsilon p_0} \; + \dots$$

the dynamics in transverse space is trivial.

Fields are either at the point x_{\perp} or at the point $0_{\perp} \Rightarrow \mathsf{TMDs}$

Leading-*N_c* power corrections

Power corrections are ~ leading twist
$$\times \left(\frac{q_{\perp}}{Q} \text{ or } \frac{q_{\perp}^2}{Q^2}\right) \times \left(1 + \frac{1}{N_c} + \frac{1}{N_c^2}\right).$$

NB: almost all $\bar{q}Gq$ TMDs not suppressed by $\frac{1}{N_c}$ are determined by the $\bar{q}q$ TMDs due to QCD equations of motion

Leading twist (for the projectile nucleon):

$$\varrho \equiv \sqrt{s/2}$$

Power correction:

Application: angular coefficients of Z-boson production

In CMS and ATLAS experiments s = 8 TeV, Q = 80 - 100 GeV and Q_{\perp} varies from 0 to 120 GeV.

Our analysis is valid at $Q_{\perp} = 10 - 30$ GeV and $Y \simeq 0$ ($x_A \sim x_B \sim 0.1$) so that power corrections are small but sizable.

Angular distribution of DY leptons in the Collins-Soper frame ($c_{\phi} \equiv \cos \phi$, $s_{\phi} \equiv \sin \phi$ etc.)

$$\frac{d\sigma}{dQ^2 dy d\Omega_l} = \frac{3}{16\pi} \frac{d\sigma}{dQ^2 dy} \Big[(1+c_{\theta}^2) + \frac{A_0}{2} (1-3c_{\theta}^2) + A_1 s_{2\theta} c_{\phi} + \frac{A_2}{2} s_{\theta}^2 c_{2\phi} + A_3 s_{\theta} c_{\phi} + A_4 c_{\theta} + A_5 s_{\theta}^2 s_{2\phi} + A_6 s_{2\theta} s_{\phi} + A_7 s_{\theta} s_{\phi} \Big]$$

Back-of-the envelope estimation: take only f_1 contribution at large N_c , use "factorization hypothesis" for TMD $f_1(x, k_{\perp}) \simeq f(x)g(k_{\perp})$ and calculate integrals over k_{\perp} in the leading log approximation using $f_1(x, k_{\perp}^2) \simeq \frac{f(x)}{k^2}$

Comparison of *A*⁰ with LHC results

Logarithmic estimate of A_0 (m_z - Z-boson mass, m - proton mass)

Figure: Comparison of prediction (*) with lines depicting angular coefficient A_0 in bins of Q_{\perp} and Y < 1 from CMS (arXiv:1504.03512) and ATLAS (arXiv:1606.00689)

Comparison of *A*² with LHC results

Logarithmic estimate of A2

Figure: Comparison of prediction (**) with lines depicting angular coefficient A_2 in bins of Q_{\perp} and Y < 1 from CMS (arXiv:1504.03512) and ATLAS (arXiv1606.00689)

Result of the estimation: A_0 and A_2 in agreement with data, rest of $A_i = 0$.

Experimentally, at $q_{\perp} \leq \frac{1}{4}m_z$ other A_i are an order of magnitude smaller that $A_0 \sim A_2$

 \Rightarrow it looks like f_1 is numerically the most important TMD for unpolarized DY cross sections.

Application: unpolarized SIDIS

Result for power corrections in SIDIS: PC^{SIDIS}(q) = PC^{DY}(-q) with replacements $f_1(-\alpha_q, -q_{\perp} - k_{\perp}) \rightarrow \bar{D}_1\left(z = \frac{1}{\alpha_q}, q_{\perp} + k_{\perp}\right)$, $h_1^{\perp}(-\alpha_q, -q_{\perp} - k_{\perp}) \rightarrow -\bar{H}_1^{\perp}\left(z = \frac{1}{\alpha_q}, q_{\perp} + k_{\perp}\right)$ etc.

