# Meson electroproduction at very high transverse momentum

Carl E. Carlson William & Mary

#### QCD EVOLUTION 2025 Hosted by Jefferson Lab

19 December – 23 December 2025, Newport News, VA, USA

Based on old and new work with Andrei Afanasev, Christian Wahlquist, and others



#### Meson electroproduction at very high p

- Part I: Intro for  $e + p \rightarrow e + \text{meson} + X$
- Part II: Generalities
- Part III: Direct pion production
- Part IV: Other processes
- Part V: What might we learn
- Part VI: The end

#### Semi-Exclusive Deep Inelastic Scattering

- $e + p \rightarrow e + \text{meson} + X$
- Especially: Mesons produced in isolation (i.e., not part of a jet)
  - There are other processes, including fragmentation and vector meson dominated (VMD) processes, but the isolated pion processes give the highest  $p_{\pi \perp}$
- Mostly: Isolated meson production perturbatively calculable.
- Educational: May learn about target quark pdf's at high x, and about the pion's distribution amplitude.

with mesons, mostly pions, at high  $p_{\pi^+}$ 



#### Some earlier work

- Baier and Grozin, 1980
- Milana and CC, 1991; Wakely and CC, 1993
- Brandenburg, Khoze, and Müller, 1995
- Afaasev, Wahlquist, and CC, 2000
- Afanasev and CC, 2003
- Liu and Qiu, 2020
- Afanasev and CC, 2505.xxxxx
- Apologies for omissions

4

#### **PartII: Generalities (Xsctn formulas)**

- Will be calculating some (unpolarized) cross sections, so define here •
- Full cross section is flux factor time cross section for virtual photon semi-inclusive scattering,  $\gamma^* + p \rightarrow \pi + X$ ,

$$E'\omega_{\pi}\frac{d^{6}\sigma}{d^{3}l'd^{3}p_{\pi}} = \frac{\alpha}{2\pi^{2}}\frac{|\vec{q}|}{EQ^{2}}\frac{1}{1-\epsilon}$$

$$\times \omega_{\pi} \frac{d}{d^3 p_{\pi}} \left\{ \sigma_T + \epsilon \sigma_L + \epsilon \cos(2\phi_h) \sigma_{TT} + \epsilon \sigma_L \right\}$$

 $\epsilon$  is the usual

$$\epsilon = (1 + 2\tau(1 + \tau))$$
ta

Some modern people may prefer structure functions version

 $\sqrt{2\epsilon(1+\epsilon)}\cos\phi_h\sigma_{LT} + (2\lambda_e)\sqrt{2\epsilon(1-\epsilon)}\sin\phi_h\sigma_{LT}$ 

e(l)

p(p)

 $\ln^2(\theta_e/2))^{-1}$  with  $\tau = \nu^2/Q^2$ 





e(l')

#### Or in terms of structure functions

- Without target polarization,  $e + p \rightarrow e + \pi + X$  has 5 structure functions,  $\frac{d^6\sigma}{dxdyd\psi dzd\phi_h dp_{\pi^{\perp}}^2} = \frac{\alpha^2}{2x_R Q^2 (1-x_R)} \frac{y}{1-\epsilon} \left(1 + \frac{m_p}{\nu}\right)$  $\times \left\{ F_{UU,T} + \epsilon F_{UU,L} + \epsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + h\sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \right\}$
- Easy to match to cross sections on last slide.
- ( $\theta$  = electron scattering angle in lab,  $\nu$  = electron energy loss in lab,  $\phi$  = azimuthal angle of pion-photon plane relative to electron scattering plane. Other new notation is exercise for viewer or reader.)



