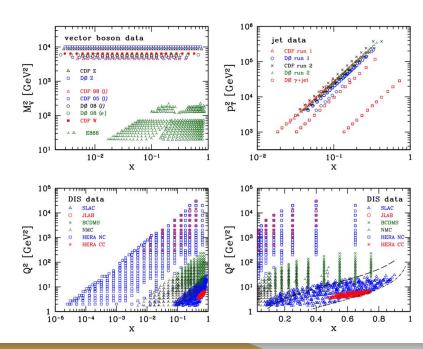
Partonic and Nuclear Dynamics through the CJ Global Analysis Lens

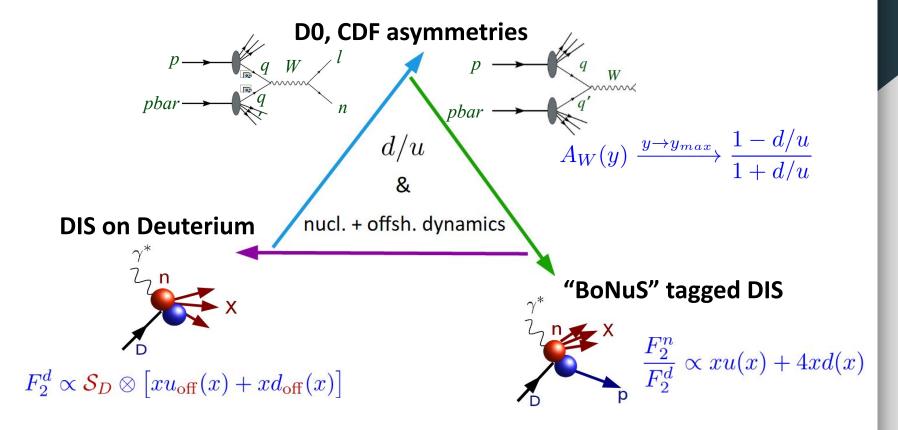
Alberto Accardi

M.Cerutti, et al - Phys.Rev.D 111 (2025) 9

QCD evolution 2025 23 May 2025



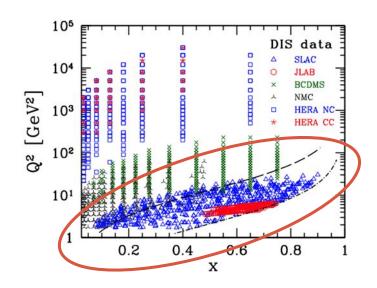
This work is partly supported by the DOE Office of Science, DE-SC0008724, DE-AC05-06OR23177


The CTEQ-JLab collaboration

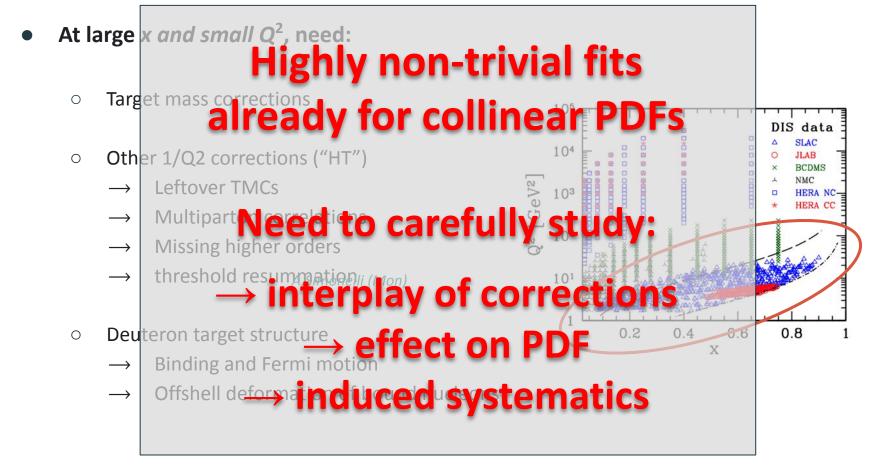
- Coordinated Theory-Experiment Effort with Jefferson Lab:
 - A. Accardi, Matteo Cerutti, X. Jing, Fernando,
 W. Melnitchouk, J.F.Owens, Peter Risse
 - C.E. Keppel, **Shujie Li**, P. Monaghan, **Sanghwa Park**

- Focus on large x
 - In this talk, d/u ratio
- Maximize use of low-nrg DIS data
 - O SLAC, JLab 6, JLab 12
- Global fits as a tool
 - PDFs, nuclear dynamics

Large-x PDFs: interplay of observables


More high-low E connections: M. Ubiali, Tue

DIS at low energy

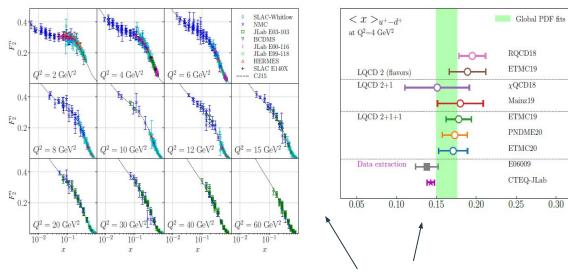

- At large x and small Q², need:
 - Target mass corrections
 - Other 1/Q2 corrections ("HT")
 - → Leftover TMCs
 - → Multiparton correlations
 - → Missing higher orders
 - → threshold resummation

A.SImonelli (Mon)

- Deuteron target structure
 - → Binding and Fermi motion
 - → Offshell deformation of bound nucleons

