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LaMET's Asymptotic Analysis
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LaMET as a forward problem formalism

Large 𝑧 asymptotic analysis

Data quality for asymptotic analysis



Lattice QCD Calculation on PDFs
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Moments from 

local operators

Textbook knowledge: Peskin&Schroeder 1995

Early calculations: LHPC 2010, RBC/UKQCD 2010

Recent results: RQCD 2018, 𝜒QCD 2018, NME 

2021, ETMC 2022, Mainz 2024

Short distance 

factorization 

from non-local 

operators

Moments

Short distance correlation (SDF)

and x-dependence modeling

Idea proposed: 

V. M. Braun&D. Muller 2008

Calculation just started: 

JLab 2017, BNL/ANL 2020

Recent calculations: 

JLab 2017, 2019, 2021

𝒙-dependence from large 

momentum effective 

theory (LaMET)

Idea proposed: Ji 2013, Ji 2014

 

Major collaborations: BNL/ANL, LPC, ETMC, MSU

𝑥𝑁 = ∫ 𝑑𝑥 𝑥𝑁𝑓(𝑥)

1. LaMET as a forward problem formalism
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Ji, PRL 110 (2013); Ji, SCPMA 57 (2014); X. Xiong et al., PRD (2014); T. Izubuchi et al., PRD (2018); 

W. Wang et al., PRD (2019); Z. Li et al., PRL (2021); L. Chen et al., PRL (2021); X. Ji et al., RMP (2021)

Quasi-PDF ƿ𝑓 𝑦, 𝑃𝑧 =

∫
𝑑𝑧

4𝜋
𝑒𝑖 𝑧 𝑃𝑧 𝑦 𝑃𝑧

ത𝜓(𝑧)𝑈 𝑧, 0 𝛾𝑧𝜓(0) 𝑃𝑧 , where 𝑃𝑧 ≫ ΛQCD

Light cone PDF 𝑓 𝑥, 𝜇 =

∫
𝑑𝜉−

4𝜋
𝑒−𝑖 𝜉−𝑃+𝑥 𝑃 ത𝜓(𝜉−)𝑈 𝜉−, 0 𝛾+𝜓(0) 𝑃

Large Momentum Effective Theory (LaMET)

• The equivalence of collinear modes between 𝑓 and ƿ𝑓 is shown in Libby Sterman analysis 

in X. Ji et al., RMP (2021), arXiv:2004.03543

• The UV difference is absorbed into the matching coefficient 𝐶

𝑓 𝑥, 𝜇 = න
𝑑𝑦

|𝑦|
𝐶

𝑥

𝑦
,

𝜇

𝑦 𝑃𝑧
ሚ𝑓 𝑦, 𝑃𝑧 + 𝑂

ΛQCD
2

𝑥2𝑃𝑧
2 

,
ΛQCD

2

1 − 𝑥 2𝑃𝑧
2 
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LaMET analysis is a forward process with controlled precision
■ Lattice data generation and hybrid renormalization (Coor)

෨ℎ 𝑧, 𝑃𝑧, 𝑎 = 𝑃𝑧
ത𝜓(𝑧)𝑈 𝑧, 0 𝛾𝑧𝜓(0) 𝑃𝑧

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 𝑎

෨ℎ 𝑧, 0, 𝑎
𝜃 𝑧𝑠 − 𝑧 +

෨ℎ 𝑧, 𝑃𝑧, 𝑎

𝑍𝑅 𝑧, 𝑎, 𝜇

𝑍𝑅 𝑧𝑠, 𝑎, 𝜇

෨ℎ 𝑧𝑠, 0, 𝑎
𝜃(𝑧 − 𝑧𝑠)

■ Asymptotic extrapolation and Fourier transformation (Coor to Mom)

෨ℎ𝑅′ 𝑧, 𝑃𝑧 = ൞

෨ℎ𝑅 𝑧, 𝑃𝑧 , 𝑧 < 𝑧𝐿

𝑐1

(𝑖𝜆)𝑑1
+ 𝑒−𝑖𝜆

𝑐2

(−𝑖𝜆)𝑑2
𝑒−𝑚eff𝑧, 𝑧 > 𝑧𝐿

ሚ𝑓 𝑦, 𝑃𝑧 = න

−∞

+∞
𝑑𝜆

2𝜋
𝑒𝑖 𝜆 𝑦 ෨ℎ𝑅′ 𝜆/𝑃𝑧, 𝑃𝑧

The errors from asymptotic extrapolation to FT are bounded by the 

exponential decay factor.