Hopefully, our analysis is valid for EIC kinematics at $Q \ge 10$ GeV and $Q_{\perp} \sim 3$ GeV so that power corrections are small but sizable.

The unpolarized cross section is parametrized by four functions $F_{UU,T}, F_{UU,L}, F_{UU}^{\cos \phi_h}, F_{UU,T}^{\cos 2\phi_h}$

Estimation: similarly to the DY case, take only f_1 and D_1 contribution at large N_c ,

$$\begin{split} F_{UU,T} &= xz \int dk_{\perp} \Big(1 - \frac{2(q,k)_{\perp}}{Q^2} \Big) \Phi(q,k_{\perp}) \\ F_{UU,L} &= x \int dk_{\perp} \frac{4k_{\perp}^2}{Q^2} \Phi(q,k_{\perp}) \\ F_{UU}^{\cos\phi_h} &= x \int dk_{\perp} \frac{2(q,k)_{\perp}}{Qq_{\perp}} \Phi(q,k_{\perp}) \\ F_{UU}^{\cos2\phi_h} &= -x \int dk_{\perp} \frac{2(q,k)_{\perp}}{Q^2} \Phi(q,k_{\perp}) \implies F_{UU}^{\cos2\phi_h} = -\frac{q_{\perp}}{Q} F_{UU}^{\cos\phi_h} \\ \Phi(q,k_{\perp}) &\equiv D_1(z,q_{\perp}+k_{\perp}) f_1(x,k_{\perp}) + \bar{D}_1(z,q_{\perp}+k_{\perp}) \bar{f}_1(x,k_{\perp}) \end{split}$$

To understand the magnitude of power corrections, define

$$R_{UU,T} = \frac{F_{UU,T}}{F_{UU,T}^{1.t}} - 1, \quad R_{UU,L} = \frac{F_{UU,L}}{F_{UU,T}^{1.t}}, \quad R_{UU}^{\cos\phi_h} = \frac{F_{UU}^{\cos\phi_h}}{F_{UU,T}^{1.t}}, \quad R_{UU}^{\cos2\phi_h} = \frac{F_{UU}^{\cos2\phi_h}}{F_{UU,T}^{1.t}}$$

Back-of-the envelope estimation: similarly to the DY case, take only f_1 and D_1 contribution at large N_c , use "factorization hypothesis" for TMD PDFs and FFs $\phi(x,k_{\perp}) \simeq \phi(x)\psi(k_{\perp})$ and calculate integrals over k_{\perp} in the leading log approximation using $f_1(x,k_{\perp}^2) \simeq \frac{f(x)}{k_{\perp}^2}$ and $D_1(z,k_{\perp}^2) \simeq \frac{D(z)}{k_{\perp}^2}$

Result:

$$\begin{aligned} R_{UU,T} &= R_{UU}^{\cos 2\phi_h} = \frac{q_{\perp}^2}{Q^2}, \quad R_{UU}^{\cos \phi_h} = -\frac{q_{\perp}}{Q} \\ R_{UU,L} &= 2\frac{q_{\perp}^2}{Q^2} + \frac{\int dk_{\perp} 4(k,q+k)_{\perp} \Phi(q,k)}{Q^2 \int dk_{\perp} \Phi(q,k)} \simeq 2\frac{q_{\perp}^2}{Q^2} \frac{\ln \frac{Q^2}{m^2}}{\ln \frac{q_{\perp}^2}{m^2}} \end{aligned}$$

This estimate does not depend on z and x.

Part 3: Rapidity factorization and rapidity evolution of TMDs

Rapidity-only cutoffs and matching of logs

Matching: $\ln \sigma_p$ in the projectile TMDs and $\ln \sigma_t$ in the target TMDs should cancel with $\ln \sigma_p$ and $\ln \sigma_t$ in the coefficient functions.

