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In 1977 Sterman and Weinberg proposed their jet
reconstruction algorithm

Left: jet production process (CMS). Right: jet definition from the work of
Sterman and Weinberg PhysRevLett.39.1436
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Looking inside jets: jet substructure observables
▸ In principle, any function which takes all particles inside jet can

be seen as a jet substructure observable. For example, jet
multiplicity (number of jet constituents)

▸ However, to apply perturbation theory, we require observables
to satisfy the infrared-collinear (IRC) safety requirement.

An example of the IRC-safe observable is given by the jet
angularities:

λα = ∑
i∈jet

pt,i

pt,jet
(
∆Rij

R
)

α

, α > 0

A particular case α = 2 yields a jet mass

m2
jet =
⎛

⎝
∑
i∈jet

pi
⎞

⎠

2

, or ρ =
m2

jet

p2
t R

2 ∼ λ2

Jet angularity was originally introduced in hep-ph/0303051 and its
generalized version in 1408.3122
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https://inspirehep.net/literature/614597
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Soft and Collinear limit of QCD

A probability of a single emission can be expressed in terms of

z =
Eg

Eq + Eg
, 1 − cos θ =

m2

2Eq Eg

and in the soft and collinear limit of QCD one get a standard di-log
expression

P(z , θ2
)dz dθ2

∼ αSd (log
1
z
) d (log

1
θ2)

which allows to factorize matrix elements for n-emissions

M2→n ≈M2→n−1 P(z , θ2
)dz dθ2

and so on.
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Lund Plane landscape
If we assume that all emissions are uncorrelated and distributed
according to P(z , θ2)dz dθ2 ∼ αSd (log

1
z
) d (log 1

θ2 ) then we can
introduce the jet emission plane (Lund Plane)

0 log(1/ ) log(1/ 2)
0

log(1/ )

lo
g(

1/
z)

= z 2

Emissions are uniformly distributed in the Lund Plane P(z , θ2) ∼ αS
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Measurement line

IRC-safe observables set finite no-emission areas
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It is convenient to consider cumulative distribution Σ(x ≤ ρ)

Σ(emit in i) = αS
1
2
log2 ρ

N
Σ(no emission in i) = 1 − P(emit in i)

Σ(x ≤ ρ) = lim
N→∞

(1 − P(emit in i))N

Σ(x ≤ ρ) = lim
N→∞

(1 − αS
1
2
log2 ρ

N
)

N

Σ(x ≤ ρ) = exp(−αS
1
2
log2 ρ)

p(ρ) =
d

dρ
exp(−αS

1
2
log2 ρ)

Note that our result is finite if ρ→ 0!

0 log(1/ )
log(1/ 2)

0

log(1/ )

lo
g(

1/
z)

= z 2

No emission area

We divide no-emission area
into N pixels.

For more details see lectures of A. Larkoski arXiv:1709.06195
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https://arxiv.org/abs/1709.06195


A realistic calculation

▸ Emissions are correlated and αS is scale dependent

αS

2π
→

1
2π

αS

1 − ξ
−
α2
S

2π
β1

β0

log(1 − ξ)
(1 − ξ)2

+
K

(2π)2
α2
S

(1 − ξ)2
,

where ξ = αS(µ
2
0)β0 log(µ

2
0/µ

2).
▸ The answer (usually) has a general structure

Σ(x ≤ ρ) = ∫ dB
dσδ

dB

exp(−γER
′)

Γ(1 + R ′)
exp (−R) ,

L = log(1/ρ), R′ = ∂R/∂L

where

R = Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .

is a Sudakov no-emission probability (“radiator”).
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The original calculation by Dasgupta et al in arXiv:1207.1640

R
NLL

=
CF/A
2π

1
αSβ2

0
[W (1 − λρ) − 2W (1 −

λρ

2
)]

−
CF/A
2π

β1

β3
0
[V (1 − λρ) − 2V (1 −

λρ

2
)]

−
CF/A
2π

K

2πβ2
0
(log (1 − λρ) − 2 log (1 −

λρ

2
)) −

CF/A
πβ0

Bq log (1 −
λρ

2
) ,

where W (x) = x log(x),V (x) = 1
2 log(x)

2 + log(x), λρ = 2αsβ0 log(1/ρ).
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NLL
PYTHIA PS
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https://arxiv.org/pdf/1207.1640


...but QCD is very complicated!

