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Meson electroproduction at very high p
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• Part II: Generalities


• Part III:  Direct pion production 


• Part IV: Other processes


• Part V: What might we learn


• Part VI: The end

e + p → e + meson + X

2



Semi-Exclusive Deep Inelastic Scattering 
•              with mesons, mostly pions, at high   


• Especially:  Mesons produced in isolation (i.e., not part of a jet) 


• There are other processes, including fragmentation and vector meson 
dominated (VMD) processes, but the isolated pion processes give the 
highest 


• Mostly:  Isolated meson production perturbatively calculable.


• Educational:  May learn about target quark pdf’s at high , and about the 
pion’s distribution amplitude.  

e + p → e + meson + X pπ⊥

pπ⊥

x

3



Some earlier work
• Baier and Grozin, 1980


• Milana and CC, 1991;  Wakely and CC, 1993


• Brandenburg, Khoze, and Müller, 1995


• Afaasev, Wahlquist, and CC, 2000


• Afanasev and CC, 2003


• Liu and Qiu, 2020


• Afanasev and CC, 2505.xxxxx


• Apologies for omissions
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PartII: Generalities (Xsctn formulas)
• Will be calculating some (unpolarized) cross sections, so define here

• Full cross section is flux factor time cross section  

for virtual photon semi-inclusive scattering, , 
 

 

 



•  is the usual 
                             with    


• Some modern people may prefer structure functions version   ➡︎

γ* + p → π + X

E′￼ωπ
d6σ

d3l′￼d3pπ
=

α
2π2

| ⃗q |
EQ2

1
1 − ϵ

× ωπ
d

d3pπ {σT + ϵσL + ϵ cos(2ϕh)σTT + 2ϵ(1 + ϵ) cos ϕh σLT + (2λe) 2ϵ(1 − ϵ) sin ϕh σ′￼LT}
ϵ

ϵ = (1 + 2τ(1 + τ)tan2(θe/2))−1 τ = ν2/Q2
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Or in terms of structure functions
• Without target polarization,   has 5 structure functions, 

 




• Easy to match to cross sections on last slide.


• (  = electron scattering angle in lab,   = electron energy loss in lab,   = azimuthal angle 
of pion-photon plane relative to electron scattering plane.  Other new notation is exercise 
for viewer or reader.)

e + p → e + π + X
d6σ

dxdydψdzdϕhdp2
π⊥

=
α2

2xBQ2(1 − xB)
y

1 − ϵ (1 +
mp

ν )
× {FUU,T + ϵFUU,L + ϵ cos(2ϕh)F

cos 2ϕh
UU + 2ϵ(1 + ϵ) cos ϕh Fcos ϕh

UU + h 2ϵ(1 − ϵ) sin ϕh Fsin ϕh
LU }

θ ν ϕ
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Part III:  Direct process
• Notes:  For  directly,  

 

   or 


• Special note: the “internal-external miracle” works here 
also, that is,  is fixed by observable quantities


• Subprocess Mandelstam variables  
,    ,   


• Overall and observable Mandelstam variables 
,        ,       


• with  find  

γ*p → πX

dσ
dx1dt

= ∑
a

Ga/p(x1)
d ̂σ
dt ∑

a

fa(x1)
d ̂σ
dt

x1

̂s = (p1 + q)2 ̂t = t = (q − k)2 ̂u = (p1 − k)2

s = (p + q)2 t = (q − k)2 u = (p − k)2

p1 = x1p, x1 = − t / (s + u + Q2 )
7

π(k)γ(q)

X

p

t

s
x p

 

1

High transverse  
momentum pion

Recoiling quark

• Some references: Berger, Brodsky;    
Baier, Grozins;   
Brandenberg, Khoze, Müller;   
Hyer;   
Milana, Wakely, Wahlquist, Afanasev, me



Direct process, page 2 
• Subprocess calculable using pQCD and (arguably) known pion  Fock component wave 

function.  Given by “distribution amplitude” . 
                                    


•                                              
 
 
 
 
 

For ,  need   ;      For , need 


• For  (e.g.), initial up quark dominates, so  needs only one term.

qq̄
ϕπ(y)

Q2 = 0 Iπ = ∫
1

0
dy

ϕπ(y)
y

Q2 ≠ 0 I′￼π = ∫
1

0
dy

ϕπ(y)
y − (1 − y)Q2/t

π+ ∑quarks
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Direct process, side remarks

•                                        (for 22 GeV JLab) 

 
Pion form factor uses same distribution amplitude and same  integral, and 
                             ,     JLab SEDIS as good as pion FF at  

 

• For VMD at ,  propagator suppresses ρMD  

contributions by  for . 

q2
G = (1 − y) ̂s = x1(1 − y)s ≈

1
6

s ≈ 8 GeV2

Iπ

q2
G ≈

1
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q2 ⇒ Q2 = 72 GeV2

Q2 ≠ 0

(m2
ρ /(m2

ρ + Q2))2 < 1/7 Q2 ≈ 1 GeV2
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A plot of things so far
• Some plots with final electron not observed (i.e., photons generally very 

close to on-shell).
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• Soft (i.e., VMD) pretty big for almost real photons.