 $A \cap B, k_{\perp} \sim m_{\perp}$: Glauber gluons $A \cap B, k_{\perp} \ll m_{\perp}$: soft gluons

 $A \cap B$ gluons \equiv soft/Glauber (sG) gluons cancel out

Rapidity-only cutoff

Typical diagram in the background

field $\Psi(\beta_B, p_{B_\perp}) = \varrho \int dz^+ dz_\perp \Psi(z^+, z_\perp) e^{i \varrho \beta_B z^+ - i(p_B, z)_\perp}$

$$\begin{split} \langle [x^+, -\infty]_x \Gamma \psi(y^+, y_\perp) \rangle_{\Psi} &= g^2 c_F \int d \beta_B d p_{B_\perp} e^{-ip_B y} \Gamma \Psi(\beta_B, p_{B_\perp}) \\ &\times \int_0^\infty d \alpha \int \frac{d p_\perp}{p_\perp^2} \frac{\beta_B s e^{-i\frac{p_\perp^2}{\alpha s}} e^{\Delta^+ + i(p, \Delta)}}{\alpha \beta_B s + (p - p_B)_\perp^2 + i\epsilon} & \leftarrow \text{ divergent as } \alpha \to \infty \end{split}$$

$$\langle [x^+, -\infty]_x \Gamma \psi(y^+, y_\perp, -\delta^-) \rangle_{\Psi} = g^2 c_F \int d^* \beta_B d^* p_{B_\perp} e^{-ip_B y} \Gamma \Psi(\beta_B, p_{B_\perp}) \qquad \sigma \equiv \frac{1}{\varrho \delta^-} \\ \times \int_0^\infty d^* \alpha \int \frac{d^* p_\perp}{p_\perp^2} \frac{\beta_B s e^{-i \frac{\rho_\perp^2}{\alpha x}} e^{\Delta^+ + i(p, x - y)_\perp}}{\alpha \beta_B s + (p - p_B)_\perp^2 + i\epsilon} e^{-i\frac{\alpha}{\sigma}} \qquad \leftarrow \text{ convergent as } \alpha \to \infty$$

Figure: Point-splitting visualization of "smooth" rapidity-only cutoff.

Rapidity-only cutoff vs UV+rapidity regularization

Typical divergent integral (
$$\varepsilon = \frac{d}{2} - 2$$
, $d^n p \equiv \frac{d^n p}{(2\pi)^n}$)

$$-i\mu^{-2\varepsilon} \int d\alpha d\beta dp_{\perp} \frac{1}{\beta - i\epsilon} \frac{1}{\alpha\beta s - p_{\perp}^{2} + i\epsilon} \frac{s(\beta - \beta_{B})}{\alpha(\beta - \beta_{B})s - p_{\perp}^{2} + i\epsilon} \left(1 - e^{i(p,x)_{\perp}}\right)$$
$$= \mu^{-2\varepsilon} \int \frac{dp_{\perp}}{p_{\perp}^{2}} \left(1 - e^{i(p,x)_{\perp}}\right) \int_{0}^{\beta_{B}} \frac{d\beta}{\beta_{B}} \frac{\beta_{B} - \beta}{\beta - i\epsilon} = -\frac{1}{8\pi^{2}} \frac{\Gamma(\varepsilon)}{(x_{\perp}^{2}\mu^{2})^{\varepsilon}} \int_{0}^{\beta_{B}} \frac{d\beta}{\beta_{B}} \frac{\beta_{B} - \beta}{\beta - i\epsilon}$$

Regularization with $A^-(z^+) \rightarrow A^-(z^+)e^{\pm \delta z^+}$

$$-\frac{1}{8\pi^2} \frac{\Gamma(\varepsilon)}{(x_{\perp}^2 \mu^2)^{\varepsilon}} \int_0^{\beta_B} \frac{d\beta}{\beta_B} \frac{\beta_B - \beta}{\beta - i\delta} \simeq \frac{1}{8\pi^2} \Big(-\frac{1}{\varepsilon} + \ln \mu^2 \frac{x_{\perp}^2}{4} + \gamma_E \Big) \Big(\ln \frac{\beta_B}{-i\delta} - 1 \Big)$$