Image credit: Peter Skands.
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Soft radiation from MPI (UE) contaminates jets

Image credit: Peter Skands.
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SoftDrop grooming condition: min(pti ,ptj)
pti+ptj

> zcut (
∆Rij

R )
β

▸ Set values of zcut and β

▸ Recluster jet into two
branches

▸ Check the SoftDrop
condition

▸ If “True” stop the
procedure

▸ Otherwise reject softest
branch and repeat

▸ This procedure is
IRC-safe
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SoftDrop grooming condition: min(pti ,ptj)
pti+ptj

> zcut (
∆Rij

R )
β

0 2
2 + log(zcut/ ) log(1/ ) log(1/ 2)

0

log(1/zcut)

2 + log(1/ ) + 2
2 + log(1/zcut)

log(1/ )

lo
g(

1/
z)

= z 2

Collinear Drop
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SoftDrop results by Marzani et al in arXiv:1712.05105

RNLL
SD = CF

2π
1

αSβ
2
0
[2 + β
1 + βW (1 − λz + (1 + β)λρ

2 + β ) − 2W (1 − λρ

2
) − 1

1 + βW (1 − λz)]

+ CF

2π
β1

β3
0
[2 + β
1 + βV (1 − λz + (1 + β)λρ

2 + β ) − 1
1 + βV (1 − λz) − 2V (1 − λρ

2
)]

− CF

2π
K

2πβ2
0
(2 + β

1 + β log(1 − λz + (1 + β)λρ

2 + β ) − 1
1 + β log (1 − λz) − 2 log (1 − λρ

2
))

− CF

πβ0
Bq log (1 − λρ

2
) ,

where W (x) = x log(x),V (x) = 1
2 log(x)

2 + log(x), λρ = 2αsβ0 log(1/ρ).

4 3 2 1 0
log(m2

SD/p2
t )
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m
2 SD

/p
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)

pT > 600 GeV, | | < 1.5, R = 0.8, = 0, zcut = 0.1

NLL
ATLAS

4 3 2 1 0
log(m2

SD/p2
t )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(1
/

)d
/d

lo
g(

m
2 SD

/p
2 t
)

pT > 600 GeV, | | < 1.5, R = 0.8, = 1, zcut = 0.1

NLL
ATLAS

4 3 2 1 0
log(m2

SD/p2
t )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1
/

)d
/d

lo
g(

m
2 SD

/p
2 t
)

pT > 600 GeV, | | < 1.5, R = 0.8, = 2, zcut = 0.1

NLL
ATLAS

ATLAS measurements 1711.08341
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CollinearDrop condition is opposite to SoftDrop

0 2
2 + log(zcut/ ) log(1/ ) log(1/ 2)

0

log(1/zcut)

2 + log(1/ ) + 2
2 + log(1/zcut)

log(1/ )

lo
g(

1/
z)

= z 2

Collinear Drop
Soft Drop > 0

CollinearDrop condition is opposite to the SoftDrop condition
min(pti ,ptj)

pti+ptj > zcut (
∆Rij

R
)
β

which allows to pick up soft and soft-wide angle
emissions.

See “Resummation of Flattened Jet Angularity Using Soft-Collinear Effective
Theory” by Yang-Ting Chien and arXiv:1907.11107
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CollinearDrop condition is opposite to SoftDrop

0 2
2 + 2

log(zcut/ ) 2
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log(zcut/ ) log(1/ ) log(1/ 2)
0

log(1/zcut)

1
2 + 1

log(1/ ) + 2
2 + 1

log(1/zcut)

2
2 + 2

log(1/ ) + 2
2 + 2

log(1/zcut)

log(1/ )

lo
g(

1/
z)
= z 2
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Main result for Collinear Drop is given by

Rβ2,β1
CD =

CF

2π
1

αS β2
0
[
2 + β2

1 + β2
W (1 −

λz + (1 + β2)λρ

2 + β2
) −

2 + β1

1 + β1
W (1 −

λz + (1 + β1)λρ

2 + β1
)

+
β2 − β1

(1 + β2)(1 + β1)
W (1 − λz)]

+
CF

2π
β1

β3
0
[
2 + β2

1 + β1
V (1 −

λz + (1 + β2)λρ

2 + β2
) −

2 + β2

1 + β1
V (1 −

λz + (1 + β2)λρ

2 + β2
)

+
β2 − β1

(1 + β2)(1 + β1)
V (1 − λz)]

+
CF

2π
K

2πβ2
0
[
2 + β2

1 + β2
log (1 −

λz + (1 + β2)λρ

2 + β2
) −

2 + β1

1 + β1
log (1 −

λz + (1 + β1)λρ

2 + β1
)

