Quantum algorithms for high energy evolution

Shaswat Tiwari

North Carolina State University

Work with: A. A. Agrawal, E. Budd, A. F. Kemper, A. Tarasov, V. V. Skokov

${\bf JIMWLK}: \ Jalillian-Marian, Iancu, Mclerran, Weigert, Leonidov \ and \ Kovner$

- JIMWLK evolution equation: small-x observables
- Important to understand gluon saturation, high energy collisons
- Current method: Map to Langevin equation

J.P.Blaizot,E.Iancu,H.Weigert K.Rummukainen and H.Weigert

Motivation

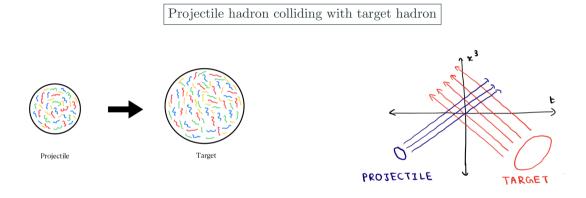
JIMWLK: Jalillian-Marian, Iancu, Mclerran, Weigert, Leonidov and Kovner

- JIMWLK evolution equation: small-x observables
- Important to understand gluon saturation, high energy collisons
- Current method: Map to Langevin equation

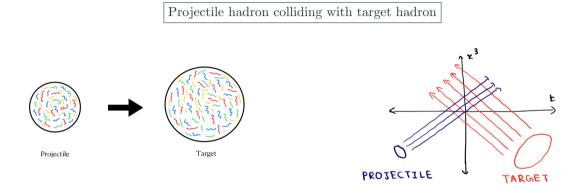
Problems

- Computationally expensive for better statistics
- Higher order JIMWLK lacks a Langevin formulation
- Not all observables can be evolved

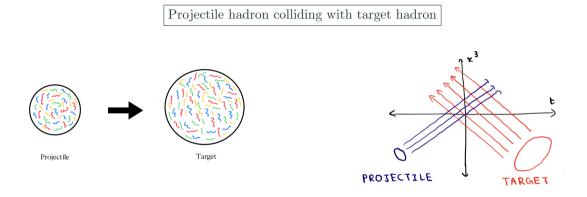
Need a new method to simulate JIMWLK!

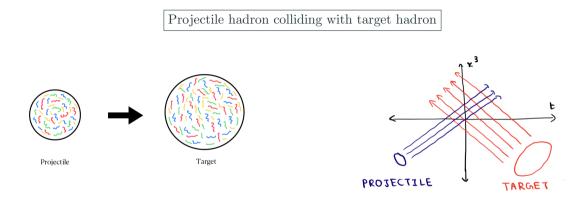

Lindblad-JIMWLK evolution

We propose a new algorithm to compute JIMWLK on quantum computers

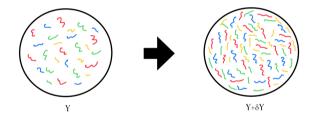

- Uses open quantum system methods
- Uses Lattice gauge theory methods
- Computationally much faster
- Can compute the evolution of the entanglement entropy and other "off-diagonal" observables

Toy model of JIMWLK for SU(2)


Lin, Lin (2024) N.Kleo, J.Stryker, M.Savage (2019)


Color charges ρ_P interact with color charges ρ_T

Color charges distributed with a color charge density $W_Y[\rho]$



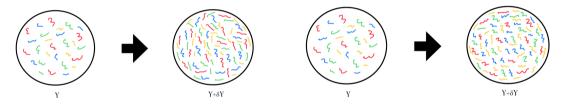
The projectile and the target have a rapidity gap Y

What if we increase the rapidity gap Y by boosting the projectile or the target?