■ Perturbative matching (Mom)

𝑓 𝑥, 𝜇 = න
𝑑𝑦

|𝑦|
𝐶

𝑥

𝑦
,

𝜇

𝑦 𝑃𝑧
ሚ𝑓 𝑦, 𝑃𝑧 + 𝑂

ΛQCD
2

𝑥2𝑃𝑧
2 

,
ΛQCD

2

1 − 𝑥 2𝑃𝑧
2 

where the precision in the moderate−𝑥 range is under controlled.
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LPC, PRL (2023)

X. Ji, Y. Liu, Y. Su, R. Zhang, JHEP (2025)
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Lattice data generation and hybrid renormalization
■ Generate lattice QCD matrix elements

෨ℎ 𝑧, 𝑃𝑧 , 𝑎 = 𝑃𝑧
ത𝜓(𝑧)𝑈 𝑧, 0 𝛾𝑧𝜓(0) 𝑃𝑧

■ Hybrid renormalization

Motivation: cancel UV divergence without introducing uncontrolled non-perturbative 
effects at large distance

Method:

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 𝑎

෨ℎ 𝑧, 0, 𝑎
𝜃 𝑧𝑠 − 𝑧 +

෨ℎ 𝑧, 𝑃𝑧, 𝑎

𝑍𝑅 𝑧, 𝑎, 𝜇

𝑍𝑅 𝑧𝑠, 𝑎, 𝜇

෨ℎ 𝑧𝑠, 0, 𝑎
𝜃(𝑧 − 𝑧𝑠)

short distance (𝑧 < 𝑧𝑠): ratio scheme using zero momentum matrix element ෨ℎ 𝑧, 0, 𝑎

Long distance (𝑧 > 𝑧𝑠): MS scheme using the renormalization factor 𝑍𝑅 𝑧, 𝑎, 𝜇

■ The renormalization factor 𝑍𝑅 𝑧, 𝑎, 𝜇 , converting lattice to MS scheme, is extracted from 
zero momentum matrix element ෨ℎ 𝑧, 0, 𝑎 , by fitting the 𝑎 dependence and comparing 
with MS scheme perturbation theory. This process is called self-renormalization. 
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1. LaMET as a forward problem formalism

LatticePartonLPC:2021gpi

Ji:2020brr



Self-renormalization to extract 𝑍𝑅 𝑧, 𝑎, 𝜇  
– a substep of hybrid renormalization

■ Fit the UV divergence (𝑎-dependence) 

from zero momentum matrix element

7

1. LaMET as a forward problem formalism

■ Fit the scheme conversion factor, such as 𝑚0, by 

comparing data and MS scheme perturbation theory

■ The parametrization of 𝑍𝑅 𝑧, 𝑎, 𝜇  motivated by perturbation theory

𝑍𝑅 𝑧, 𝑎, 𝜇 = Exp
𝑘𝑧

aln 𝑎ΛQCD

+
3𝐶𝐹

11 −
2𝑁𝑓

3

ln

ln
1

𝑎ΛQCD

ln
𝜇

ΛQCD

+ ln 1 +
𝑑

ln 𝑎ΛQCD

+ 𝑚0𝑧 + 𝑓 𝑧 𝑎2

 

Nucleon transversity PDF 

from LPC, PRL (2023)

LatticePartonLPC:2021gpi



The hybrid renormalized matrix elements
■ The coordinate space matrix elements

■ Convert to momentum space using FT?

ሚ𝑓 𝑦, 𝑃𝑧 = න

−∞

+∞
𝑑𝜆

2𝜋
𝑒𝑖 𝜆 𝑦 ෨ℎ𝑅 𝜆/𝑃𝑧, 𝑃𝑧
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1. LaMET as a forward problem formalism

Nucleon transversity PDF from LPC, PRL (2023)



An issue of FT
■ FT needs correlator in the infinite range (𝜆 = 𝑧𝑃𝑧)

ሚ𝑓 𝑦, 𝑃𝑧 = න

−∞

+∞
𝑑𝜆

2𝜋
𝑒𝑖 𝜆 𝑦 ෨ℎ𝑅 𝜆/𝑃𝑧, 𝑃𝑧

■ Lattice data are available up to a finite distance, such as 𝑧~1fm, due to bad signal to 

noise ratio at larger distance.