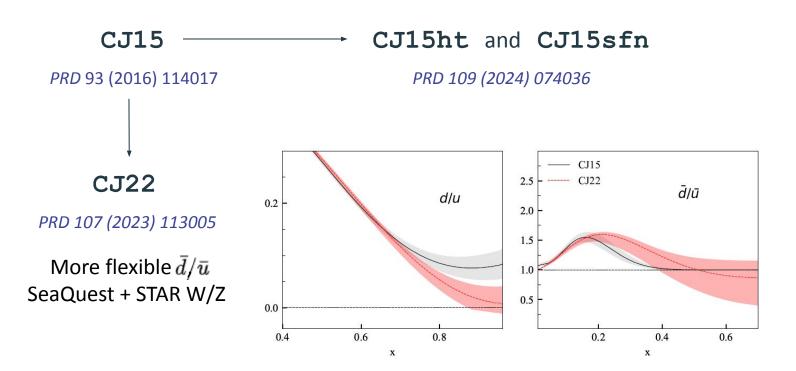
DIS at low energy

Recent history


github.com/JeffersonLab/CJ-JAM-database

CJ15 — CJ15ht and CJ15sfn \longleftrightarrow CJ-JAM DIS database

PRD 93 (2016) 114017


PRD 109 (2024) 074036

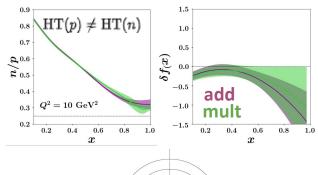
Data-driven extraction of $F_2(n)$ and $\langle x \rangle_{u^+-d^+}$

JLab 6 data too!

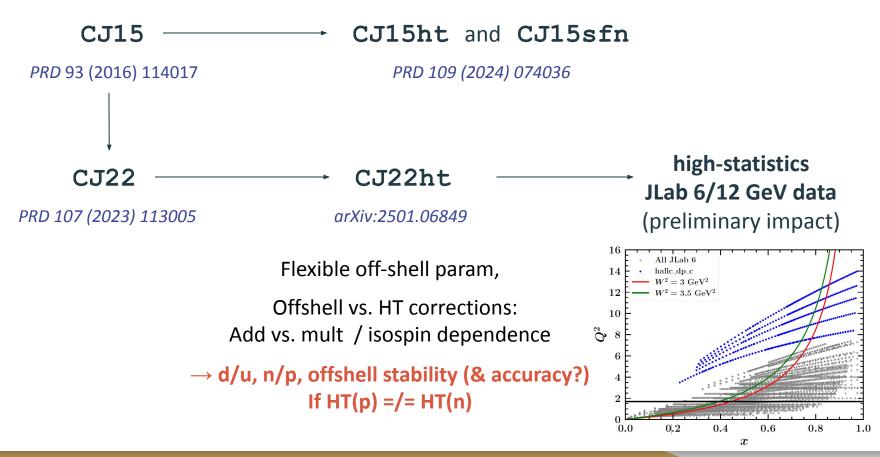
Recent history

New work

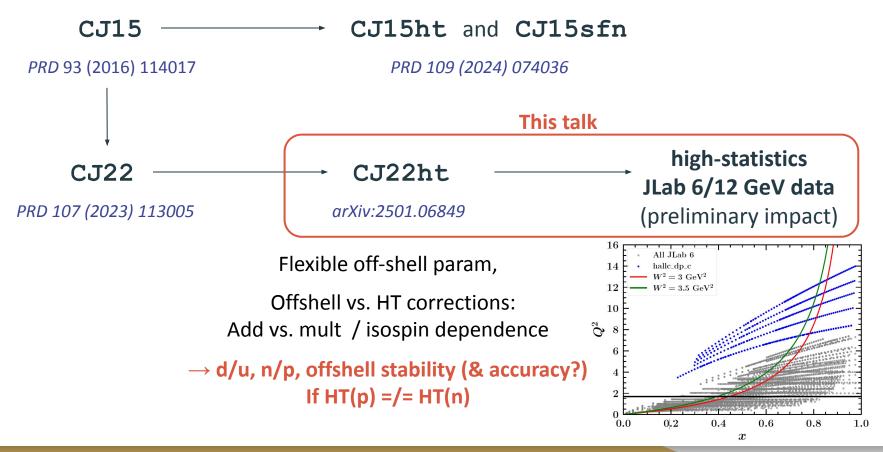
PRD 107 (2023) 113005



Flexible off-shell param,


arXiv:2501.06849

Offshell vs. HT corrections: Add vs. mult / isospin dependence


→ d/u, n/p, offshell stability (& accuracy?)
If HT(p) =/= HT(n)

New work

New work

Deuteron target

- Weak binding approximation:
 - Incoherent scattering from not too fast nucleons, neglect FSI

Weak binding approximation:
$$\circ \quad \text{Incoherent scattering from not too fast nucleons, neglect FSI} \\ F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \, \mathcal{K}(z,p^2,\gamma) \, \big| \psi_{N/d}(|\vec{p}\,|) \big|^2 F_{2N}(x/z,Q^2,p^2) \\ \text{kinematic and "flux" factors} \\ \text{Nucleon wave function} \\ \text{Structure function of bound, off-shell nucleon} \\ \text{Nucleon} \\ \text{Nu$$

$$F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2$$
 kinematic and "flux" factors