• Notes: For  $\gamma^* p \rightarrow \pi X$  directly,

$$\frac{d\sigma}{dx_1 dt} = \sum_{a} G_{a/p}(x_1) \frac{d\hat{\sigma}}{dt} \text{ or } \sum_{a} f_a(x_1)$$

- Special note: the "internal-external miracle" works here also, that is,  $x_1$  is fixed by observable quantities
- Subprocess Mandelstam variables  $\hat{s} = (p_1 + q)^2$ ,  $\hat{t} = t = (q - k)^2$ ,  $\hat{u} = (q - k)^2$
- **Overall and observable Mandelstam variables**  $s = (p + q)^2$ ,  $t = (q - k)^2$ , u =

• with  $p_1 = x_1 p$ , find  $x_1 = -t / (s + u)$ 



$$(p_1 - k)^2$$

$$(p-k)^2$$

$$(q + Q^2)$$

Some references: Berger, Brodsky; Baier, Grozins; Brandenberg, Khoze, Müller; Hyer; Milana, Wakely, Wahlquist, Afanasev, me





### Direct process, page 2

function. Given by "distribution amplitude"  $\phi_{\pi}(y)$ .



. For  $\pi^+$  (e.g.), initial up quark dominates, so  $\sum_{\mathrm{quarks}}$  needs only one term.

• Subprocess calculable using pQCD and (arguably) known pion  $q\bar{q}$  Fock component wave



#### Direct process, side remarks





 $\frac{\langle q}{\langle Q_G \rangle} \qquad q_G^2 \approx \frac{1}{9}q^2, \Rightarrow \text{JLab SEDIS as good as pion FF at } Q^2 = 72 \text{ GeV}^2$ 

• For VMD at  $Q^2 \neq 0$ , propagator suppresses  $\rho$ MD contributions by  $(m_{\rho}^2/(m_{\rho}^2 + Q^2))^2 < 1/7$  for  $Q^2 \approx 1$  GeV<sup>2</sup>.

Pion form factor uses same distribution amplitude and same  $I_{\pi}$  integral, and







## A plot of things so far

close to on-shell).



(Ignore long dash and dotted curves for now)

Soft (i.e., VMD) pretty big for almost real photons.

Some plots with final electron not observed (i.e., photons generally very



#### 10

#### Plot of "sub-cross sections"

• (For direct process)



#### Part IV: Fragmentation

Basic cross section calculation,

- Where
  - $G_{a/p}$  = distribution function for a in p
  - $d\hat{\sigma}/d\hat{t}$  = subprocess cross section
  - $D_c^{\pi}(z) =$ fragmentation function
- Two generic subprocesses,
  - "QCD Compton,"  $\gamma^* + q \rightarrow q + g$
  - "Gluon fusion,"  $\gamma^* + g \rightarrow q + \bar{q}$







#### more fragmentation

- Part is easily calculable perturbatively, e.g., for QCD Compton,  $\frac{d\hat{\sigma}}{d\hat{t}} = \frac{8\pi\alpha\alpha_s}{3(\hat{s}+Q^2)^2} \left\{ -\frac{\hat{u}}{\hat{s}} - \frac{\hat{s}}{\hat{u}} + 2\frac{Q^2}{\hat{s}\hat{u}}(\hat{t}-\hat{k}_{\perp}^2) \right\}$
- Then: Get G(x) from analyses of DIS, Get Get D(z) from analyses of  $e^+e^- \rightarrow$  hadrons
- Show results after discussion of soft processes.

#### more Part IV: soft processes, a.k.a. VDM

- Approximate soft processes by vector meson dominance: Photon enters but fluctuates to a rho or omega or phi or excitations thereof.
- Interacts as hadron. Not calculable ab initio. Amplitude obtained using various relations.
- E.g.,

$$f(\gamma p \to \pi^+ X) \Big|_{\rho \text{MD}} = \frac{e}{f_\rho} f(\rho^0 p \to \pi^+ X), \quad \text{(for } q^2 = 0\text{)}$$

and rho decay constant  $f_{\rho}$  got from  $\Gamma(\rho \rightarrow e^+e^-)$ .





#### Parameterization of hadronic process.

- Still more stuff:
  - Don't have  $\rho^0$  beams. Use  $\pi^+$  or  $\pi^-$  data instead, for example  $\pi^+ \dots \to \pi^0 \dots$
  - Bosetti et al. (e.g.) have semi-exclusive  $\pi$  in,  $\pi$  out data at many angles but limited energy range.
  - Lots of data on  $pp \rightarrow \pi X$  at 90° CM. Where data overlap, pion  $\sigma$  about 2/3 proton  $\sigma$
  - So get angular distribution from pion data, and energy dependence of pp data. Also estimate contributions from other VM ( $\phi$ ,  $\omega$ , excitations).