Rapidity-only cutoff

$$-i\int d\alpha d\beta dp_{\perp} \frac{1}{\beta - i\epsilon} \frac{e^{-i\frac{\alpha}{\sigma}}}{\alpha\beta s - p_{\perp}^{2} + i\epsilon} \frac{s(\beta - \beta_{B})}{\alpha(\beta - \beta_{B})s - p_{\perp}^{2} + i\epsilon} \left(1 - e^{i(p,x)_{\perp}}\right)$$
$$= \int \frac{dp_{\perp}}{p_{\perp}^{2}} \left(1 - e^{i(p,x)_{\perp}}\right) \int_{0}^{\infty} d\alpha \frac{\beta_{B}s}{\alpha\beta_{B}s + p_{\perp}^{2}} e^{-i\frac{\alpha}{\sigma}} = \frac{1}{16\pi^{2}} \ln^{2} \left(-i\beta_{B}\sigma s \frac{x_{\perp}^{2}}{4} e^{\gamma_{E}}\right)$$

Rapidity evolution of TMDs

Quark TMD operator

 $\mathcal{O}(z_{1+}, z_{1\perp}, z_{2+}, z_{2\perp}) \equiv \bar{\psi}(z_{1+}, z_{1\perp})[z_{1+}, -\infty]_{z_1}\Gamma[-\infty, z_{2+}]_{z_2}\psi(z_{2+}, z_{2\perp})$

Sudakov regime: $Q^2 \gg Q_{\perp}^2 \Leftrightarrow z_{12+}z_{12-} \ll z_{12_{\perp}}^2$

Figure: Diagrams for leading-order rapidity evolution of quark TMD in the Sudakov regime.

Conformally invariant evolution at the LO (G.A. Chirilli & I.B., 2019)

Evolution equation ($\lambda \equiv \sigma (x - y)^2_{\perp} \frac{s}{4}$)

$$\begin{split} \lambda \frac{d}{d\lambda} \mathcal{O}(x_{+}, y_{+}; \lambda) \\ &= \left[\int_{x_{+}}^{\infty} dx'_{+} \frac{1}{x'_{+} - y_{+}} e^{i\frac{\lambda\sqrt{2/s}}{x'_{+} - y_{+}}} \mathcal{O}(x_{+}, y_{+}; \lambda) - \int_{y_{+}}^{\infty} dy'_{+} \frac{\mathcal{O}(x_{+}, y_{+}; \lambda) - \mathcal{O}(x_{+}t, y'_{+}; \lambda)}{y'_{+} - y_{+}} \right] \\ &+ \int_{y_{+}}^{\infty} dy'_{+} \frac{1}{y'_{+} - x_{+}} e^{i\frac{\lambda\sqrt{2/s}}{y'_{+} - x_{+}}} \mathcal{O}(x_{+}, y_{+}; \lambda) - \int_{x_{+}}^{\infty} dx'_{+} \frac{\mathcal{O}(x_{+}, y_{+}; \lambda) - \mathcal{O}(x'_{+}, y_{+}; \lambda)}{x'_{+} - x_{+}} \right] \end{split}$$

If we use rapidity cutoff at $\sigma = \frac{8\varsigma}{|x-y|_{\perp}\sqrt{s}} \Leftrightarrow \lambda = \varsigma |x-y|\sqrt{s}$, the solution