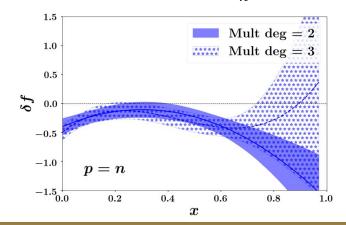
Nucleon wave function

Offshell expansion (in bound nucleon's p^2)

$$F_{2N}(x, Q^2, p^2) = F_{2N}^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

Free proton, neutron structure function

"offshell function"


Deuteron target

Offshell corrections

$$q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

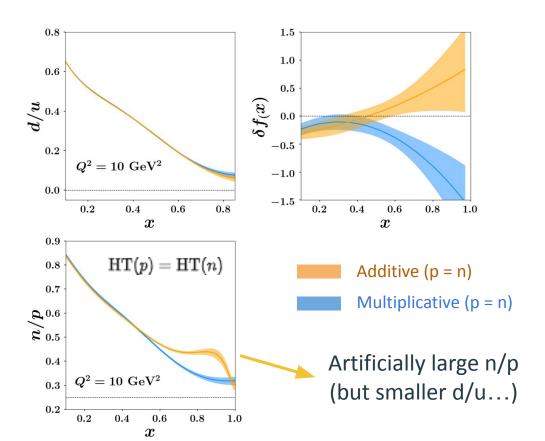
$$\circ$$
 CJ15 & 22: $\delta f^N=C(x-x_0)(x-x_1)(1+x_0-x)$ + valence quark sum rule $\int_0^1 dx\, \delta f^N(x)\; [q(x)-ar q(x)]\;=\;0$

 \circ CJ22ht: $\delta f(x) = \sum a_{off}^{(n)} x^n$ flexible polynomial

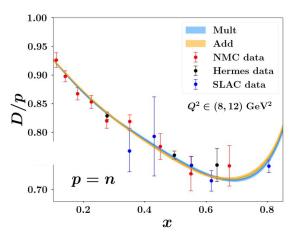
CJ fitted data set constrains δf up to x<0.6

HT systematics

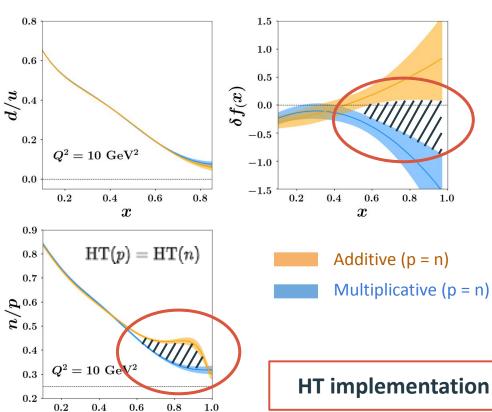
HT modeling

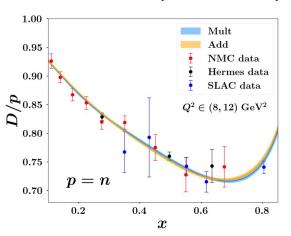

- Isospin and Q² assumptions are not independent
 - e.g., a Q²-independent, isospin-independent multiplicative HT generates an equivalent additive HT that depends on both

$$\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$$

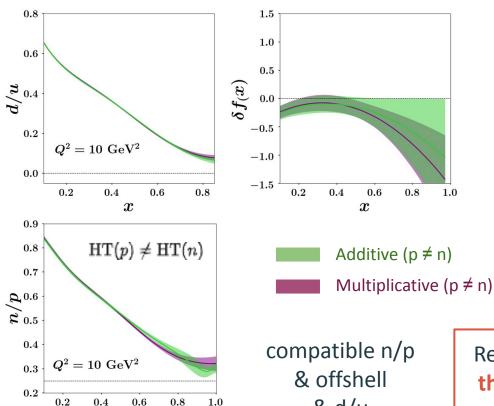

- Non-negligible large-x bias
 - if using isospin-independent coefficients
 - → Multiplicative (CJ15) underestimates
 - \rightarrow Additive (AKP17) overestimates (H > 0)

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} & \text{mult. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \end{cases}$$

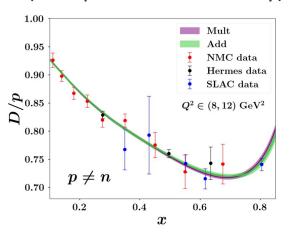

Fits 1 – isospin independent HT


Bias identified! Offshell compensates n/p

Fits 1 – isospin independent HT



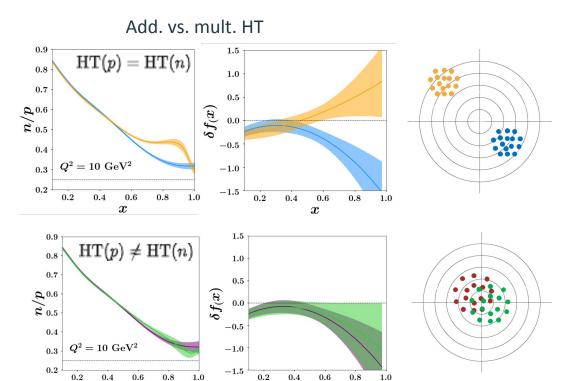
Bias identified! Offshell compensates n/p


HT implementation bias

Fits 2 – isospin <u>dependent</u> case

Bias removed!