Plot of “sub-cross sections”
•  (For direct process)
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Part IV:  Fragmentation
• Basic cross section calculation, 

 


• Where 


•  = distribution function for  in 

•  = subprocess cross section 


•  = fragmentation function 

• Two generic subprocesses, 


• “QCD Compton,”   


• “Gluon fusion,”    

σ = ∫ dx1d ̂tdz Ga/p(x1)
d ̂σ
d ̂t

(γ* + a → c + d) Dπ
c (z)

Ga/p a p
d ̂σ/d ̂t
Dπ

c (z)

γ* + q → q + g

γ* + g → q + q̄
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more fragmentation 

• Part is easily calculable perturbatively, e.g., for QCD Compton,  

    


• Then:     Get  from analyses of DIS, 
              Get Get  from analyses of  


• Show results after discussion of soft processes.

d ̂σ
d ̂t

=
8πααs

3( ̂s + Q2)2 {−
̂u
̂s
−

̂s
̂u
+ 2

Q2

̂s ̂u
( ̂t − ̂k2

⊥)}
G(x)

D(z) e+e− → hadrons
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more Part IV: soft processes, a.k.a. VDM 
• Approximate soft processes by vector meson  

dominance: Photon enters but fluctuates to a rho  
or omega or phi or excitations thereof. 


• Interacts as hadron. Not calculable ab initio.  
Amplitude obtained using various relations. 


• E.g., 
                          ,       (for ) 

 
and rho decay constant   got from .

f(γp → π+X)
ρMD

=
e
fρ

f(ρ0p → π+X) q2 = 0

fρ Γ(ρ → e+e−)
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Parameterization of hadronic process. 
• Still more stuff:


• Don’t have  beams. Use  or  data instead, for example  


• Bosetti et al. (e.g.) have semi-exclusive  in,  out data at many angles but 
limited energy range. 


• Lots of data on  at  CM.    
Where data overlap, pion  about 2/3 proton 


• So get angular distribution from pion data, and energy dependence of  data.  
Also estimate contributions from other VM ( , , excitations).  
 
(Formulas in ACW 2000. See also parameterization by Szczurek, Uleshchenko, and Speth.) 

ρ0 π+ π− π+… → π0…

π π

pp → πX 90∘

σ σ

pp
ϕ ω
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Comparative results

• For  GeV (especially), there is window where isolated pion 
production dominates at high 

Eγ = 22
pπ⊥
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Interesting double plot

• Note: for the range where direct pions dominate,  is large, as 


• Note: In most of this range, W (unobserved hadron invariant mass) > 2 GeV.  

x x ≳ 0.3
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Part V:  possible uses of direct pions

• The 22 GeV white paper emphasizes that data will be taken over a 
extensive kinematic range.  


• Generically, for the direct pions, 
    
or 

   


• May hope to measure the pdf at large , and discriminate different  DA’s

dσ ∝ (target quark pdf) × (pion DA term) × (known kinematic terms)

dσ ∝ fu(x) × ∫ dy
ϕπ(y)

y + (1 − y) q2/t
× known stuff

x π
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Selected distribution amplitudes

• Two sample  DA’s, asymptotic and square root (SR) 

     and   


• Both normalized to give correct pion decay constant  .

π
ϕπ(asy) = 3fπy(1 − y) ϕπ(SR) =

4

π 3
fπ y(1 − y)

fπ
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Effect of DA and  on Xsctn shapefu

• For  fixed, choice of DA does not affect shape.


• ∴ Can get shape of  at high  from measurements  
   (plot was made using GRSV pdf).

Eγ, θπ,  and Q2

fu(x) x
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Regarding plot like Changing the DA hardly matters (for shape of curve) 
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Another kinematic choice
• Get more variation from different DA’s by choosing to fix  

(thereby also fixing  ) and varying .   Not so interesting for transverse 
cross section, but remarkable for longitudinal.  

Eγ, Eπ,  and x
t Q2
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• Fixed  means quark pdf not changing.  Cross section measurements 
here, especially for the longitudinal case, determine the pion DA.  
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Part VI:  Final remarks
• It appears that direct pion production, a hard higher twist process, can be seen 

above the soft “background” at high transverse momentum at JLab energies.


• Could be used to learn high-x form of quark pdfs, with ability to select flavor of 
quark by choosing flavor of pion.  Could also learn the actual physical pion 
distribution amplitude,  .


• Higher order processes could affect high  production, for example radiative 
corrections or initial transverse momentum effects upon rapidly falling cross 
section.  See comments by J. Qiu.


• Side note:  The basic subprocess for direct meson production is the same as for 
quasi-elastic production of mesons, in the region where that production can be 
described by generalized parton distributions. 

ϕπ

pπ⊥
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The end



Past the end



Further things to do

• Other structure functions, dependent on target polarization 


• Radiative corrections


• Direct (isolated)  production


•  plots

ρ

π0
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Subprocess cross sections

d ̂σ
dt

=
128
27
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Comparison plots, at several Q2

γ p → π+ X

Eγ = 22 GeV, θπ = 5°, Q2= 3 GeV2

isolated pion, σT (CZ)
VMD

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
10-4

0.001

0.010

0.100

1

10

pπT (GeV)

E
π
dσ

T
/d
3 p

π
(n
b/
G
eV

2 )

γ p → π+ X

Eγ = 22 GeV, θπ = 5°, Q2= 1 GeV2

isolated pion, σT (CZ)
VMD

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.001

0.010

0.100

1

10

100

pπT (GeV)
E

π
dσ

T
/d
3 p

π
(n
b/
G
eV

2 )

γ p → π+ X

Eγ = 22 GeV, θπ = 5°, Q2= 0 GeV2

isolated pion, σT (CZ)
VMD

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.01

0.10

1

10

100

1000

pπT (GeV)

E
π
dσ

T
/d
3 p

π
(n
b/
G
eV

2 )



Recoiling mass and x plots

• Plots show recoiling (without the isolated pion) hadronic mass, and also x.


• For 22 GeV, significant window where we are out of the resonance region.
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