Parton Distributions from Boosted Fields in the Coulomb Gauge

Xiang Gao

QCD Evolution 2025 @ Jefferson Lab, May 19- May 23, 2025.

U.S. Department of ENERGY

The internal structure of hadron

$$\sigma(y) \sim c(y, x, \mu) \otimes f(x, \mu)$$

Parton distributions from lattice QCD

• Equal-time correlators with spacial separation. • Approaching light-cone parton distribution in the large momentum limit.

Equal-time correlators

Quasi PDF

 $\langle P \to \infty | \bar{\psi}(0) \Gamma W(0,z) \psi(z) | P \to \infty \rangle$

- X. Ji, PRL 110 (2013); SCPMA57 (2014);
- X. Xiong, X. Ji, et al, 90 PRD (2014);
- Y.-Q. Ma, et al, PRD98 (2018), PRL 120 (2018);
- T. Izubuchi, X. Ji, et al PRD98 (2018).
- X. Ji, Y. Zhao, et al, RMP 93 (2021).

• Computable from lattice QCD with $P_7 \ll 1/a$.

quark

gluon

\bullet Large P_7 expansion of quasi TMDs made of beam function and soft factor.

Collins-Soper kernel $\frac{\tilde{f}(x,\vec{b}_T,\mu,P_z)}{\sqrt{S_r(\vec{b}_T,\mu)}} = C(\mu,xP_z)e^{\frac{1}{2}\gamma_{\zeta}(\mu,b_T)\ln\frac{(2xP_z)^2}{\zeta}}f(x,\vec{b}_T,\mu,\zeta)\{1+\mathcal{O}[\frac{1}{(xP_zb_T)^2},\frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}]\}$ Hard kernel Physical TMD

 $P_{z} < a^{-1}$

• A. Avkhadiev, P. Shanahan, M. Wagman, Y. Zhao, PRL 132 (2024) 23, 231901

Encouraging progress has been reported recently, e.g., the Collins-Soper kernel.

Encouraging progress has been reported recently, e.g., the Collins-Soper kernel.

• A. Avkhadiev, P. Shanahan, M. Wagman, Y. Zhao, PRL 132 (2024) 23, 231901

Very difficult: errors grow rapidly!

Difficulties in the conventional quasi-TMDs

 Exponential decaying signal and complicated renormalization due to the Wilson line artifacts.

0

Linear divergence from Wilson line self energy

Bare matrix elements

Renormalized matrix elements

The non-local operator in gauge theory

• The non-local operator in gauge theory: with $\psi^*(z) = \psi(z)e^{iC(z)}$ and C(z) is a linear function of A_{μ} .

- In DIS, the physical quark $\psi(z)e^{iC(z)}$ represents a gauge-invariant object with a gauge link extended to infinity along the light-cone direction.

$$\psi^*(z) = \psi(z)e^{\left[-ig\int_{-z^{-/2}}^{\infty} dz A^{-1}\right]}$$

 \hat{z}

Parton distributions in the light-cone gauge

Light-cone TMD

TMD in light-cone gauge $A^+ = 0$

Conventional quasi distributions in axial-gauge

 $\overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma W_{\exists z} \psi(-\frac{b_z}{2}, 0)$

 $\overline{\psi}(\frac{v}{2}, b_{\perp})$

$$)\Gamma\psi(-\frac{b^{2}}{2},0)|_{A^{z}=0}$$

 $\overline{\psi}(\frac{b^{-}}{2}, b_{\perp})\Gamma\psi(-\frac{b^{-}}{2}, 0)|_{A^{+}=0}$

Universality in LaMET quasi distributions

Physical TMD in light gauge $A^+ = 0$

• XG, W.-Y. Liu, Y. Zhao, PRD 109 (2024) 9, 094506 • Y. Zhao, PRL 133 (2024) 24, 241904

CG quasi distribution without Wilson lines

$$\psi_C(z) = U_C(z)\psi(z)$$

satisfying,

• • •

$$\overrightarrow{\nabla} \cdot \left[U_C \overrightarrow{A} U_C^{-1} + \frac{i}{g} U_C \overrightarrow{\nabla} U_C^{-1} \right] = 0$$

order by order in g, the solution:

$$U_{C} = \sum_{n=0}^{\infty} \frac{(ig)^{n}}{n!} \omega_{n}$$
$$\omega_{1} = -\frac{1}{\nabla^{2}} \overrightarrow{\nabla} \cdot \overrightarrow{A},$$
$$\omega_{2} = \frac{1}{\nabla^{2}} \left(\overrightarrow{\nabla} \cdot (\omega_{1}^{\dagger} \overrightarrow{\nabla} \omega_{1}) - [\overrightarrow{\nabla} \omega_{1}, \overrightarrow{A}] \right)$$

$\blacktriangleright P \rightarrow \infty$ limit boost • The quark field in the Coulomb gauge $-\frac{1}{\nabla^2} \nabla \cdot \vec{A} = i \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot z} \frac{1}{k_z^2 + k_\perp^2} [k_z A_z(k) + k_\perp A_\perp(k)]$ $\approx i \left[\frac{d^4k}{(2\pi)^4} e^{-ik \cdot z} \frac{k^+}{(k^+)^2 + c^2} A^+(k) \right]$ $=\frac{1}{2}\left[\int_{-\infty}^{z^{-}} + \int_{-\infty}^{z^{-}}\right]d\eta^{-}A^{+} \equiv \frac{1}{\partial_{-\infty}^{+}}A^{+}(z)$