No need of compensation (as expected theoretically)


& d/u

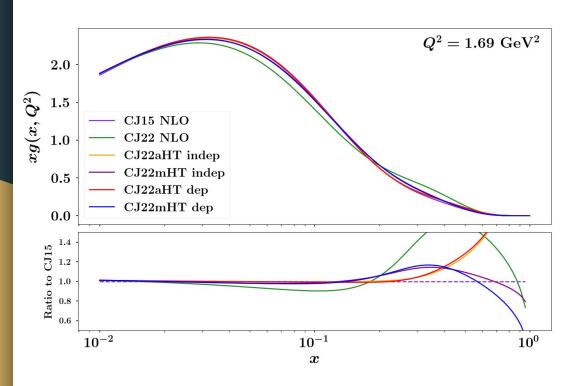
Remaining differences are theoretical uncertainties (HT modeling)

 \boldsymbol{x}

1.0

Summary – Unbiasing the fit

Accuracy challenge met! *


Systematic uncertainty from HT implementation

* a few more checks needed, but a big one done!

 \boldsymbol{x}

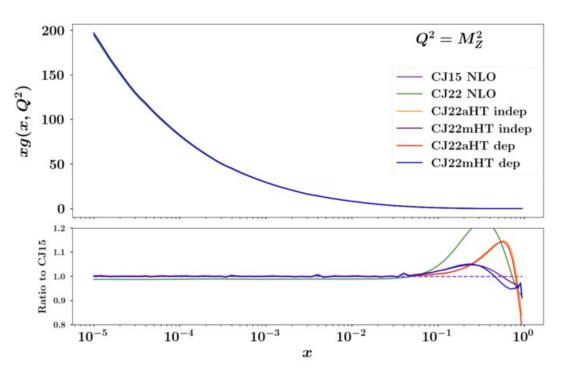
Gluon systematics

Assumptions matter → interplay of many sectors

CJ15:

- db/ub constrained \rightarrow 1 as $x\rightarrow$ 1
- factorized offshell parametzion

CJ22:


- flexible db/ub
 - → gluons compensate for offshell assumptions (!!)

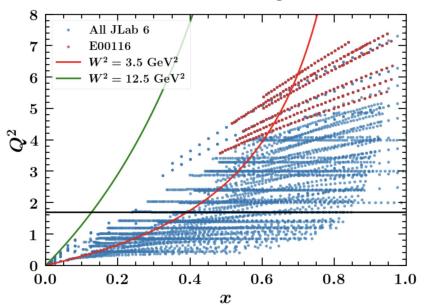
CJ22ht:

- flexible db/ub & flexible offshell
 - → gluons only need to take care of HT modeling

Gluon systematics

Assumptions matter → interplay of many sectors

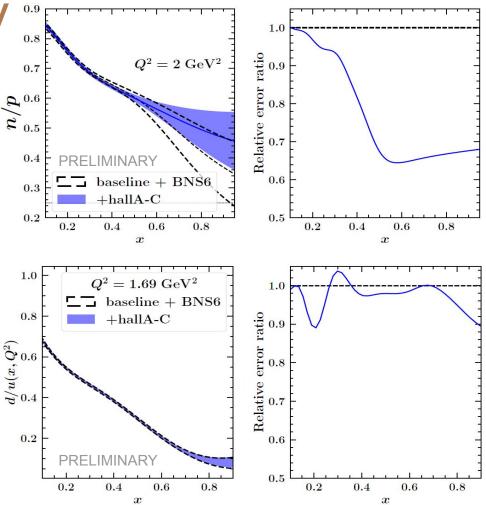
At large Q², differences at large x


- \rightarrow need larger Q² data:
 - Suppress HT
- Constrain offshell
- Gluons through DGLAP evolution
- Cross sections (but HT for FL!)
- Jet data at forward rapidity, large mass

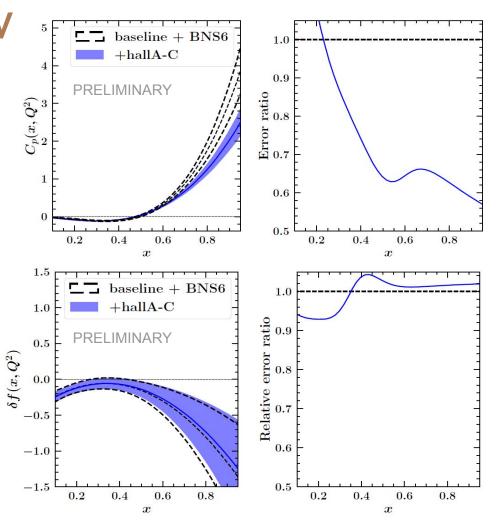
Impact of JLab DIS data

(very preliminary, but tantalizing!)

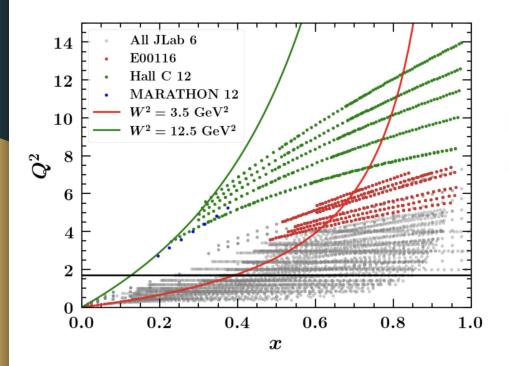
Impact of JLab 6 GeV


- New no-JLab baseline:
 - CJ22ht data, except BONuS, E00-116
- Good fit
 - With W2 > 3.5 GeV
 - Cuts resonances, largest kinematics