$$\begin{split} \mathcal{O}(x_{+},y_{+};\sigma) \ &= \ e^{-\frac{\tilde{\alpha}_{s}}{2}\left(\ln^{2}\frac{2(x-y)_{\perp}^{2}\varsigma^{2}}{x_{+}y_{+}} - \ln^{2}\frac{2(x-y)_{\perp}^{2}\varsigma^{0}}{x_{+}y_{+}}\right)} e^{4\tilde{\alpha}_{s}\psi(1)\ln\frac{\varsigma}{\varsigma_{0}}} \int dx'_{+}dy'_{+} \ \mathcal{O}(x'_{+},y'_{+};\sigma_{0}) \\ &\times (x_{+}y_{+})^{-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}}} \left[\frac{i\Gamma(1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}})}{(x_{+}-x'_{+}+i\epsilon)^{1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}}}} - \frac{i\Gamma(1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}})}{(x_{+}-x'_{+}-i\epsilon)^{1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}}}}\right] \\ &\times \left[\frac{i\Gamma(1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}})}{(y_{+}-y'_{+}+i\epsilon)^{1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}}}} - \frac{i\Gamma(1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}})}{(y_{+}-y'_{+}-i\epsilon)^{1-\tilde{\alpha}_{s}\ln\frac{\varsigma}{\varsigma_{0}}}}\right] \end{split}$$

is obviously invariant under the inversion $x_+ \to \frac{x_+}{x^2}$, $y_+ \to \frac{y_+}{y^2}$.

I. Balitsky (JLAB & ODU)

Rapidity factorization

Argument of coupling constant by BLM/renormalon method

A problem with leading-order rapidity evolution: what is the argument of coupling constant?

In CSS approach - no problem, argument is defined by renormgroup

With rapidity-only evolution (BFKL, BK and the like) - argument of α_s may be obtained from the NLO calculations. BLM approach: calculate the small part of the NLO result, namely quark loop contribution to gluon propagator, and promote $-\frac{2}{3}n_f$ to the full $b = \frac{11}{3}N_c - \frac{2}{3}n_f$.

Figure: Quark loop correction to quark TMD evolution

Result: BLM optimal scale is logarithmically halfway between transverse momentum $(b_{\perp}^{-1/2})$ and energy $(\sigma\beta_{BS})$ of TMD both for quarks and gluons

I. Balitsky (JLAB & ODU)

Rapidity factorization

Coefficient function for TMD factorization at one loop

Particle production by gluon fusion

Goal: one-loop TMD factorization formula for hadronic tensor.

Result of calculations:

$$\begin{split} W(p_A, p_B; q) &= \int db_{\perp} \ e^{i(q, b)_{\perp}} \mathcal{D}_{g/A}(x_A, b_{\perp}; \sigma_a) \mathcal{D}_{g/B}(x_B, b_{\perp}; \sigma_b) \\ &\times \ \exp\left\{\frac{\alpha_s N_c}{2\pi} \Big[\ln^2 \frac{b_{\perp}^2 s \sigma_p \sigma_t}{4} - 2\big(\ln \frac{x_A}{\sigma_t} + \gamma\big)\big(\ln \frac{x_B}{\sigma_p} + \gamma\big) + \frac{\pi^2}{2}\Big]\right\} \\ &+ \text{NLO terms} \sim O(\alpha_s^2) \ + \text{ power corrections} \end{split}$$

One-loop coefficient function

Calculation of coefficient function \mathfrak{C}_1 in the background field $\mathbb{A} = \overline{A} + \overline{B} + \overline{C}$