■ We hope to resolve this issue by extrapolating data to infinite range based on 

physical guidance. 9
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Nucleon transversity PDF 

from LPC, PRL (2023)



Large distance asymptotic analysis
■ The basic idea: Euclidean correlator decays exponentially at 

large distance.

■ The strategy: extrapolate data to infinite range based on 

exponential decay.

– Fit data at large distance with asymptotic form
𝑐1

(𝑖𝜆)𝑑1
+ 𝑒−𝑖𝜆

𝑐2

(−𝑖𝜆)𝑑2
𝑒−𝑚eff𝑧

– Combine data and asymptotic form to obtain the full-

range correlator

෨ℎ𝑅′ 𝑧, 𝑃𝑧 = ൞

෨ℎ𝑅 𝑧, 𝑃𝑧 , 𝑧 < 𝑧𝐿

𝑐1

(𝑖𝜆)𝑑1
+ 𝑒−𝑖𝜆

𝑐2

(−𝑖𝜆)𝑑2
𝑒−𝑚eff𝑧, 𝑧 > 𝑧𝐿

– Perform the FT

ሚ𝑓 𝑦, 𝑃𝑧 = න
𝑑𝜆

2𝜋
𝑒𝑖 𝜆 𝑦 ෨ℎ𝑅′ 𝜆/𝑃𝑧, 𝑃𝑧

■ The errors originated from asymptotic fitting to momentum 

space distribution are bounded by the exponential decay. 10
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Nucleon transversity PDF 

from LPC, PRL (2023)



Perturbative matching
■ Matching: convert quasi to light-cone 

𝑓 𝑥, 𝜇 = න
𝑑𝑦

|𝑦|
𝐶

𝑥

𝑦
,

𝜇

𝑦 𝑃𝑧
ሚ𝑓 𝑦, 𝑃𝑧 + 𝑂

ΛQCD
2

𝑥2𝑃𝑧
2 

,
ΛQCD

2

1 − 𝑥 2𝑃𝑧
2 

■ Improved perturbative matching kernel 𝐶
𝑥

𝑦
,

𝜇

𝑦 𝑃𝑧

– DGLAP log resummation (RGR): 

~𝛼𝑛 ln𝑛(4𝑥2𝑃𝑧
2/𝜇2) Su:2022fiu

– Leading renormalon resummation (LRR): 

~𝛼𝑛+1𝛽0
𝑛𝑛! Zhang:2023bxs

– Threshold log resummation (TR): 

~𝛼𝑛 ln2𝑛(4(1 − 𝑥)2𝑃𝑧
2/𝜇2) Ji:2023pba, 

Liu:2023onm, Ji:2024hit 

■ Controlled precision in the moderate-𝑥 range, e.g. 

0.2 ≾ 𝑥 ≾ 0.8 for 𝑃𝑍 = 2GeV.

■ The reliable x-region could be extended with larger 

momentum in the future.
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Pion valence PDF from

X. Ji, Y. Liu, Y. Su, R. Zhang, JHEP (2025)



Large 𝑧 asymptotic analysis under LaMET

■ Theoretical arguments for the exponential decay

■ Exponential decay in lattice data

■ Controlled precision of asymptotic analysis

Yushan Su @ UMD 12
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Theoretical arguments for the exponential decay
■ The quasi-PDF matrix element is two heavy-light quark vertices separated in z direction

෨ℎ 𝑧, 𝑃𝑧 = 𝑃𝑧
ത𝜓 𝑧 𝑄(𝑧)𝛾𝑧𝑄(0)𝜓(0) 𝑃𝑧  

■ Insert a complete basis as the intermediate particles

෨ℎ 𝑧, 𝑃𝑧 = 𝑒−𝑖 𝑧 𝑃𝑧


𝑛

න
𝑑3𝑘

2𝜋 32 𝑚𝑛
2 + 𝑘2

𝑒𝑖 𝑧 𝑘𝑧
𝑃𝑧

ത𝜓𝑄|𝑛𝑘 ⟩⟨𝑛𝑘 |𝛾
𝑧 ത𝑄𝜓 𝑃𝑧

■ QCD confinement requires the branch cuts or singularity poles of the integrand have finite 
imaginary parts (mass gaps), which are the origins of exponential decay. For example, push the 