	W2cut 3.5 (3.0)		
Dataset	Npts	Chi2	
e00116p	91 (136)	93.9 (163.8)	
e00116d	91 (136)	93.8 (124.8)	
e03103p	32 (37)	25.0 (86.8)	
e03103d	45 (69)	18.0 (52.7)	
e06009_d_c	44 (79)	39.4 (57.2)	
e94110p	46 (112)	47.4 (119.8)	
e99118p	2 (2)	0.0 (0.1)	
e99118d	2 (2)	0.7 (0.3)	
jlcee96p	100 (158)	93.4 (282.1)	
Jlcee96d	97 (157)	68.7 (146.2)	
BONuS6	137 (191)	147.3 (212.2)	

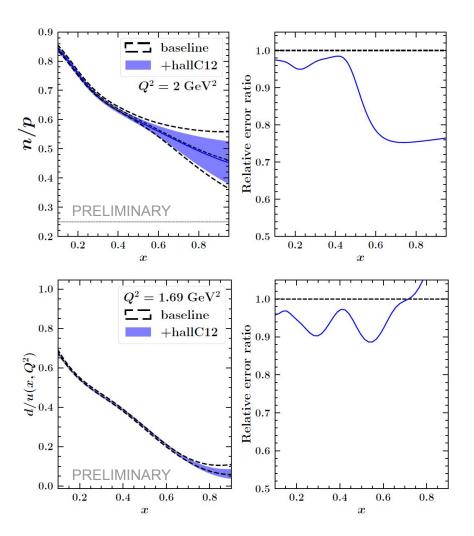

Impact of JLab 6 GeV

- Large impact large at x > 0.3,
 - Mostly absorbed by HT(p,n)


Impact of JLab 6 GeV

- Large impact large at x > 0.3
 - Mostly absorbed by HT(p,n)

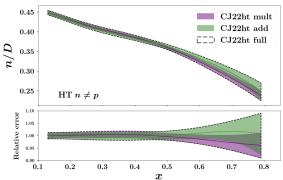
Impact of JLab 12 GeV


- Larger leverage in Q²
- Increased large-x & small-x range

	$W^2 > 3.5 (3.0) \text{GeV}^2$			
D/p	Npts	Chi2	Chi2/npts	
Hall C (corr errs)	332 (360)	286 (500)	0.86 1.39	
Marathon	7	5.25	0.75	

Impact of JLab 12 GeV

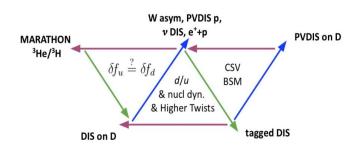
- Baseline = CJ22ht + all JLab 6 GeV
- Statistical impact also on LT
 - o d/u
 - offshell corrections (not shown)

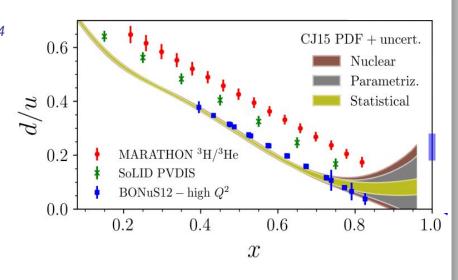


Into the future!

Into the future (12 GeV)

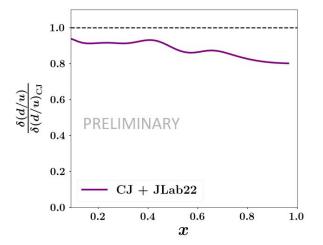
JLab E12-6-113 proposal

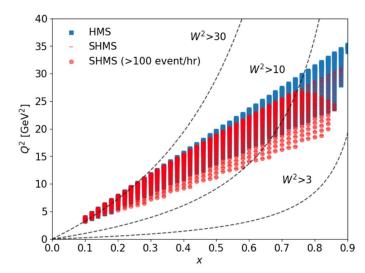

- BONus12 Tagged spectator proton → n/D ratio
 - Ongoing analysis
 - Very high statistics (<u>many more bins</u> than shown here)
 - Will impact off-shell extraction,
 check theory framework (would need also bins in pspec!)



PVDIS @ SOLID

JPG 50 (2023) 110501 also Ye Tian, Hall A mtg, Jan 2024


- d/u without nuclear target & more!
- Parity Violating electron helicity asymmetry

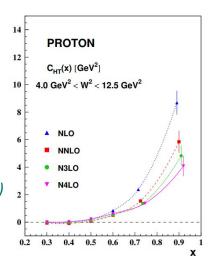


Into the future: JLab 22

- Even larger Q²
 - HT suppressed
- Impact on "LT" quantities
 - d/u & nuclear modifications (offshell)
 - (baseline here = CJ22ht)

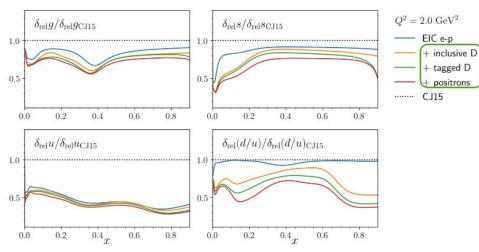
- Detector: Standard SHMS@Hall C
 - o Momentum: up to 11 GeV/c
 - scattering angle: up to 40 degrees
 - Acceptance: 50mrad x 18mrad x ±10%
- Luminosity: 50uA on liquid hydrogen target ⇒ 10³⁸/s/cm²
- Cross Section model: F1F2in21 (DIS only) + radiative corrections
- Systematics:
 - Point-to-point: 4% on absolute xsection,
 2% on ratio
 - Normalization: 1%
- HMS TBD

Into the future: JLab 22



Summary and perspective

- JLab provides large-x reach for quarks (and gluons, another time)
 - o But low-Q^2
- TMC, HT, nuclear corrections
 - Need to be addressed carefully
 - Assess implementation biases and uncertainties
 - → Many internal and external feedback loops
 - → Needed and possible!!
 - TMD, GPD analysis more delicate
 - → Even more insidious to fit? Be extra careful!
- Rich datascape for precisions and accuracy
 - Now: Jlab 6 GeV, and early JLab 12
 - Soon : Bonus 12, ALERT, ...
 - Later: SOLID & JLab 22 GeV


Are we done?