Boosting \implies gluon radiation \implies change in target charge density

Boosting \implies gluon radiation \implies corrections to projectile

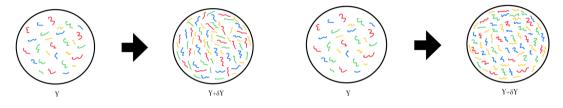
JIMWLK


Change in color charge density $W_Y[\rho]$ or equivalently the density matrix of the target is JIMWLK evolution

Can equivalently be understood as the "evolution" of how the projectile scatters on the target

Usual implementation: Random walk/ Langevin formulation

JIMWLK can be thought of as a random walk of the color charge distribution in the configuration space


Random walk 1

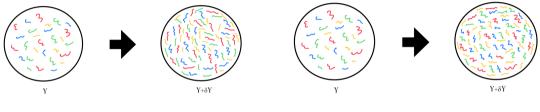
Random walk 2

Average over all random walks!

Usual implementation: Random walk/ Langevin formulation

Typically written as a random color rotation of wilson lines

Random walk 1


Random walk 2

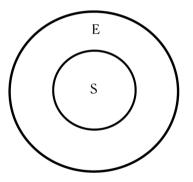
$$V \longrightarrow S_1(\eta) . V . S_2(\eta)$$

Average over gaussian parameter η to get evolved V

Usual implementation: Random walk/ Langevin formulation

Typically written as a random color rotation of wilson lines

Random walk 1

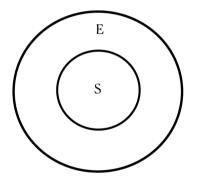

Random walk 2

Shortcomings

- Cannot compute all observables. Ex: Dense-dense scattering, 2 gluon production with large rapidity separation
- Cannot evolve Next to leading log JIMWLK

An alternative

Write JIMWLK as a Lindblad evolution for open quantum systems

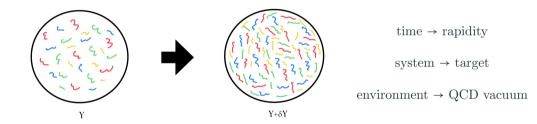

Lindblad evolution: Evolution of system density matrix ρ_S in the presence of environment

Interaction parameterized by jump operators Q_{α}

N.Armesto, F. Dominguez, A.Kovner, M.Lublinsky, V.V.Skokov (2019)

An alternative

Write JIMWLK as a Lindblad evolution for open quantum systems


Lindblad evolution: Evolution of system density matrix ρ_S in the presence of environment

Interaction parameterized by jump operators Q_{α}

$$\partial_t \rho_S(t) = -[H, \rho_S(t)] + \sum_{\alpha} Q_{\alpha} \rho_S(t) Q_{\alpha}^{\dagger} - \frac{1}{2} \{ Q_{\alpha}^{\dagger} Q_{\alpha}, \rho_S(t) \}$$

JIMWLK as Lindblad equation

Write JIMWLK as a Lindblad evolution for open quantum systems

$$\frac{d}{dY}\rho_T(Y) = \int \frac{d^2 z_\perp}{2\pi} \Big[Q_i^a[z_\perp], \Big[Q_i^a[z_\perp], \rho_T(Y) \Big] \Big]$$

N.Armesto, F. Dominguez, A.Kovner, M.Lublinsky, V.V.Skokov (2019)

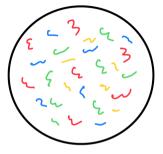
Ultimate goal: Simulate the full JIMWLK equation starting with an initial density matrix

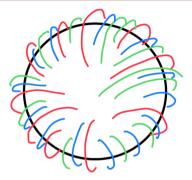
- Impossible on a quantum computer
- Need a discretization/truncation of field space
- Work in reduced dimensions
- Reduce color space to SU(2)

Ultimate goal: Simulate the full JIMWLK equation starting with an initial density matrix

- Impossible on a quantum computer
- Need a discretization/truncation of field space
- Work in reduced dimensions
- Reduce color space to SU(2)

Reduced goal: Simulate the reduced JIMWLK equation in 0 dimensions (2 points) with SU(2), starting with an initial density matrix.