contour of 𝑘𝑧 upward around the branch cut of 𝑚𝑛
2 + 𝑘2 and redefine 𝑘𝑧 = 𝑖 𝐾𝑧 gives one of 

the exponential decaying contributions,

෨ℎ 𝑧, 𝑃𝑧 = 𝑒−𝑖 𝑧 𝑃𝑧


𝑛

න
𝑑2𝑘⊥

2𝜋 2
න

𝑚𝑛
2 +𝑘⊥

2

+∞ 𝑑𝐾𝑧

2𝜋 𝐾𝑧
2 − (𝑚𝑛

2 + 𝑘⊥
2)

𝑒−𝑧 𝐾𝑧
𝑃𝑧

ത𝜓𝑄|𝑛𝑘 ⟩⟨𝑛𝑘 |𝛾
𝑧 ത𝑄𝜓 𝑃𝑧 + ⋯

■ In the large 𝑧 limit, the dominant contribution comes from 𝐾𝑧~ 𝑚𝑛
2 + 𝑘⊥

2 , 𝑘⊥~0, 𝑛 = G (ground 
state), 

෨ℎ 𝑧 → ∞, 𝑃𝑧  ~ 𝑒−𝑧 𝑚𝐺

which contains an exponential decay factor regarding the “ground state energy” of a hadron 
with a heavy quark.
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Exponential decay in lattice data
■ The transversity PDF data generated by LPC

■ Left panel: bare matrix element 𝑓0(𝑧)

■ Right panel: “effective mass in z direction” of bare matrix element meff 𝑧 =
1

𝑎
ln

𝑓0 𝑧

𝑓0 𝑧+𝑎

The plateau indicates the data hit the exponential decay region of the ground state.
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2. Large 𝑧 asymptotic analysis

LPC, PRL (2023)



Controlled precision of asymptotic analysis
■ Recall the asymptotic analysis procedure:

Fit the asymptotic form in the exponential decay region;

Combine data and asymptotic form to obtain the full range correlator ෨ℎ𝑅′ 𝑧, 𝑃𝑧 ;

Perform the Fourier transformation to get the momentum space distribution.

■ The error from asymptotic fitting could lead to the error of momentum space distribution, which 
is bounded due to the exponential decay: 

𝛿 ሚ𝑓 𝑥, 𝑃𝑧 <
4𝑁𝑥 ℎ 𝑧, 𝑃; 𝜆𝐿 max

𝜋𝑥
where ℎ 𝑧, 𝑃; 𝜆𝐿 max is the maximum value of ෨ℎ𝑅′ 𝑧, 𝑃𝑧  for 𝜆𝐿 < 𝜆 < ∞

𝑁𝑥 is an integer at which the contribution from 𝜆 > 𝜆𝐿 + 𝑁𝑥2𝜋/𝑥 is negligible

■ e.g. for 𝑃𝑧 = 2GeV, 𝑚eff = 0.2GeV, the exponential suppression after 𝑁𝑥 periods is 

exp −
𝑁𝑥2𝜋

𝑥

𝑚eff

𝑃𝑧 = exp −0.63
𝑁𝑥

𝑥
. 

      For 𝑥 = 0.5, 𝑁𝑥~𝑂(1) is a reasonable estimate. For example, we may take 𝑁𝑥 = 1. 

      If ℎ 𝑧, 𝑃; 𝜆𝐿 max = 0.05, the error is bounded as 𝛿 ሚ𝑓 𝑥, 𝑃𝑧 < 0.13.

■ It likely overestimates the true uncertainty, as it assumes that ෨ℎ𝑅′ 𝑧, 𝑃𝑧  can vary arbitrarily 
between 0 and its maximum value ℎ 𝑧, 𝑃; 𝜆𝐿 max at each 𝑧.