$$\begin{split} \int dz_{2}^{-} dz_{2\perp} dz_{1\perp}^{-} dz_{1\perp} dw_{1}^{+} dw_{1\perp} dw_{2}^{+} dw_{2\perp} \frac{\alpha_{s} N_{c}}{2\pi} \mathfrak{C}_{1}(x_{1}, x_{2}; z_{i}^{-}, z_{i\perp}, w_{i}^{+}, w_{i\perp}; \sigma_{p}, \sigma_{t}) \\ & \times F^{-i,a}(z_{2}^{+}, z_{2\perp}) F^{-j,a}(z_{1}^{+}, z_{1\perp}) F^{+i,a}(z_{2}^{-}, z_{2\perp}) F^{+j,a}(z_{1}^{-}, z_{1\perp}) \\ &= \frac{N_{c}^{2} - 1}{16} g^{4} \langle \tilde{F}_{\mu\nu}^{a} \tilde{F}^{a\mu\nu}(x_{2}) F_{\lambda\rho}^{b} F^{b\lambda\rho}(x_{1}) \rangle_{\mathbb{A}} = \bar{A} + \bar{B} \\ & - \langle \hat{\mathcal{O}}^{ij,\sigma_{p}}(x_{2}^{-}, x_{2\perp}; x_{1}^{-}, x_{1\perp}) \hat{\mathcal{O}}^{ij;\sigma_{t}}(x_{2}^{+}, x_{2\perp}; x_{1}^{+}, x_{1\perp}) \rangle_{\mathbb{A}} = \bar{A} + \bar{B} \end{split}$$

(for the purpose of calculating leading-twist coefficient function the "correction field" *C* can be neglected: $\mathbb{A} = \overline{A} + \overline{B}$)

Diagrams for $\langle ilde{F}^a_{\mu u} ilde{F}^{a\mu u}(x_2)F^b_{\lambda ho}F^{b\lambda ho}(x_1) angle_{\mathbb{A}}$ in background fields

"Virtual" diagrams

"Real" diagrams

Diagrams for subtracted TMD matrix elements

"Projectile" TMD matrix elements.

The $e^{-i\frac{\beta}{\sigma_p}}$ regularization is depicted by point splitting: positions of *F*'s are separated from the beginnings of gauge links. (Violations of gauge invariance are power corrections).

"Target" TMD matrix elements. The $e^{-i\frac{\alpha}{\sigma_l}}$ regularization is depicted by point splitting.

$$\begin{split} &\frac{1}{16}(N_{c}^{2}-1)\langle p_{A}',p_{B}'|g^{2}F_{\mu\nu}^{a}F^{a\mu\nu}(x_{2})g^{2}F_{\lambda\rho}^{b}F^{b\lambda\rho}(x_{1})|p_{A},p_{B}\rangle\\ &=\langle p_{A}'|\hat{\mathcal{O}}_{ij}^{\sigma_{p}}(x_{2}^{-},x_{2_{\perp}};x_{1}^{-},x_{1_{\perp}})|p_{A}\rangle\langle p_{B}'|\hat{\mathcal{O}}^{ij;\sigma_{t}}(x_{2}^{+},x_{2_{\perp}};x_{1}^{+},x_{1_{\perp}})|p_{B}\rangle\\ &+\int dz_{1}^{-}dz_{2}^{-}dw_{1}^{+}dw_{2}^{+}\frac{\alpha_{s}N_{c}}{2\pi}\mathfrak{C}_{1}(x_{1},x_{2};z_{i}^{-},w_{i}^{+};\sigma_{p},\sigma_{t})\\ &\times\langle p_{A}'|\hat{\mathcal{O}}_{ij}^{\sigma_{p}}(z_{2}^{-},x_{2_{\perp}};z_{1}^{-},x_{1_{\perp}})|p_{A}\rangle\langle p_{B}'|\hat{\mathcal{O}}^{ij;\sigma_{t}}(z_{2}^{+},x_{2_{\perp}};z_{1}^{+},x_{1_{\perp}})|p_{B}\rangle \end{split}$$

$$\begin{split} \mathfrak{C}_{1}(\alpha_{a}',\alpha_{a},\beta_{b}',\beta_{b};x_{1},x_{2};\sigma_{p},\sigma_{t}) \\ &= \ln^{2}\frac{x_{12\perp}^{2}s\sigma_{p}\sigma_{t}}{4} - \ln\frac{(-i\alpha_{a}')e^{\gamma_{E}}}{\sigma_{t}}\ln\frac{(-i\beta_{b}')e^{\gamma_{E}}}{\sigma_{p}} - \ln\frac{(-i\alpha_{a})e^{\gamma_{E}}}{\sigma_{t}}\ln\frac{(-i\beta_{b})e^{\gamma_{E}}}{\sigma_{p}} + \pi^{2} \end{split}$$

