<u>Accessing the Nucleon Gluon</u> **Momentum Fraction using the Gradient Flow on the Lattice**

Alexandru M. Sturzu HadStruc

WILLIAM & MARY

CHARTERED 1693

Hadronic Structure

Group	N_{f}	$a~({\rm fm})$	M_{π}^{val} (MeV)	Fermion	$N_{ m meas}$	Renorm.	G-smearing	$\langle x angle_g$
MC16 [21]	2+1+1	0.08	370	TM	$34,\!470$	1-loop	2-stout	$0.284(27)_{\rm stat.}(17)_{\rm ES}(24)_{ m I}$
MC16 [21]	2	0.09	131	TM	209,400	1-loop	2-stout	$0.267(22)_{\rm stat.}(19)_{\rm ES}(24)_{\rm H}$
MC17 [22]	2	0.09	131	TM	209,400	1-loop	2-stout	$0.267(12)_{ m stat.}(10)_{ m ES}$
T18 [23]	2 + 1	0.12	450	clover	$572,\!663$	RI-MOM	Wilson flow	$0.54(8)_{ m stat.}$
D18a [24]	2+1	0.114	$[135, 372]^{a}$	overlap	81 cfgs	RI-MOM	1-HYP	$0.47(4)_{ m stat.}(11)_{ m NPR+mixi}$
D18b [26]	2+1	[0.08, 0.14]	[140, 400]	overlap	[81, 309] cfgs	RI-MOM	1-HYP	$0.482(69)_{\rm stat.}(48)_{\rm cont.}$
MC20 [25]	2 + 1 + 1	0.08	139.3	TM	48,000	1-loop	10-stout	$0.427(92)_{ m stat.}$
CD21 [27]	2 + 1	0.14	$[171, 391]^{b}$	overlap	8,200	RI-MOM	1-HYP	$0.509(20)_{\rm stat.}(23)_{\rm cont.}$
SULat22	2 + 1 + 1	[0.09, 0.15]	$[220,700]^{\circ}$	clover	$10^5 – 10^6$	RI-MOM	5-HYP	$0.492(52)_{\rm stat.+NPR}(49)_{ m min}$
is work)								

^a partially quenched calculation on domain-wall fermion $M_{\pi}^{\text{sea}} = 140$ -MeV lattice ^b partially quenched calculation on domain-wall fermion $M_{\pi}^{\text{sea}} = 171$ -MeV lattice ^c clover-on-HISQ mixed action with valence pion masses tuned to lightest sea-quark ones

Fan, Lin, Zeilbeck; 2022

Energy-Momentum Tensor

 $= O_{1}^{\mu\nu} + O_{2}^{\mu\nu}$

Gluon momentum fraction $\langle P | \mathcal{O}_1^{44} - \frac{1}{3} \mathcal{O}_1^{jj} | P \rangle = \left(\frac{2}{3} P^2 + 2E^2\right) \langle x \rangle_g$ $\langle P | \mathcal{O} | P \rangle = |\mathcal{M}_0|^2 \langle P_0 | \mathcal{O} | P_0 \rangle e^{-E_0 t}$ $+ \left| \mathcal{M}_{0} \right| \left| \mathcal{M}_{1} \right| \left\langle P_{0} \right| \mathcal{O} \left| P_{1} \right\rangle e^{-E_{0}(t-t_{g})} e^{-E_{1}t}$ + $|\mathcal{M}_1| |\mathcal{M}_0| \langle P_1| \mathcal{O} | P_0 \rangle e^{-E_1(t-t_g)} e^{-E_0 t}$ + $|\mathcal{M}_1|^2 \langle P_1 | \mathcal{O} | P_1 \rangle e^{-E_1 t} + \dots$

 $\langle P | P \rangle = |\mathcal{M}_0|^2 e^{-E_0 t} + |\mathcal{M}_1|^2 e^{-E_1 t} + \dots$

Göckeler, Horsley, Ilgenfritz, et. al. 1996 Alexandrou et. al. 2017

 $1 \quad \langle P \mid \mathcal{O}_1^{44} - \frac{1}{2} \mathcal{O}_1^{jj} \mid P \rangle$ $2m_N$

Moments of PDFs $\langle x \rangle_g = \int_0^1 dx \ x \ g(x)$

 $x g(x) = \left[\frac{d\nu}{2\pi}\cos(x\nu) \mathfrak{M}(\nu, z^2)\right]$ $\mathfrak{M}(\nu, z^2) = \frac{1}{4\pi^2} \langle P | G^{+j}(z^-) W[z^-, 0] G^+_{j}(0) | P \rangle$