■ The error 𝛿 ሚ𝑓 is governed by signal and noise, not the signal-to-noise ratio!
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2. Large 𝑧 asymptotic analysis

ANL/BNL, PRL (2022)



Data quality at large distance is improving
■ e.g. Pion valence collinear PDF @ 𝑚𝜋~300MeV
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3. Data quality for asymptotic analysis

LP3, PRD (2019) ANL/BNL, PRL (2022) X. Gao, W. Liu, Y. Zhao, PRD (2024)

■ Multiple reasons for the improvement

– Computer resources and techniques

– Novel physics-motivated ideas: momentum smearing source, Coulomb gauge method, 

kinematically-enhanced hadron interpolation operator…

– …

𝑎 = 0.12fm, Pz = 1.6GeV

𝑎 = 0.06fm



Momentum smearing source
■ Basic idea: introduce a phase to the gaussian smearing source 

to enhance the overlap with a large momentum hadron

17

3. Data quality for asymptotic analysis

■ Effects: 

Gaussian smearing source with 

30000 measurements

is comparable with

momentum smearing source with 

150 measurements

G. Bali, B. Lang, B. Musch, 

and A. Schäfer, PRD (2016)

ETMC, PRD (2017) 



Coulomb gauge method
■ Basic arguments: 

Gauge link in quasi-PDF ⇒ linear divergence ⟹ suppress signal-to-noise ratio at large distance

Replace gauge link with Coulomb gauge dressing factors ⇒ no linear divergence ⇒ higher precision
ത𝜓 𝑧 𝑈 𝑧, 0 𝛾𝑧𝜓 0 → ത𝜓 𝑧 𝑈𝐶

† 𝑧 𝛾𝑧𝑈𝐶(0)𝜓 0

18

3. Data quality for asymptotic analysis

■ Effects: 

In the coulomb gauge 

method, the data at large 

distance become less noisy.

X. Gao, W. Liu, Y. Zhao, 

PRD (2024)

Y. Zhao, PRL (2024)



Kinematically-enhanced 
hadron interpolation operator

■ Basic idea: modify the hadron interpolation operator to mimic the light-front operator

For nucleon: 𝜖𝑎𝑏𝑐 𝑑𝑎
𝑇𝐶𝛾5𝑢𝑏 𝒫+𝑢𝑐 → 𝜖𝑎𝑏𝑐 𝑑𝑎

𝑇𝐶𝛾5𝛾𝜇𝑢𝑏 𝒫+𝑢𝑐

For pion: ᪄𝑢𝛾5𝑑 → ᪄𝑢𝛾5𝛾𝜇𝑑

■ The signal-to-noise ratio of 2pt is enhanced by the factor 𝑂 𝑃𝑧
2/𝑀2

■ Numerical tests on the effective mass

19

3. Data quality for asymptotic analysis

Pion Nucleon

R. Zhang, A. Grebe, D. Hackett, M. Wagman, Y. Zhao, 2501.00729



State of art calculations
■ Pion valence quasi TMDPDF under momentum smearing source and Coulomb gauge method

20

3. Data quality for asymptotic analysis

■ The large-distance data show exponential decay and tend to zero quickly, while the errors do 
not increase. 

■ The precision of asymptotic extrapolation and Fourier transformation is well controlled.

■ Haven’t used the kinematically-enhanced hadron interpolation operator yet!

■ Therefore, there are good quality data for asymptotic analysis under LaMET. The situation 
could be even better in the near future. 

D. Bollweg, X. Gao, J. He, S. Mukherjee, Y. Zhao, 2504.04625



Conclusions

■ LaMET is a forward problem by construction;

■ The large 𝑧 asymptotic analysis has a controlled 

precision, due to the exponential decay 

behavior;

■ There are good-quality data for asymptotic 

analysis under LaMET. The situation could be 

even better in the near future.
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LaMET analysis is a forward process with controlled precision
■ Lattice data generation and hybrid renormalization

෨ℎ 𝑧, 𝑃𝑧, 𝑎 = 𝑃𝑧
ത𝜓(𝑧)𝑈 𝑧, 0 𝛾𝑧𝜓(0) 𝑃𝑧

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 𝑎

෨ℎ 𝑧, 0, 𝑎
𝜃 𝑧𝑠 − 𝑧 +

෨ℎ 𝑧, 𝑃𝑧, 𝑎

𝑍𝑅 𝑧, 𝑎, 𝜇

𝑍𝑅 𝑧𝑠, 𝑎, 𝜇

෨ℎ 𝑧𝑠, 0, 𝑎
𝜃(𝑧 − 𝑧𝑠)

■ Asymptotic extrapolation and Fourier transformation (𝜆 = 𝑧𝑃𝑧)