The solution of TMD evolution equations compatible with this first-order result is

$$\mathfrak{C}(x_{1_{\perp}}, x_{2_{\perp}}; \alpha'_a, \alpha_a, \beta'_b, \beta_b; \sigma_p, \sigma_t) = e^{\frac{\alpha_s N_c}{2\pi} \mathfrak{C}_1(x_{12_{\perp}}, \alpha'_a, \alpha_a, \beta'_b, \beta_b; \sigma_p, \sigma_t)}$$

 \Rightarrow hadronic tensor is

$$\begin{split} W(\alpha'_{a}, \alpha_{a}, \beta'_{b}, \beta_{b}, x_{1\perp}, x_{2\perp}) &= \int d \alpha'_{a} d \alpha_{a} d \beta'_{b} d \beta_{b} \ e^{\frac{\alpha_{s} N_{c}}{2\pi} \mathfrak{C}_{1}(x_{12\perp}, \alpha'_{a}, \alpha_{a}, \beta'_{b}, \beta_{b}; \sigma_{p}, \sigma_{l})} \\ &\times \langle p'_{A} | \hat{\mathcal{O}}_{ij}^{\sigma_{p}}(\alpha'_{a}, \alpha_{a}, x_{2\perp}, x_{1\perp}) | p_{A} \rangle \langle p'_{B} | \hat{\mathcal{O}}^{ij;\sigma_{l}}(\beta'_{b}, \beta_{b}, x_{2\perp}, x_{1\perp}) | p_{B} \rangle \ + \dots \end{split}$$

I. Balitsky (JLAB & ODU)

Forward case (\equiv particle production by gluon fusion)

Recall $\alpha_q \equiv x_A$, $\beta_q \equiv x_B$.

$$W(p_{A}, p_{B}; q) = \int db_{\perp} e^{i(q,b)_{\perp}} W(p_{A}, p_{B}; \alpha_{q}, \beta_{q}, b_{\perp}),$$

$$W(p_{A}, p_{B}; \alpha_{q}, \beta_{q}, b_{\perp}) = \frac{\pi^{2}}{2} Q^{2} \mathcal{G}_{ij}^{\sigma_{p}}(\alpha_{q}, b_{\perp}; p_{A}) \mathcal{G}^{ij;\sigma_{t}}(\beta_{q}, b_{\perp}; p_{B})$$

$$\times \exp\left\{\frac{\alpha_{s}N_{c}}{2\pi} \left[\ln^{2} \frac{b_{\perp}^{2} s \sigma_{p} \sigma_{t}}{4} - 2\left(\ln \frac{\alpha_{q}}{\sigma_{t}} + \gamma\right)\left(\ln \frac{\beta_{q}}{\sigma_{p}} + \gamma\right) + \frac{\pi^{2}}{2}\right]\right\}$$

$$+ \text{NLO terms} \sim O(\alpha_{s}^{2}) + \text{power corrections}$$
(1)

where $\mathcal{G}_{ij}^{\sigma_p}, \mathcal{G}_{ij}^{\sigma_t}$ are gluon TMDs:

$$\langle p_A | \hat{\mathcal{O}}_{ij}^{\sigma_p}(z^-, 0^-, b_\perp) | p_A \rangle = -g^2 \varrho^2 \int_0^1 du \ u \mathcal{G}_{ij}^{\sigma_p}(u, b_\perp) \cos u \varrho z^-,$$

$$\langle p_B | \hat{\mathcal{O}}_{ij}^{\sigma_i}(z^-, 0^-, b_\perp) | p_B \rangle = -g^2 \varrho^2 \int_0^1 du \ u \mathcal{G}_{ij}^{\sigma_i}(u, b_\perp) \cos u \varrho z^-.$$