$- \nu = -p \cdot z$

Radyushkin; 2020

Gluon momentum fraction Can be extracted from matrix elements of the form

 $M^{J}_{\alpha\beta;\gamma\delta}(z,P) = Z(z)\langle P | G_{\alpha}$ $M^{j}(z,P) = P^{j} \mathscr{M}(\nu,z^{2}) + z^{j} \mathscr{M}_{\tau}(\nu,z^{2})$ **Necessary for loffe-time distributions** $\mathfrak{M}(\nu, z^2) = \left(\frac{\mathscr{M}(\nu, z^2)}{\mathscr{M}(\nu, 0)|_{z=0}}\right) / \left(\frac{\mathscr{M}(0, z^2)|_{p=0}}{\mathscr{M}(0, 0)|_{p=0, z=0}}\right)$

$$z = 0$$

$$_{\alpha\beta}(z)W[z, 0]\Gamma^{j}G_{\gamma\delta}(0) | P \rangle$$

T. Khan et. al. 202⁻

Monahan, Orginos 2014

Lattice QCD:

- principles
- Monte-Carlo integration of path-integral formalism
 - Calculation of correlation functions for a statistical ensemble
- Ultimately, aim to control systematics:
 - Finite lattice spacings
 - Finite volumes
 - Simulation strategy
 - Renormalization approach
- Signal-to-noise can be controlled through various techniques

Only systematically improvable, non-perturbative approach to QCD built from first-

All of the analysis was conducted using the new 24s clusters here at JLab

Lattice details:

Isotropic

- 2+1 stout-link (1-iteration) smeared clover Wilson fermions
- Tree-level tadpole improved Symanzik gauge action
- Configurations generated by rational HMC 64 temporal sources

<i>a</i> (fm)	M_{π} (MeV)	$L^3 \times N_t$	N _{cfg}
0.094(1)	358(3)	$32^3 \times 64$	1121

Computed 2-pt functions and disconnected gluon loops

JLAB/W&M Collaboration

Data improvement techniques

Gradient Flow

 $A_{\mu}(x) \to B_{\mu}(\tau, x) \qquad B(0, x) = A_{\mu}(x)$

 $\dot{B}_{\mu} = D_{\nu}G_{\nu\mu} \quad , \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$

- Distillation $\Box_{xy}(t) = \sum_{xy}^{N_D} v_x^{(k)}(t) v_y^{(k)\dagger}(t)$ k=1 $C_{3\text{pt}}^{i,s}(t) = \sum_{s}^{t-1} C_{3\text{pt}}^{i}(t, t_g)$ Blossier, et. al; 2009 Summed GEVP $t_o = 1$
- Bayesian Model Averaging

Lüscher, Weisz; 2011

 $G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$

Peardon, et. al; 2009

Jay, Neil; 2019

 $pr(M|D) \approx \exp\left[-\frac{1}{2}(\chi^2_{\text{aug}}(\mathbf{a}^{\star}) + 2k + 2N_{\text{cut}})\right]$

Two-point correlation functions

Two-point correlation functions

 $\lambda_n(t, t_0) = (1 - A) e^{-\Delta E(t - t_0)} + A e^{-\Delta E'(t - t_0)}$

Three-Point Correlators

Effective Matrix Elements Fits

 $\mathscr{M}(t) = A + Bte^{-t\Delta E}$

Gradient-flow Matching

 $\tilde{\mathcal{O}}_{i}^{\mu\nu}(\tau, x) = \zeta_{i,j}(\tau)\mathcal{O}_{j}^{\mu\nu}(x) + \dots$ $\mathcal{O}_i^{\mu\nu}(x) = \zeta_{i,j}^{-1}(\tau) \widetilde{\mathcal{O}}_j^{\mu\nu}(\tau, x) + \dots$

Unmatched Gluon Momentum Fraction

Harlander, Kluth, Lange; 2019 Makino, Suzuki; 2015

Summary

- Computed Two-Point Correlators
 - Using distillation
 - Implemented variational method to extract hadron masses
- Computed Gluon-Loops
 - Smoothed configurations with Gradient-Flow
- Combined data to generate Three-Point Correlators
 - Used sGEVP to extract three-point correlators
- Extracted gluon momentum fraction from combined data
 - Used BAIC method to fit correlator ratios
 - Recovered MS-bar results using matching coefficients