෨ℎ𝑅′ 𝑧, 𝑃𝑧 = ൞

෨ℎ𝑅 𝑧, 𝑃𝑧 , 𝑧 < 𝑧𝐿

𝑐1

(𝑖𝜆)𝑑1
+ 𝑒−𝑖𝜆

𝑐2

(−𝑖𝜆)𝑑2
𝑒−𝑚eff𝑧, 𝑧 > 𝑧𝐿

ሚ𝑓 𝑦, 𝑃𝑧 = න
𝑑𝜆

2𝜋
𝑒𝑖 𝜆 𝑦 ෨ℎ𝑅′ 𝜆/𝑃𝑧, 𝑃𝑧

Current situation: Lattice data are available up to 𝑧𝐿 (0.7~1.0 fm), in the exponential 
decay region. The data for 𝑧 > 𝑧𝐿 are noisy and cannot be directly used. 

Our strategy (large z asymptotic analysis): 

Fit the parameters 𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝑚eff of the asymptotic form using the large-𝑧 data. 

Obtain the full range correlator ෨ℎ𝑅′ by combining data and asymptotic form.

Perform the Fourier transformation on ෨ℎ𝑅′.

The errors are bounded by the exponential decay factor.

■ Perturbative matching

𝑓 𝑥, 𝜇 = න
𝑑𝑦

|𝑦|
𝐶

𝑥

𝑦
,

𝜇

𝑦 𝑃𝑧
ሚ𝑓 𝑦, 𝑃𝑧 + 𝑂

ΛQCD
2

𝑥2𝑃𝑧
2 

,
ΛQCD

2

1 − 𝑥 2𝑃𝑧
2 

where the precision in the moderate−𝑥 range is under controlled.
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1. LaMET as a forward problem formalism



Data generation and hybrid renormalization
■ Generating the non-local quark bilinear correlator in a large momentum hadron on lattice QCD

෨ℎ 𝑧, 𝑃𝑧 , 𝑎 = 𝑃𝑧
ത𝜓(𝑧)𝑈 𝑧, 0 𝛾𝑧𝜓(0) 𝑃𝑧

■ The UV divergences are regularized by the finite lattice spacing 𝑎

■ Hybrid renormalization (𝑧 < 𝑧𝑠 ratio scheme, 𝑧 > 𝑧𝑠 MS scheme)

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 𝑎

෨ℎ 𝑧, 0, 𝑎
𝜃 𝑧𝑠 − 𝑧 +

෨ℎ 𝑧, 𝑃𝑧, 𝑎

𝑍𝑅 𝑧, 𝑎, 𝜇

𝑍𝑅 𝑧𝑠, 𝑎, 𝜇

෨ℎ 𝑧𝑠, 0, 𝑎
𝜃(𝑧 − 𝑧𝑠)

     which does not introduce uncontrolled non-perturbative effects at large distance
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1. LaMET is a forward problem by construction

~Exp −
𝑚−1(𝑎)

𝑎
𝑧 ~ln[𝑎]



Pseudo-PDF method
■ Lattice data generation and renormalization

෨ℎ 𝑧, 𝑃𝑧, 𝑎 = 𝑃𝑧
ത𝜓(𝑧)𝑈 𝑧, 0 𝛾𝑧𝜓(0) 𝑃𝑧

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 𝑎

෨ℎ 𝑧, 0, 𝑎

■ Perturbative matching

෨ℎ𝑅(𝑧, 𝑃𝑧) = ∫0

1
𝑑𝛼𝒞 𝛼, 𝑧2𝜇2 ℎLC(𝛼𝜆, 𝜇) + 𝒪 𝑧2ΛQCD

2

■ Fourier transformation

𝑓(𝑥, 𝜇) ≡ න
𝑑𝜆

2𝜋
𝑒−𝑖𝑥𝜆ℎLC(𝜆, 𝜇)

– Idealized situation: data hit asymptotic region. 

 ℎLC 𝜆 → ∞, 𝜇 ~
1

𝜆𝛼 is a polynomial decay much slower than the exponential 

decay in LaMET case. 

 The errors from asymptotic analysis should be much larger than LaMET.

– Practical calculation: 𝑃𝑧~2GeV, 𝑧 ≲ 0.3fm, 𝜆 ≲ 3, far less than the 𝜆 → ∞ 
asymptotic region. 