(Formulas in ACW 2000. See also parameterization by Szczurek, Uleshchenko, and Speth.)

#### **Comparative results**



• For  $E_{\gamma} = 22$  GeV (especially), there is window where isolated pion production dominates at high  $p_{\pi\perp}$ 





- Note: for the range where direct pions dominate, x is large, as  $x \ge 0.3$

Note: In most of this range, W (unobserved hadron invariant mass) > 2 GeV.

#### Part V: possible uses of direct pions

- The 22 GeV white paper emphasizes that data will be taken over a extensive kinematic range.
- Generically, for the direct pions,  $d\sigma \propto (\text{target quark pdf}) \times (\text{pion DA term}) \times (\text{known kinematic terms})$ or

$$d\sigma \propto f_u(x) \times \int dy \frac{\varphi_{\pi}(y)}{y + (1 - y)q}$$

- May hope to measure the pdf at large x, and discriminate different  $\pi$  DA's
- $\frac{1}{\gamma^2/t}$  × known stuff

#### Selected distribution amplitudes

- Two sample  $\pi$  DA's, asymptotic and square root (SR)  $\phi_{\pi}(asy) = \sqrt{3}f_{\pi}y(1-y)$  and  $\phi_{\pi}(SR) = \frac{4}{\pi\sqrt{3}}f_{\pi}\sqrt{y(1-y)}$
- Both normalized to give correct pion decay constant  $f_{\pi}$  .

## Effect of DA and $f_{\mu}$ on Xsctn shape

#### Regarding plot like



• For  $E_{\gamma}, \theta_{\pi}$ , and  $Q^2$  fixed, choice of DA does not affect shape.

•  $\therefore$  Can get shape of  $f_{\mu}(x)$  at high x from measurements (plot was made using GRSV pdf).

Changing the DA hardly matters (for shape of curve)





#### Another kinematic choice

• Get more variation from different DA's by choosing to fix  $E_{\gamma}, E_{\pi}$ , and x (thereby also fixing t) and varying  $Q^2$ . Not so interesting for transverse cross section, but remarkable for longitudinal.



here, especially for the longitudinal case, determine the pion DA.



• Fixed x means quark pdf not changing. Cross section measurements

#### Part VI: Final remarks

- distribution amplitude,  $\phi_{\pi}$ .
- section. See comments by J. Qiu.
- described by generalized parton distributions.

• It appears that direct pion production, a hard higher twist process, can be seen above the soft "background" at high transverse momentum at JLab energies.

• Could be used to learn high-x form of quark pdfs, with ability to select flavor of quark by choosing flavor of pion. Could also learn the actual physical pion

• Higher order processes could affect high  $p_{\pi \parallel}$  production, for example radiative corrections or initial transverse momentum effects upon rapidly falling cross

• Side note: The basic subprocess for direct meson production is the same as for quasi-elastic production of mesons, in the region where that production can be

> The end 22

#### Past the end

## Further things to do

- Other structure functions, dependent on target polarization
- Radiative corrections
- Direct (isolated)  $\rho$  production
- $\pi^0$  plots



Real photons:

 $=\frac{128}{-\pi^2\alpha\alpha_S^2I^2}$  $d\hat{\sigma}$ 

#### Subprocess cross sections

$$I_{\pi}^{2} \left( \frac{e_{1}}{\hat{s}} + \frac{e_{2}}{\hat{u}} \right)^{2} \frac{\hat{s}^{2} + \hat{u}^{2}}{\hat{s}^{2}(-t)}$$

## Comparison plots, at several $Q^2$





#### Recoiling mass and x plots





• Plots show recoiling (without the isolated pion) hadronic mass, and also x.

• For 22 GeV, significant window where we are out of the resonance region.