Gradient-flow

 $A_{\mu}(x) \rightarrow B_{\mu}(\tau, x)$ $\dot{B}_{\mu} = D_{\nu}G_{\nu\mu} \quad ,$ $G_{\mu\nu} = \partial_{\mu}B_{\nu} -$

 $\dot{B}_{\mu}(\tau, x) = -g_0^2 \left\{ d \right\}$

$$B(0, x) = A_{\mu}(x)$$
$$D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$
$$- \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$$

$$\partial_{x,\mu} S_W(B) \bigg\} B_\mu(\tau,x)$$

Lüscher, Weisz; 2011 Lüscher 2009, 2013, 2014

Distillation

Low

w-rank approximation to Jacobi smearing kernel

$$-\nabla^{2}(t) \ v^{(k)}(t) = \lambda^{(k)}(t) \ v^{(k)}(t), \qquad \Box_{xy}(t) = \sum_{k=1}^{N_{D}} v_{x}^{(k)}(t) v_{y}^{(k)\dagger}(t)$$

$$\Phi_{r,\ \alpha\beta\gamma}^{(i,j,k)}(t) = \epsilon^{abc} S_{r,\ \alpha\beta\gamma} \left(\mathcal{D}_{1r} v^{(i)} \right)^a \left(\mathcal{D}_{2r} v^{(j)} \right)^b \left(\mathcal{D}_{3r} v^{(k)} \right)^c(t)$$

$$\tau_{\alpha\beta}^{(l,k)}\left(T_{f}, T_{0}\right) = v^{(l)\dagger}(T_{f}) M_{\alpha\beta}^{-1}\left(T_{f}, T_{0}\right) v^{(k)}(T_{0})$$

$$\left\langle \mathcal{O}_{p}(m)\overline{\mathcal{O}}_{q}(n) \right\rangle = \Phi_{p,\,\alpha\beta\gamma}^{(i,j,k)}(t_{m}) \left[\tau_{\alpha\overline{\alpha}}^{(i,\overline{i})} \tau_{\beta\overline{\beta}}^{(j,\overline{j})} \tau_{\gamma\overline{\gamma}}^{(k,\overline{k})} - \tau_{\alpha\overline{\alpha}}^{(i,\overline{i})} \tau_{\beta\overline{\gamma}}^{(j,\overline{k})} \tau_{\gamma\overline{\beta}}^{(k,\overline{j})} \right] \left(t_{m},\,t_{n} \right) \Phi_{q,\,\overline{\alpha}\overline{\beta}\overline{\gamma}}^{(\overline{i},\overline{j},\overline{k})}(t_{n})$$

Peardon, et. al; 2009

Summed-GEVP

 $C_{ij}^{2\text{pt}}(t) = \langle \mathcal{O}_i(t) \overline{\mathcal{O}}_j(0) \rangle$

$$C_{ij}^{3\text{pt, }s}(t) = \sum_{t_i=1}^{t-1} C_{ij}^{2\text{pt}}(t) \ \mathcal{O}(t_i)$$

$$\mathscr{M}_{nn}(t) = -\partial_t \begin{cases} \frac{u_n^{\dagger} \left[C^{3\text{pt, }s}(t) \lambda_n \right]}{u_n^{\dagger} 0} \end{cases}$$

 $C^{2\text{pt}}(t) \ u_n = \lambda_n(t, t_0) C^{2\text{pt}}(t_0) u_n$

 $\left\{ \frac{U_{n}^{-1}(t) - C^{3\text{pt, }s}(t_{0}) \right] u_{n}}{C^{2\text{pt}}(t_{0})u_{n}} \right\}$

Blossier, et. al; 2009 Bulava, et. al; 2011

Bayesian Model-Averaging $pr(M|D) \approx \exp\left[-\frac{1}{2}(\chi^2_{\text{aug}}(\mathbf{a}^{\star}) + 2k + 2N_{\text{cut}})\right]$ Model 1: $\{C^{2\text{pt}}(t_0 = 0), C^{2\text{pt}}(1), C^{2\text{pt}}(2), C^{2\text{pt}}(3), \dots\}$ Model 2: $\{C^{2\text{pt}}(t_0 = 0), C^{2\text{pt}}(1), C^{2\text{pt}}(2), C^{2\text{pt}}(3), \dots\}$ Model 3: $\{C^{2\text{pt}}(t_0 = 0), C^{2\text{pt}}(1), C^{2\text{pt}}(2), C^{2\text{pt}}(3), \dots\}$

Jay, Neil; 2019, 2022. 2023