- More theoretical systematics studies needed
 - MHOT
 - → Largely absorbed in HT terms, for now
 - Large-x resummation (→ Simonelli at al., 2502.15033)
 - → Partially absorbed, too (likely)
 - 0 ...

Blumlein, Bottcher PLB 662 (2008)

- Even higher energy:
 - o EIC

Prepared for: EIC yellow report - NPA 1026 (2022) 122447

Backup - CJ22

New: light antiquark parametrization

• **CJ15:** Accardi et al., PRD 93 (2016) 11

$$\bar{d}/\bar{u} = a_0 x^{a_1} (1-x)^{a_2} + 1 + a_3 x (1-x)^{a_4}$$

- Large x: tends to 1 from above
- Shape "hugs" E866 data
- CJ22: follows CJ15-a, reverts back to CJ12 param: Accardi et al., PLB 801 (2020) 135143

$$x(\bar{d} - \bar{u}) = \bar{a}_0 x^{\bar{a}_1} (1 - x)^{\bar{a}_2} (1 + \bar{a}_4 x)$$

- \circ Unconstrained $x \rightarrow 1$ limit
- \circ Free \bar{a}_2 instead of fixing $\bar{a}_2=a_2+2.5$
- More flexibility more data, fix extra parameters
 Sensitivity to db/ub ←→ d/u anticorrelation

New: fit framework

- Electroweak pair production (Xiaoxian Jing)
 - γ, W, Z
 - NLO calculations with APPLgrid + MCFM
 - Tested against E866, D0 W asymmetry in CJ15

- STAR W grids (Sanghwa Park)
 - o Exp. cuts:

$$\rightarrow p_e > 15 \text{ GeV}, 25 < E_e < 50 \text{ GeV}$$

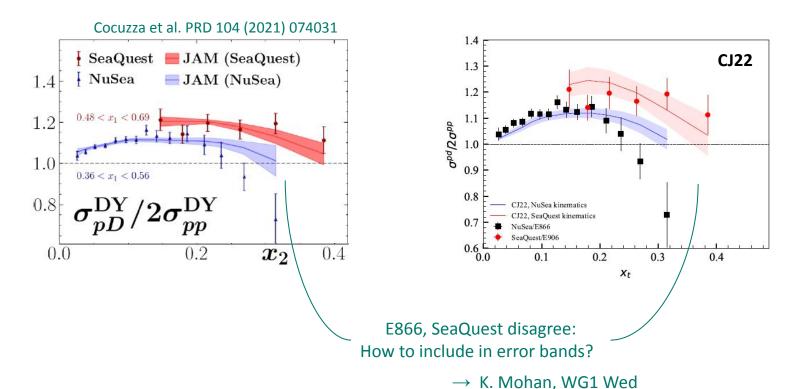
- Jet suppression (as in STAR paper):
 - \rightarrow Vetoed jet production \rightarrow 20% cross section suppression
- STAR Z,
 - see paper

New: PDF error analysis

- "Adjusted" Hessian approximation Accardi et al., EPJC 81 (2021) 7
 - Diagonalize H
 - Error PDFs defined in each eigendirection by

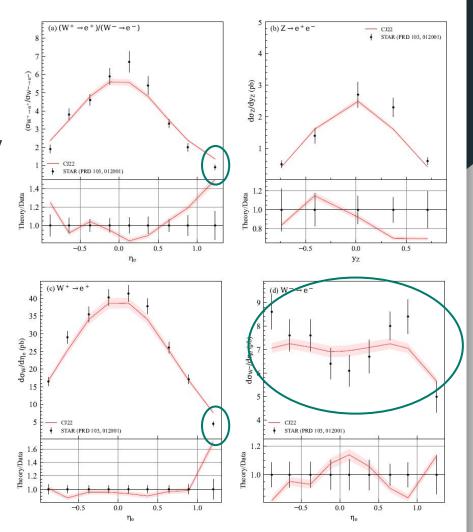
$$\Delta \chi_i^2, \pm = 1.645 \quad \longleftrightarrow \quad 90\% \ c.l.$$

- Local asymmetric tolerance criterion
 - → Accounts for deviation from Gaussian likelihood
- Important for:
 - Constrained observables (e.g., $n/p \longleftrightarrow d/u$ at large x)
 - \circ Regions with poor data constraints (e.g., db/ub at x > 0.3, extrapolation)