Matching of coefficient function and TMDs

The r.h.s. of this evolution formula (1) does not depend on cutoffs σ_p and σ_t as long as $\sigma_p \geq \tilde{\sigma}_p = \frac{4b_\perp^{-2}}{x_{AS}}$ and $\sigma_t \geq \tilde{\sigma}_t \equiv \frac{4b_\perp^{-2}}{x_{BS}}$. Thus, the result of double-log Sudakov evolution reads

$$\begin{split} W(p_A, p_B; x_A, x_B, b_\perp) &= \frac{\pi^2}{2} \mathcal{Q}^2 \mathcal{G}_{ij}^{\tilde{\sigma}_p}(x_A, b_\perp; p_A) \mathcal{G}^{ij;\tilde{\sigma}_t}(x_B, b_\perp; p_B) \\ \times &\exp\left\{-\frac{\alpha_s N_c}{2\pi} \left[\left(\ln\frac{\mathcal{Q}^2 b_\perp^2}{4} + 2\gamma\right)^2 - 2\gamma^2 - \frac{\pi^2}{2} \right] \right\} + O(\alpha_s^2) \text{ terms } + \text{ power corrections} \end{split}$$

This result is universal for moderate x and small-x hadronic tensor. The difference lies in the continuation of the evolution beyond Sudakov region.

Double-log Sudakov evolution should stop at $x_B \tilde{\sigma}_p s \simeq b_{\perp}^{-2}$. After that:

If
$$x_B \sim 1$$
 - DGLAP-type evolution from $\tilde{\sigma}_t = \frac{b_{\perp}^{-2}}{x_{BS}}$ to $\sigma_{\text{fin}} = \frac{m_N^2}{s}$:
summation of $\left(\alpha_s \ln \frac{b_{\perp}^{-2}}{m_v^2}\right)^n$

If $x_B \ll 1$ - BFKL-type evolution from $\tilde{\sigma}_t = \frac{b_\perp^{-2}}{x_{BS}}$ to $\sigma_{\text{fin}} = \frac{b_\perp^{-2}}{s}$: summation of $(\alpha_s \ln x_B)^n$

Conclusions

- The rapidity-only factorization is the most convenient tool for high-energy QCD.
 - Current status of the BFKL/BK evolution: NLO evolution and NLO impact factors. (For N = 4 SYM - NNLO)
 - Impact factors for various processes from shock-wave approach: LO and NLO
 - "Hybrid factorization" phenomenological mix of DGLAP and BK evolutions
- 2 Rapidity-only TMD factorization works:
 - Full list of $\frac{1}{\rho^2}$ power corrections for DY and SIDIS.
 - Back-of-the-envelope estimates of power corrections seems to agree with exp. data.
 - Rapidity-only evolution with BLM prescription for running coupling gives the same universal formula for Sudakov double logs at both small and moderate *x* for both quark and gluon TMDs.
 - Rapidity factorization at the one-loop level gives Sudakov-type double logs for both small and intermediate x_B

Conclusions

- The rapidity-only factorization is the most convenient tool for high-energy QCD.
 - Current status of the BFKL/BK evolution: NLO evolution and NLO impact factors. (For N = 4 SYM - NNLO)
 - Impact factors for various processes from shock-wave approach: LO and NLO
 - "Hybrid factorization" phenomenological mix of DGLAP and BK evolutions
- 2 Rapidity-only TMD factorization works:
 - Full list of $\frac{1}{\rho^2}$ power corrections for DY and SIDIS.
 - Back-of-the-envelope estimates of power corrections seems to agree with exp. data.
 - Rapidity-only evolution with BLM prescription for running coupling gives the same universal formula for Sudakov double logs at both small and moderate *x* for both quark and gluon TMDs.
 - Rapidity factorization at the one-loop level gives Sudakov-type double logs for both small and intermediate x_B

Thank you for attention!