−
β2 − β1

(1 + β1)(1 + β2)
log(1 − λz)] ,

where W (x) = x log(x),V (x) = 1
2 log(x)

2 + log(x), λρ = 2αsβ0 log(1/ρ)
and λz = 2αsβ0 log(1/zcut)
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CollinearDrop: LHC setup
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LHC jets pT > 600 GeV, R = 0.4, | | < 2
NLL
PYTHIA CD = 0, zcut = 0.2
HERWIG CD = 0, zcut = 0.2
SHERPA CD = 0, zcut = 0.2

▸ We consider ATLAS
setup:

√
S = 13 TeV,

pt > 600, ∣η∣ < 2

▸ Pythia, Herwig and
Sherpa MC simulations
are at the parton level
without UE

▸ Differences at small
values of ξ are due to
the Landau pole
treatment.

17



CollinearDrop: RHIC setup
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PYTHIA CD = 0, zcut = 0.2
HERWIG CD = 0, zcut = 0.2
SHERPA CD = 0, zcut = 0.2

▸ We consider STAR
setup:

√
S = 0.2 TeV,

pt ∈ [20,30], ∣η∣ < 0.6

▸ Pythia, Herwig and
Sherpa MC simulations
are at the parton level
without UE

▸ Differences at small
values of ξ are due to
the Landau pole
treatment.
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Soft radiation from MPI (UE) contaminates jets

Image credit: Peter Skands.
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Soft radiation from MPI (UE) contaminates jets

Image credit: Peter Skands.
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Hadronization partons and turns them into hadrons

Image credit: Peter Skands.
19



Unstable hadrons decay and change jet substructure

Image credit: Peter Skands.
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Parton to hadron level transition; credit G. Soyez
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parton-level 1, PL

1

0.0

0.1

0.2

0.3

0.4

0.5

ha
dr

on
-le

ve
l 

1,
HL

1

central dijet, R = 0.8
chg. tracks only

pT, jet [120, 150] GeV

transfer matrix, ungroomed jet width

0.0 0.1 0.2 0.3 0.4
( 1, HL

1 | 1, PL
1 ), same pT, jet bin

▸ Transfer matrix can be
extracted from MC

▸ One needs to “put event
generation on pause” when
parton shower reach
non-perturbative scale and
calculate λPL

α

▸ After that one “resume” event
generation and calculate λHL

α

▸ The correlations between λPL
α

and λHL
α are used to build TMs

The transfer matrices were introduced by Reichetl et al in arXiv:2112.09545
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ATLAS: impact of non-perturbative corrections
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Non-perturbative corrections usually shift distributions towards larger
observable values. Here we consider parton-to-hadron transition and
hadronic decays separately.
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ATLAS: impact of non-perturbative corrections
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▸ Transfer matrix can be
extracted from MC

▸ One needs to “put event
generation on pause” when
parton shower reach
non-perturbative scale and
calculate λPL

α

▸ After that one “resume” event
generation and calculate λHL

α

▸ The correlations between λPL
α

and λHL
α are used to build TMs

There is an alternative approach of “shape functions” by Korchemsky and
Sterman arXiv:hep-ph/9902341
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Non-perturbative corrections usually shift distributions towards larger
observable values. Here we consider parton-to-hadron transition and
hadronic decays separately.
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STAR: impact of non-perturbative corrections
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Non-perturbative corrections usually shift distributions towards larger
observable values. Here we consider parton-to-hadron transition and
hadronic decays separately.
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Summary:
▸ We obtained NLL accuracy level predictions for collinear drop

jet mass.
▸ The non-perturbative corrections and decays are incorporated

via transfer matrices extracted from Pythia.
▸ Impact from hadron decays is large and screens hadronization.
▸ At LHC (high pt jets) hadronization acts in agreement with

Korchemsky and Sterman framework, whereas at RHIC (low pt
jets) there is no “shift” of the distribution.

▸ Transfer matrices at RHIC demonstrate universal behavior of
Pythia hadronization model (different partonic configurations
are hadronized in approximately the same way)

▸ The NLL calculations require some improvements at low
observable value (Landau pole treatment) .

▸ Better understanding of hadronization for RHIC jets is needed.

SCET NLL results were obtained by Chien and Stewart in arXiv:1907.11107
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CollinearDrop: LHC setup
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▸ ATLAS setup:
√
S = 13

TeV, pt > 600, ∣η∣ < 2.