Principle value prescription (P.V.) averaging over past and future. Path-ordered integral

$$\frac{\omega_n}{n!} \to \left(\dots \left(\frac{1}{\partial_{P,V}^+} \left(\left(\frac{1}{\partial_{P,V}^+} A^+ \right) A^+ \right) A^+ \right) \dots A^+ \right) \right)$$
$$U_C \to \mathscr{P} \exp\left[-ig \int_{z^-}^{\pm \infty^-} dz A^+(z) \right] \equiv W(z^-, \pm \infty^-)$$

Infinite light-cone Wilson link

CG quasi distribution without Wilson lines

Quasi-TMDs in CG $\frac{\tilde{f}_{\text{CG}}(x,\vec{b}_T,\mu,P_z)}{\sqrt{S_{\text{CG}}(\vec{b}_T,\mu)}} = C(\mu,xP_z)e^{\frac{1}{2}\gamma_\zeta(\mu)}$

- (GI) approach.
- Different perturbative and power corrections.

Collins-Soper kernel

$$\frac{\mu, b_T) \ln \frac{(2xP_z)^2}{\zeta} f(x, \vec{b}_T, \mu, \zeta) \{1 + \mathcal{O}[\frac{1}{(xP_z b_T)^2}, \frac{\Lambda_{\text{QCI}}^2}{(xP_z)}, \frac{\Lambda_{\text{QCI}}^2}{(xP_z)}\} \}$$
Physical TMD

• The same form of factorization formula as the conventional gauge invariant

- XG, W.-Y. Liu, Y. Zhao, PRD 109 (2024) 9, 094506
- Y. Zhao, PRL 133 (2024) 24, 241904
- Y.-Z. Liu, Y.-S. Su., JHEP 02 (2024) 204

Quasi-TMDs: GI v.s. CG

 $\langle \Omega | \overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma W_{\exists z} \psi(-\frac{b_z}{2}, 0) | \pi^+, P_z \rangle$

Gauge-invariant (GI) quasi-TMDWF

 $\langle \Omega | \overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma \psi(-\frac{b_z}{2}, 0) |_{\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0} | \pi^+, P_z \rangle$ **Coulomb gauge (CG)**

quasi-TMDWF

CG quasi-TMDs: simplified renormalization

Renormalized matrix elements

Two lattice spacings: excellent continuum limit!

• No linear divergence: the renormalization is an overall constant.

$$[\bar{\psi}(-\frac{\vec{b}}{2})\Gamma\psi(\frac{\vec{b}}{2})]_B = Z_{\psi}(a)[\bar{\psi}(-\frac{\vec{b}}{2})\Gamma\psi(\frac{\vec{b}}{2})]_B$$

• XG, W.-Y. Liu, Y. Zhao, PRD 109 (2024) 9, 094506

$]_R$

 b_{z} [fm]

 Much slower signal decay compared to the GI cases.

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

The Collins-Soper kernel from CG quasi-TMDWF

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

Towards TMDPDFs of nucleon

• 3D image: longitudinal momentum fraction x and confined motion k_T . • Nucleon spin structure: orbital motion, Spin-orbit correlations...

Unpolarized and helicity TMDPDFs from lattice

Lattice setup:

- 2+1 flavor Domain-wall (chiral) fermion discretization.
- Physical quark masses, $64^3 \times 128$ lattice with spacing a = 0.084 fm.
- Nucleon momentum up to $P_7 = 1.62$ GeV, b_T up to 1 fm.

Quasi-TMD Beam functions

Quasi-TMD beam functions from lattice

Ratio of TMDPDFs from quasi-TMD beam functions

Quasi-TMD

 $\frac{\tilde{f}(x, \vec{b}_T, \mu, P_z)}{\sqrt{S_r(\vec{b}_T, \mu)}} = C(\mu, xP_z)e^{\frac{1}{2}\gamma_{\zeta}(\mu, b_T)\ln\frac{(2\pi)}{2}}$

Constructing ratios cancels soft factor.

 $\frac{\tilde{f}_1(x, b_T, P_z, \mu)}{\tilde{f}_2(x, b_T, P_z, \mu)} = \frac{f_1(x, b_T, \zeta, \mu)}{f_2(x, b_T, \zeta, \mu)} + \text{p.c.}$

Quasi-TMD beam functions

Physical TMDPDFs

Physical TMD

$$\frac{2xP_z)^2}{\zeta} f(x, \vec{b}_T, \mu, \zeta) \{1 + \mathcal{O}[\frac{1}{(xP_z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}]\}$$

- Perturbative corrections and scale evolution also cancels:
 - -renormalization-group-invariant (RGI) ratios.
 - -valid to all orders in perturbation theory.

Ratios between u - d heli. and unpol. TMDPDFs

• No strong dependence on b_T : longitudinal spin polarization has limited impact on the intrinsic transverse motion of quark inside nucleon.

• D. Bollweg, XG, S. Mukherjee, Y. Zhao, arXiv: 2505.xxxxx

Ratios between valence u- and d-unpolarized TMDs

• Weak b_T dependence also observed.

less constrained regions

• Lattice results could provide a first-principles benchmark for global fit in

24 • D. Bollweg, XG, S. Mukherjee, Y. Zhao, arXiv: 2505.xxxxx

Summary & outlook

- The parton distributions can be extracted from boosted quasi distributions in the Coulomb gauge.
- The CG methods have great advantages in enhanced long-range precision.
- We have extracted the CS kernels from the evolution of quasi-TMDs.
- We calculated the ratios between several nucleon TMDs.
- When combined with the soft factor, the full TMDs can be determined.

Thanks for your attention!