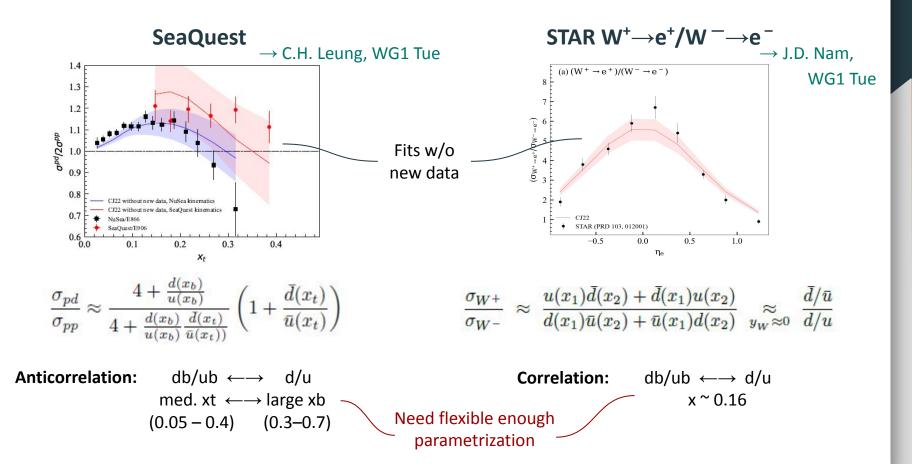

CJ22 data set

Obs.	Experiment	Ref.	# Points	χ^2
DIS	JLab (p)	[31]	136	161.0
	JLab (d)	[31]	136	119.1
	JLab (n/d)	[32]	191	213.2
	HERMES (p)	[33]	37	29.1
	HERMES (d)	[33]	37	29.5
	SLAC (p)	[34]	564	469.8
	SLAC (d)	[34]	582	412.1
	BCDMS (p)	[35]	351	472.2
	BCDNS (d)	[36]	254	321.8
	NMC (p)	[37]	275	416.5
	NMC (d/p)	[38]	189	199.6
	HERA (NC e^-p)	[39]	159	249.7
	HERA (NC e^+p 1)	[39]	402	598.9
	HERA (NC e^+p 2)	[39]	75	98.8
	HERA (NC e^+p 3)	[39]	259	250.0
	HERA (NC e^+p 4)	[39]	209	229.1
	HERA (CC e^-p)	[39]	42	45.6
	HERA (CC e^+p)	[39]	39	52.5

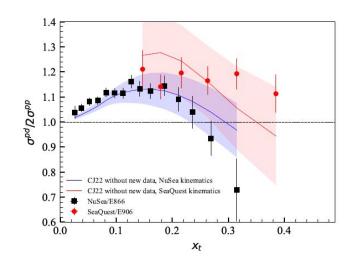
Obs.	Experiment	Ref.	# Points	χ^2
LPP	E866 (pp)	[4]	121	144.1
_	E866 (pd)	[4]	129	157.4
	SeaQuest (d/p)	[5]	6	7.5
W	CDF(e)	[40]	11	12.6
	D0(e)	[41]	13	28.8
	$D0 (\mu)$	[42]	10	17.5
	CDF(W)	[43]	13	18.0
_	D0(W)	[44]	14	14.5
ſ	STAR (e^+/e^-)	[6]	9	25.3
12722	(less $\eta_{\rm max}$ point)		(8)	(15.4)
Z	CDF	[45]	28	29.2
	D0	[46]	28	16.1
jet	CDF	[47]	72	14.0
	D0	[48, 49]	110	14.0
γ +jet	D0 1	[50]	16	8.7
	D0 2	[50]	16	19.3
	D0 3	[50]	12	25.0
	D0 4	[50]	12	12.2
10	total		4557	4936.6
	total + norm		4573	4948.6

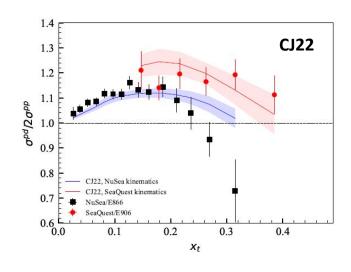

Lepton Pair Production

Comparable results to JAM, CT:



Weak boson production

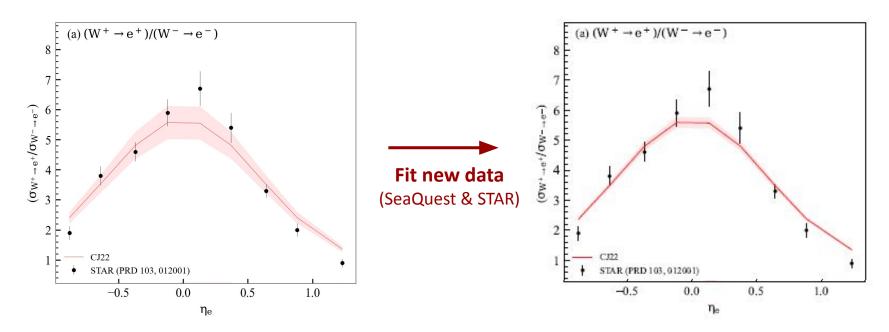

- Only W+/W- ratio was fitted
 - Other plots compare data to theory
- Largest rapidity W⁺ not reproduced
 - Would require too small db/ub
 - Or too large d/u
- More structure in W⁻ data
 than in the theory calculation


New: electroweak data

Lepton Pair Production

Fit new data (SeaQuest & STAR)

SeaQuest:


$$\chi^2$$
/datum = 3.19

1.25

E866 :
$$\chi^2$$
/datum = 1.63

1.93

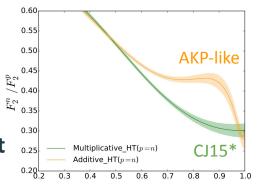
Weak boson production

- Large reduction in uncertainty driven by SeaQuest data
- STAR contributes ~ 15% reduction around x~0.16
 - o distributed between d/u (5%) and db/ub (10%) PDF ratios