▸ RHIC setup:
√
S = 0.2

TeV, pt ∈ [20,30],
∣η∣ < 0.6.

▸ Number of particles
inside the CollinearDrop
ring at RHIC is much
smaller comparing to
the LHC.

▸ Hadronization of a few
(∼ 1 - 3) particles will
differ from
hadronization of a larger
set (∼ 4 - 15) particles.
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Theory vs. CMS data
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Comparison against recent CMS data for the LHA angularity,
pT ,jet ∈ [120,150] GeV.

Theory: 2112.09545, 2104.06920 (S. Caletti, OF, S. Marzani, D. Reichelt, S.
Schumann, G. Soyez, V. Theeuwes); CMS: 2109.03340
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Theory (including TM) vs. CMS data
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Comparison against recent CMS data for the Jet Thrust angularity,
pT ,jet ∈ [120,150] GeV. Magenta band correspond to transfer matrix
approach.

Theory: 2112.09545, 2104.06920 (in collaboration with S. Caletti, S.
Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes); CMS: 2109.03340
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Migration between different pT -bins; credit S. Schumann

Loading [MathJax]/extensions/MathMenu.jsHadronization can cause migration between different pT -bins.
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Parton to hadron level transition; credit G. Soyez
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Transfer matrix T (λ1,HL
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1 ) for the jet-width angularity for central
dijet events with R = 0.8 and pT ,jet ∈ [120,150] GeV.
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Parton to hadron level transition; credit G. Soyez
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▸ Transfer matrix can be
extracted from MC

▸ One needs to “put event
generation on pause” when
parton shower reach
non-perturbative scale and
calculate λPL

α

▸ After that one “resume” event
generation and calculate λHL

α

▸ The correlations between λPL
α

and λHL
α are used to build TMs
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Comparison against CMS data, 2112.09545
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(2) ungroomed R = 0.4 [1000,4000] dijet central dijet forward
(3) ungroomed R = 0.8 [120,150] dijet central Z+jet
(4) ungroomed R = 0.4 (tracks only) [120,150] dijet central Z+jet
(5) SoftDrop (β = 0, zcut = 0.1) R = 0.4 [120,150] dijet central Z+jet
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RHIC and upgraded PHENIX experiment
▸ The PHENIX detector was upgraded to sPHENIX
▸ New detector has better rapidity coverage ∣η∣ < 0.7

▸ Can be used to study jet substructure at
√
S = 200 GeV

Areal view at the RHIC facility. sPHENIX data taking

Image credits: BNL
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Jet substructure at RHIC, 2404.04168
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Parton-level jet substructure at RHIC, 2404.04168

▸ Our results for jet
angularities are at highest
available accuracy
NLO+NLL′ level

▸ Result are available for
LHA, Jet Width and Jet
Thrust (for ungroomed
and groomed jets)

▸ The increase in accuracy
of calculation reduces the
size of uncertainty bands

▸ Further increase in
accuracy may be
necessary
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Hadron-level jet substructure at RHIC, 2404.04168

▸ Our results for jet
angularities are at highest
available accuracy
NLO+NLL′ level

▸ Result are available for
LHA, Jet Width and Jet
Thrust (for ungroomed
and groomed jets)

▸ The increase in accuracy
of calculation reduces the
size of uncertainty bands

▸ Further increase in
accuracy may be
necessary
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Impact of non-perturbative corrections
▸ Unlike the LHC at RHIC non-perturbative corrections are dominant
▸ The bin-migration caused by hadronization shift the peak position

▸ Detroit and Monash Pythia tunes give significantly different
predictions

Parton-level predictions. Hadron-level predictions.
40



Pythia tunes and MPI contribution

▸ Much lower collision energy at RHIC leads to suppression of MPI
▸ The Detroit Pythia tune almost eliminates MPI contribution

▸ Jet substructure at RHIC is mostly affected by hadronization
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MPI multiplicity at RHIC and
LHC.

Detroit Pythia tune 2110.09447.
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Jet substructure in AA collisions
▸ We expect a new state of matter to born in AA collisions
▸ Particles produced via hard QCD interaction and parton shower can

interact with the QGP scattering centers
▸ Particles produced via hard QCD interaction and parton shower can

interact with the QGP scattering centers
▸ Thermalization of QGP creates a huge soft background

Jet quenching.

Jet substructure in AA collisions.
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Discrepancy between different quenching models
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Discrepancy between different quenching models
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