Reduced goal: Simulate the reduced JIMWLK equation in 0 dimensions (2 points) with SU(2), starting with an initial density matrix.

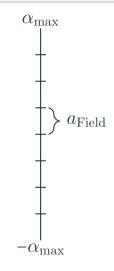

• Field value basis

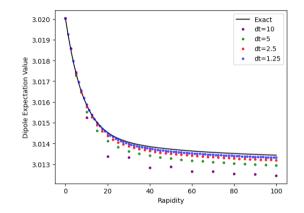
• Representation/Angular momentum basis

We would like to see which of these basis choices give us results consistent with the langevin evolution of dipole expectation value

Field value basis

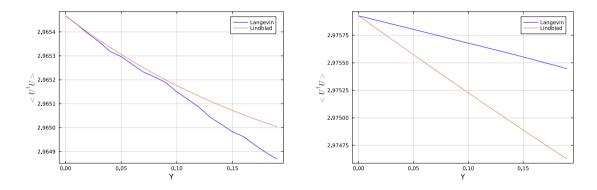
Charge density


Since the hadron is moving along x^- with large rapidity, $A^-\equiv \alpha$ is the dominant component


- Discretize with spacing a_{Field}
- $\bullet~3~{\rm colors}$
- Simplest case: two field values

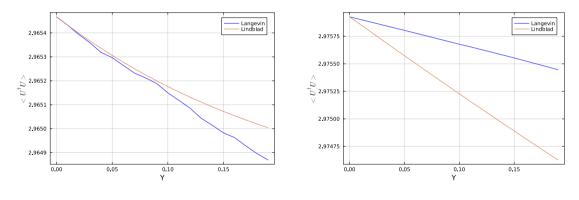
Hilbert space :

$$\alpha \rangle = |\underbrace{\alpha^{1}(1_{\perp}), \alpha^{2}(1_{\perp}), \alpha^{3}(1_{\perp})}_{\text{1st position}}, \underbrace{\alpha^{1}(2_{\perp}), \alpha^{2}(2_{\perp}), \alpha^{3}(2_{\perp})}_{\text{2nd position}} \rangle$$

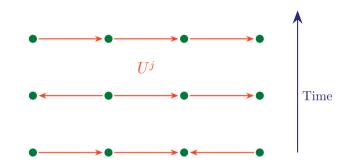

- Compute jump operators in the dilute limit
- Choose an arbitrary initial condition
- Use Lin-Lin scheme to evolve Lindblad (non-unitary)

Lin, Lin (2024)

Issues with field basis


But we have problems!

Match not perfect: Discretization effects!!


Issues with field basis

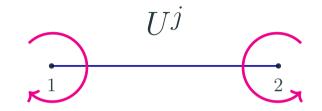
But we have problems!

Change the basis!!

Hamiltonian lattice gauge theory

Space: Discretized, Time: Continuous

Hamiltonian lattice gauge theory

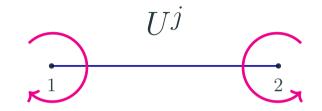


Consider pure Yang Mills

T.Brynes, Y.Yamamoto(2006)

Hilbert space: Angular momentum basis

- j: Angular momentum
- m: Left rotation
- n: Right rotation

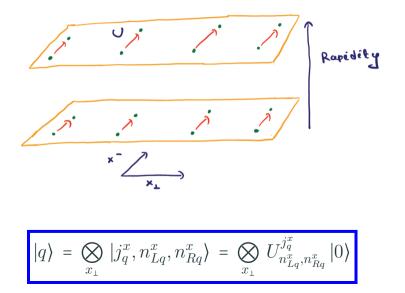

$$|j,m,n\rangle = \mathbf{U}_{mn}^{j} |0\rangle$$

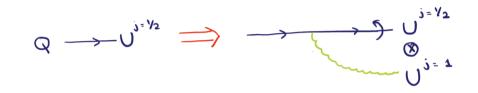
$$\mathbf{U}^j \rightarrow V(1) \, U^j \, V^{-1}(2)$$