 One faces an inverse problem to obtain the momentum space PDF.
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An example of inverse problem in Pseudo-PDF
■ Reconstructing PDFs from short-distance correlators of nucleon transversity PDF 

evaluated at 𝑧 = 0.26 fm with proton momenta 𝑃𝑧 = 1.6,2.0,2.4,2.8,3.2 GeV 
based on logRBF kernels with different hyperparameters

■ Left panel: the data and reconstructed light-cone correlator in coordinate space. 

■ Right panel: the reconstructed light-cone PDF in momentum space

■ Large uncertainties in the PDF reconstruction
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LPC, PRL (2023)
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JLab, PRD 111 (2025) 3, 034515
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1. LaMET is a forward problem by construction

An example of inverse problem in Pseudo-PDF



LPC transversity data not in Coulomb gauge
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2. Large 𝑧 asymptotic analysis

LPC, PRL (2023)



LPC, PRL (2023)
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2. Large 𝑧 asymptotic analysis

Extrapolation for LPC transversity 
data not in Coulomb gauge



Physical origin of the effective 
mass in the asymptotic decay

■ The spectral decomposition of quasi-PDF correlation at large distance
෨ℎ 𝑧 → ∞, 𝑃𝑧 ~ 𝑒−𝑧 𝑚𝐺

■ The physical origin of 𝑚𝐺:

𝑚𝐺(𝑎) = 𝛿𝑚 𝑎, 𝜏 + 𝐸bin(𝜏)

𝛿𝑚 𝑎, 𝜏 ~
1

𝑎
 is the linear divergence of heavy quark self energy

𝐸bin(𝜏) is the remaining part of the energy

■ Renormalon ambiguity

𝛿𝑚 𝑎, 𝜏  contains the renormalon ambiguity at 𝑂(ΛQCD) and is dependent on the 

renormalon regularization scheme 𝜏. Since 𝑚𝐺(𝑎) is not ambiguous, 𝐸bin(𝜏) 

should be 𝜏 dependent, cancelling the scheme 𝜏 dependence of 𝛿𝑚 𝑎, 𝜏 . 

■ Mass renormalization

After renormalization of linear divergence, the exponential decay is related to 

𝐸bin(τ). One can always choose a scheme 𝜏 so that 𝐸bin(τ) is positive and at 

𝑂(ΛQCD). And error of asymptotic analysis is under control.
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2. Large 𝑧 asymptotic analysis



Controlled precision of asymptotic analysis
■ Recall the asymptotic analysis procedure:

Fit the asymptotic form in the exponential decay region;

Combine data and asymptotic form to obtain the full range correlator ෨ℎ𝐻′ 𝑧, 𝑃𝑧 ;

Perform the Fourier transformation to get the momentum space distribution

■ The error from asymptotic fitting could lead to the error of FT, which is constrained by the 
exponential decay:

– Suppose there are two extrapolations ෨ℎ1(𝜆) and ෨ℎ2(𝜆), their difference is 𝛿 ෨ℎ 𝜆 =
෨ℎ1 𝜆 − ෨ℎ2(𝜆), which should satisfy 𝛿 ෨ℎ 𝜆𝐿 = 𝛿 ෨ℎ ∞ = 0. (𝜆𝐿 is the starting point to 
use exponential decay)

– The error of FT is 𝛿 ሚ𝑓 𝑥, 𝑃𝑧 = ∫𝜆𝐿

+∞ 𝑑𝜆

𝜋
cos(𝑥 𝜆) 𝛿 ෨ℎ 𝜆

– Since the integrand decays exponentially, it becomes negligible in a few (denoted 
as 𝑁𝑥) periods. Therefore, the error is approximated as 𝛿 ሚ𝑓 𝑥, 𝑃𝑧 ≈
∫𝜆𝐿

