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Motivation

JIMWLK: Jalillian-Marian,Iancu,Mclerran,Weigert,Leonidov and Kovner

• JIMWLK evolution equation: small-x observables

• Important to understand gluon saturation, high energy collisons

• Current method: Map to Langevin equation

J.P.Blaizot,E.Iancu,H.Weigert

K.Rummukainen and H.Weigert
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Motivation

JIMWLK: Jalillian-Marian,Iancu,Mclerran,Weigert,Leonidov and Kovner

• JIMWLK evolution equation: small-x observables

• Important to understand gluon saturation, high energy collisons

• Current method: Map to Langevin equation

Problems

• Computationally expensive for better statistics

• Higher order JIMWLK lacks a Langevin formulation

• Not all observables can be evolved

Need a new method to simulate JIMWLK!

J.P.Blaizot,E.Iancu,H.Weigert

K.Rummukainen and H.Weigert
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Lindblad-JIMWLK evolution

We propose a new algorithm to compute JIMWLK on quantum computers

• Uses open quantum system methods

• Uses Lattice gauge theory methods

• Computationally much faster

• Can compute the evolution of the entanglement entropy and other “off-diagonal”

observables

Toy model of JIMWLK for SU(2)

Lin, Lin (2024)

N.Kleo, J.Stryker, M.Savage (2019)
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The setup

Projectile hadron colliding with target hadron

Color charges ρP interact with color charges ρT

4



The setup

Projectile hadron colliding with target hadron

Color charges distributed with a color charge density WY [ρ]
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The setup

Projectile hadron colliding with target hadron

The projectile and the target have a rapidity gap Y
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The setup

Projectile hadron colliding with target hadron

What if we increase the rapidity gap Y by boosting the projectile or the target?
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JIMWLK

Boosting Ô⇒ gluon radiation Ô⇒ change in target charge density

Boosting Ô⇒ gluon radiation Ô⇒ corrections to projectile
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JIMWLK

Change in color charge density WY [ρ] or equivalently the density matrix of the target is

JIMWLK evolution

Can equivalently be understood as the “evolution” of how the projectile scatters on the

target
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Usual implementation: Random walk/ Langevin formulation

JIMWLK can be thought of as a random walk of the color charge distribution in the

configuration space

Random walk 1 Random walk 2

Average over all random walks!
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Usual implementation: Random walk/ Langevin formulation

Typically written as a random color rotation of wilson lines

Random walk 1 Random walk 2

V Ð→ S1(η).V.S2(η)

Average over gaussian parameter η to get evolved V

T.Altinoluk, G.Beuf, M.Lublinsky, V.V.Skokov (2024)
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Usual implementation: Random walk/ Langevin formulation

Typically written as a random color rotation of wilson lines

Random walk 1 Random walk 2

Shortcomings

• Cannot compute all observables. Ex: Dense-dense scattering, 2 gluon production with

large rapidity separation

• Cannot evolve Next to leading log JIMWLK

T.Altinoluk, G.Beuf, M.Lublinsky, V.V.Skokov (2024)
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An alternative

Write JIMWLK as a Lindblad evolution for open quantum systems

Lindblad evolution: Evolution of system

density matrix ρS in the presence of

environment

Interaction parameterized by jump

operators Qα

N.Armesto, F. Dominguez, A.Kovner, M.Lublinsky, V.V.Skokov (2019)
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An alternative

Write JIMWLK as a Lindblad evolution for open quantum systems

Lindblad evolution: Evolution of system

density matrix ρS in the presence of

environment

Interaction parameterized by jump

operators Qα

∂tρS(t) = −[H,ρS(t)] + ∑
α
QαρS(t)Q†

α −
1

2
{Q†

αQα, ρS(t)}
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JIMWLK as Lindblad equation

Write JIMWLK as a Lindblad evolution for open quantum systems

random

time → rapidity

system → target

environment → QCD vacuum

d

dY
ρT (Y ) = ∫

d2z⊥

2π
[Qa

i [z⊥], [Qa
i [z⊥], ρT (Y )]]

N.Armesto, F. Dominguez, A.Kovner, M.Lublinsky, V.V.Skokov (2019)
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What do we want?

Ultimate goal: Simulate the full JIMWLK equation starting with an initial density matrix

• Impossible on a quantum computer

• Need a discretization/truncation of field space

• Work in reduced dimensions

• Reduce color space to SU(2)
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What do we want?