T.Brynes, Y.Yamamoto(2006)

Hilbert space: Angular momentum basis

- j: Angular momentum
- m: Left rotation
- n: Right rotation




$\langle \alpha | j, m, n \rangle \propto U_{mn}^j(\alpha)$

$\mathbf{U}^j \rightarrow V(1) \, U^j \, V^{-1}(2)$

T.Brynes, Y.Yamamoto(2006)

Mapping to space of JIMWLK evolution

$$U_{m_L m_R}^{j'}(\alpha, x) U_{n_L n_R}^{j}(\alpha, x) = \sum_{J=|j-j'|}^{|j+j'|} C_{j,m_L j'n_L}^{J,M_L} C_{jm_R j,m_R}^{J,M_R} U_{M_L M_R}^{J}(\alpha, x)$$

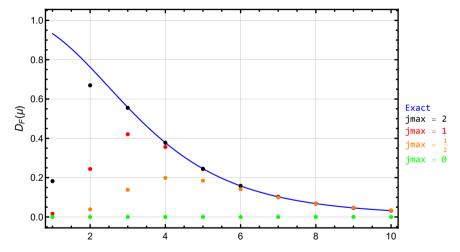
Can compute $\langle q|Q^a|p\rangle$

- Work with a maximum j: j_{max}
- Compute lindblad-JIMWLK evolution
- Compare with Langevin evolution

Problem 1: They both need to have the same initial condition

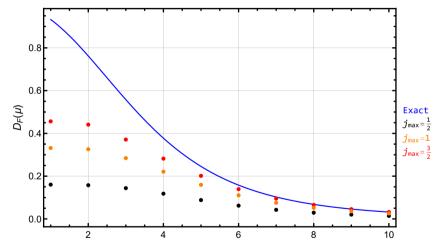
- Work with a maximum j: j_{max}
- Compute lindblad-JIMWLK evolution
- Compare with Langevin evolution

Problem 2: Langevin evolves " $|\alpha\rangle$ " basis only


What do we want?

- Work with a maximum j: j_{max}
- Compute lindblad-JIMWLK evolution
- Compare with Langevin evolution

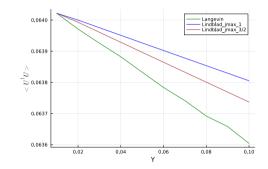
Solution: Work with a gaussian density matrix in $|\alpha\rangle$ and do basis transformation


$$\langle \alpha | \rho | \alpha \rangle \approx e^{-\frac{4 \alpha^2}{\mu^2}}$$

Convergence of initial condition: Pure State

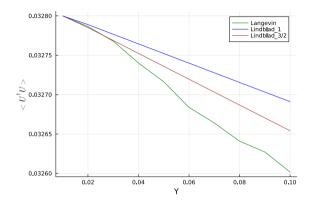
μ

Convergence of initial condition: Mixed State



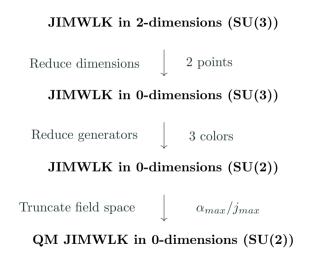
μ

Evolution



 $\mu = 6$

 μ = 8


Evolution

 $\mu = 10$

Higher μ is well-approximated by the angular momentum basis

Summary

- Find ways to decrease μ_{cut} : Gauge invariant basis?
- Compute other observables like entanglement entropy
- Generalize to 1+1 dimensions and ultimately higher dimensions
- Carry out NLO JIMWLK evolution and helicity-dependent JIMWLK evolution