𝜆𝐿+𝑁𝑥2𝜋/𝑥 𝑑𝜆

𝜋
cos(𝑥 𝜆) 𝛿 ෨ℎ 𝜆

– The error bound can by derived 

𝛿 ሚ𝑓 𝑥, 𝑃𝑧 ≤ න

𝜆𝐿

𝜆𝐿+
𝑁𝑥2𝜋

𝑥
𝑑𝜆

𝜋
cos 𝑥 𝜆 𝛿 ෨ℎ 𝜆

max

  ≤ ℎ 𝑧, 𝑃; 𝜆𝐿 max4𝑁𝑥 ∫
𝜆𝐿

𝜆𝐿+
𝜋

2𝑥 𝑑𝜆

𝜋
cos 𝑥 𝜆 =

4𝑁𝑥 ℎ 𝑧,𝑃;𝜆𝐿 max

𝜋 𝑥
, 

where ℎ 𝑧, 𝑃; 𝜆𝐿 max is the maximum value of ෨ℎ𝐻′ 𝑧, 𝑃𝑧  for 𝜆𝐿 < 𝜆 < ∞.
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2. Large 𝑧 asymptotic analysis

ANL/BNL, PRL (2022)



Coulomb gauge PDF
■ In LPC, PRD.110.074505, the Coulomb gauge quasi-PDF matrix elements become 

consistent when the gauge fixing precision is 𝛿𝐹 = 10−7

32

3. Data quality for asymptotic analysis

■ In D. Bollweg, X. Gao, J. He, S. Mukherjee, Y. Zhao, 2504.04625, they use 𝛿𝐹 = 10−8.



Coulomb gauge PDF
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3. Data quality for asymptotic analysis



Improper renormalization 
method in 2504.17706 

■ The ratio scheme at large distance introduces uncontrolled non-perturbative effects 

that cannot be taken into account by modifying the perturbative matching kernel. 

■ As shown in the theoretical derivation, the leading exponential decay factor is 

irrelevant to the hadron momentum. Therefore, the ratio scheme cancels this 

exponential decay, which enlarges the error of asymptotic analysis.
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4. Comments on 2504.17706 



Responses to 2504.17706
■ Major argument in 2504.17706: the current lattice data are not precise enough for asymptotic 

analysis and one has to study an inverse problem.

■ Our responses:

– Poor data quality and improper analysis methods (including ratio-scheme renormalization 

and data-driven-only IP methods) leading to the conclusions in 2504.17706.

– The existence of good-quality data for asymptotic analysis. 

– Potential to improve the data quality with the novel techniques, such as the kinematically-

enhanced interpolation operator. 

– Even if the data quality is not ideal, the asymptotic analysis is a better option to provide 

reliable error estimate rather than the Data-driven-only methods methods with little 

physical constraints used in 2504.17706.  
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Data-driven-only methods could 
violate physical constraints

■ Two fundamental issues:

– Multi-solutions, hard to tell which one is physical

– Potential violation of physical constraints in the asymptotic region

■ e.g. the issues in 2504.17706

– The Gaussian decay model violates the laws of physics, as the nucleon 

correlation functions decay exponentially at long range;

– The GPR exp methods infer posterior distributions based on all data from 𝑧 =
 0 to 1.13~fm, despite the fact that exponential decay does not apply at small 

or moderate 𝑧;

– The choice of RBF kernels and hyperparameters remains ad hoc and 

introduces biases in the data analysis procedure. 
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Asymptotic analysis provides reasonable 
error estimate regardless of data quality

■ Recall the error bound derived in ANL/BNL, PRL (2022)

𝛿 ሚ𝑓 𝑥, 𝑃𝑧 <
4𝑁𝑥 ℎ 𝑧, 𝑃; 𝜆𝐿 max

𝜋𝑥

where ℎ 𝑧, 𝑃; 𝜆𝐿 max is the maximum value of ෨ℎ𝐻′ 𝑧, 𝑃𝑧  for 𝜆𝐿 < 𝜆

𝑁𝑥 is an integer at which the contribution from 𝜆 > 𝜆𝐿 + 𝑁𝑥2𝜋/𝑥 is 

negligible

■ Estimate the FT error with poor-quality data in 2504.17706 

set ℎ 𝑧, 𝑃; 𝜆𝐿 max = 0.1, reflecting the amplitude in the range 

0.75fm < 𝑧 < 1.03fm;

At 𝑥 = 0.5, taking 𝑁𝑥 = 1 is sufficient to saturate the Fourier integral;

Therefore, 𝛿 ሚ𝑓 𝑥 = 0.5, 𝑃𝑧 < 0.25 is a reasonable upper bound.

■ Fig.~3 in 2504.17706 is consistent with the error bound

Smaller x contains larger error

At 𝑥 = 0.5, the spread among central values is around 0.2, implying 

an uncertainty of about 0.1, which is still bounded by the estimate
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