Ultimate goal: Simulate the full JIMWLK equation starting with an initial density matrix

• Impossible on a quantum computer

• Need a discretization/truncation of field space

• Work in reduced dimensions

• Reduce color space to SU(2)

Reduced goal: Simulate the reduced JIMWLK equation in 0 dimensions (2 points)

with SU(2), starting with an initial density matrix.
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Two types of basis

Reduced goal: Simulate the reduced JIMWLK equation in 0 dimensions (2 points)

with SU(2), starting with an initial density matrix.

• Field value basis

• Representation/Angular momentum basis

We would like to see which of these basis choices give us results consistent with the

langevin evolution of dipole expectation value
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Field value basis

Charge density
Gluon fields

Since the hadron is moving along x− with large rapidity, A− ≡ α is the dominant

component
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Field value basis

• Truncate at αmax

• Discretize with spacing aField

• 3 colors

• Simplest case: two field values

Hilbert space :

∣α⟩ = ∣α1(1⊥), α2(1⊥), α3(1⊥)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1st position

, α1(2⊥), α2(2⊥), α3(2⊥)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd position

⟩

αmax

−αmax

aField

20



Evolution

• Compute jump operators in the dilute

limit

• Choose an arbitrary initial condition

• Use Lin-Lin scheme to evolve Lindblad

(non-unitary)

Lin, Lin (2024)
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Issues with field basis

But we have problems!

Match not perfect: Discretization effects!!
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Issues with field basis

But we have problems!

Change the basis!!
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Hamiltonian lattice gauge theory

U j

Time

Space: Discretized, Time: Continuous
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Hamiltonian lattice gauge theory

U j

Time

Consider pure Yang Mills

T.Brynes,Y.Yamamoto(2006)

25



Hilbert space: Angular momentum basis

• j: Angular momentum

• m: Left rotation

• n: Right rotation

∣j,m,n⟩ = Uj
mn ∣0⟩

U j

1 2

Uj → V (1)U j V −1(2)

T.Brynes,Y.Yamamoto(2006)
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Hilbert space: Angular momentum basis

• j: Angular momentum

• m: Left rotation

• n: Right rotation

⟨α∣j,m,n⟩ ∝ U j
mn(α)

U j

1 2

Uj → V (1)U j V −1(2)

T.Brynes,Y.Yamamoto(2006)
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Mapping to space of JIMWLK evolution

∣q⟩ = ⊗
x⊥

∣jxq , nx
Lq, n

x
Rq⟩ = ⊗

x⊥

U
jxq
nx
Lq,n

x
Rq
∣0⟩
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Jump operators

U j′

mLmR
(α,x)U j

nL nR
(α,x) =

∣j+j′∣

∑
J=∣j−j′∣

CJ,ML

j,mL j′nL
CJ,MR

jmR j,mR
UJ
ML MR

(α,x)

Can compute ⟨q∣Qa∣p⟩
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What do we want?

• Work with a maximum j: jmax

• Compute lindblad-JIMWLK evolution

• Compare with Langevin evolution

Problem 1: They both need to have the same initial condition
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What do we want?

• Work with a maximum j: jmax

• Compute lindblad-JIMWLK evolution

• Compare with Langevin evolution

Problem 2: Langevin evolves “∣α⟩” basis only
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What do we want?

• Work with a maximum j: jmax

• Compute lindblad-JIMWLK evolution

• Compare with Langevin evolution

Solution: Work with a gaussian density matrix in ∣α⟩ and do
basis transformation

⟨α∣ρ∣α⟩ ≈ e−
4α2

µ2
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Convergence of initial condition: Pure State
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Convergence of initial condition: Mixed State
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Evolution

µ = 6 µ = 8
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Evolution

µ = 10

Higher µ is well-approximated by the angular momentum basis
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Summary

JIMWLK in 2-dimensions (SU(3))

Reduce dimensions 2 points

JIMWLK in 0-dimensions (SU(3))

Reduce generators 3 colors

JIMWLK in 0-dimensions (SU(2))

Truncate field space αmax/jmax

QM JIMWLK in 0-dimensions (SU(2))
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Outlook

• Find ways to decrease µcut: Gauge invariant basis?

• Compute other observables like entanglement entropy

• Generalize to 1+1 dimensions and ultimately higher dimensions

• Carry out NLO JIMWLK evolution and helicity-dependent JIMWLK evolution
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