HT systematics & offshell corrections

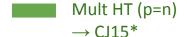
Additive vs. Multiplicative

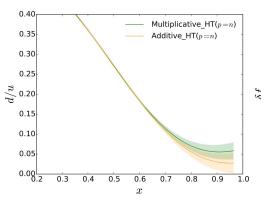
$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$
$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

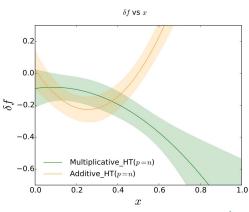

• Isospin, Q² evol. not independnt

$$\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$$

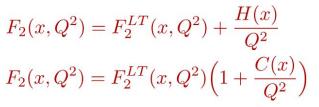
• Non-negligible large-x bias


$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} & \text{mult. } p = n \end{cases}$$


CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020



Isospin symmetric HT

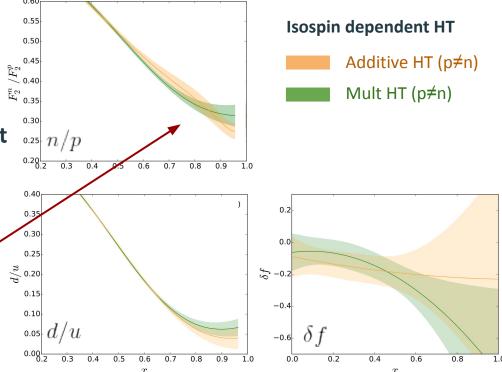


I. Fernando

HT systematics & offshell corrections

Additive vs. Multiplicative

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

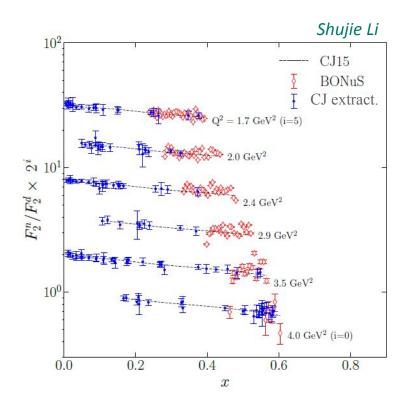


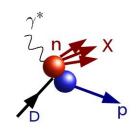
• Isospin, Q² evol. not independnt

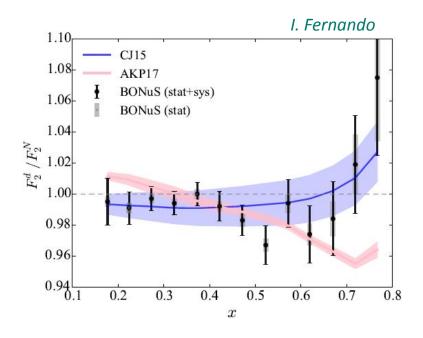
$$\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$$

Isospin dependent HT:

BIAS REMOVED!

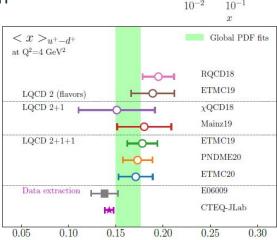


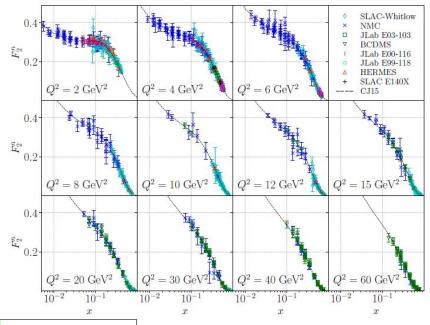

I. Fernando


Backup - F2(n) extraction

Bonus cross-checks

BONuS: Tagged proton DIS measurements


F₂(n) extraction and apps

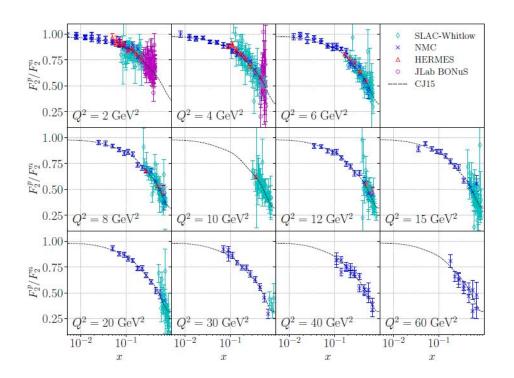

• Basic idea:

$$\widehat{F}_2^{n(0)}(x, Q^2) = \frac{2 \, \widehat{F}_2^{d(0)}(x, Q^2)_{\text{exp}}}{R_{d/N}^{\text{CJ}}(x, Q^2)} \, - \, \widehat{F}_2^{p(0)}(x, Q^2)_{\text{exp}}$$

But also:

- P, d data matching
- Data cross normalization
 - \rightarrow using CJ15 PDFs
 - → refitting norm,Correlated shifts
- Bin-centering for Isosinglet moment
- 0 ...

Shujie Li


F₂(n/p) extraction

- Similar idea, but using
 - o d/p data

$$\widehat{R}_{n/p}^{(0)} \equiv \frac{2\,\widehat{R}_{d/p}^{\mathrm{exp},(0)}}{R_{d/N}^{\mathrm{CJ}} - 1}$$

o n/d BONuS data

$$\widehat{R}_{n/p}^{(0)} \equiv \frac{\widehat{R}_{n/d}^{\mathrm{exp},(0)} R_{d/N}^{\mathrm{CJ}}}{1 - \widehat{R}_{n/d}^{\mathrm{exp},(0)} R_{d/N}^{\mathrm{CJ}}}$$

