NEW INSIGHTS INTO LAMBDA FRAGMENTATION FUNCTIONS

Alessia Bongallino University of the Basque Country UPV/EHU

QCD Evolution 2025

In collaboration with V. Bertone, A. Chiefa, M. G. Echevarría, E. Nocera, G. Schnell

eman ta zabal za

Universidad del País Vasco Euskal Herriko Unibertsitatea

Alessia Bongallino

2

K ...

QCD Evolution 2025

Big amount of information collected in the last decades regarding hadron production through fragmentation functions. We still need to improve our knowledge on fragmentation functions focusing on specific hadrons.

The Λ^0 baryon has a simple structure:

▶ u and d quarks form a spin-0 isospin singlet state \blacktriangleright the Λ^0 spin is carried almost entirely by the strange quark

We still need to improve our knowledge on fragmentation functions focusing on specific hadrons.

The Λ^0 baryon has a simple structure:

▶ u and d quarks form a spin-0 isospin singlet state \blacktriangleright the Λ^0 spin is carried almost entirely by the strange quark

State of the art of fits (for unpolarized Λ FF)

D. De Florian, M. Stratmann, W. Vogelsang (1998), SIA data from LEP (ALEPH, OPAL, DELPHI), TASSO, CELLO, HRS, SLD

S. Albino, B. A. Kniehl, G. Kramer (2006) SIA data with $\sqrt{s} = M_Z$

F. A. Ceccopieri, D. Mancusi (2013), Λ in target fragmentation region

(2008) SIA data with $\sqrt{s} \leq M_Z$, $pp(\bar{p})$ collisions (BRAHMS, PHENIX, STAR)

Big amount of information collected in the last decades regarding hadron production through fragmentation functions. We still need to improve our knowledge on fragmentation functions focusing on specific hadrons.

The Λ^0 baryon has a simple structure:

▶ u and d quarks form a spin-0 isospin singlet state \blacktriangleright the Λ^0 spin is carried almost entirely by the strange quark

State of the art of fits (for unpolarized Λ FF)

D. De Florian, M. Stratmann, W. Vogelsang (1998), SIA data from LEP (ALEPH, OPAL, DELPHI), TASSO, CELLO, HRS, SLD

- S. Albino, B. A. Kniehl, G. Kramer (2006) SIA data with $\sqrt{s} = M_Z$
- F. A. Ceccopieri, D. Mancusi (2013), Λ in target fragmentation region

 $2025 \longrightarrow$ new global fit including SIA, SIDIS, pp collisions

(2008) SIA data with $\sqrt{s} \leq M_Z$, $pp(\bar{p})$ collisions (BRAHMS, PHENIX, STAR)

We still need to improve our knowledge on fragmentation functions focusing on specific hadrons.

The Λ^0 baryon has a simple structure:

▶ u and d quarks form a spin-0 isospin singlet state \blacktriangleright the Λ^0 spin is carried almost entirely by the strange quark

State of the art of fits (for unpolarized Λ FF)

- S. Albino, B. A. Kniehl, G. Kramer (2006) SIA data with $\sqrt{s} = M_Z$
- F. A. Ceccopieri, D. Mancusi (2013), Λ in target fragmentation region

EXPERIMENTS SIA

Experiment	Observable	\sqrt{s} (GeV)
ARGUS	Multiplicity	10
BELLE	Cross section	10.52
TASSO @ 14,22,34	Cross section	14,22,34
TASSO @ 33.3	Cross section	33.3
TASSO @ 34.8,42.1	Cross section	34.8, 42.1
CELLO	Multiplicity	35
HRS	Cross section	29
MARK II	Cross section	29
ALEPH	Multiplicity	91.2
DELPHI @ 91 GeV	Multiplicity	91.2
OPAL	Multiplicity	91.2
SLD unt, uds-tag, c- tag, b-tag	Multiplicity	91.2
DELPHI @ 183,189	Multiplicity	183,189

Alessia Bongallino

SIDIS

Experiment	Observable	\sqrt{s} (GeV)
Chicago-Harvard -Illinois-Oxford @ Fermilab	Multiplicity	20
EMC	Multiplicity	23.5
E665	Multiplicity	30
H1	Multiplicity	300

QCD Evolution 2025

3

and enough

$$Q^{2} = q^{2}$$
$$z = \frac{2P_{h} \cdot q}{Q^{2}}$$

SIA kinematics

$$\sqrt{s} = Q$$

$$l^{-}$$
 k_2
 γ^*, Z
 k_1
 l^+
 l^+

Differential cross section

NNPDF Collaboration, V. Bertone et al., Eur.Phys.J.C 77 (2017) 8, 516

Fragmentation structure function

$$F_{2}^{h}(z,Q) = \frac{1}{n_{f}} \sum_{q}^{n_{f}} e_{q}^{2}(Q) \Big[C_{2,q}^{S} \left(z, \alpha_{s}(Q) \right) \otimes D_{\Sigma}^{h} \left(z,Q \right) + C_{2,q}^{N} \Big]$$

Alessia Bongallino

ALC: NOTICE

SINGLE INCLUSIVE ANNIHILATION

 $l^+(k_1) + l^-(k_2) \to \Lambda(P_\Lambda) + X$

 $\sum_{2,q}^{NS} \left(z, \alpha_s(Q) \right) \otimes D_{NS}^h \left(z, Q \right) + C_{2,g}^S \left(z, \alpha_s(Q) \right) \otimes D_g^h \left(z, Q \right)$

Differential cross section $(Q \ll M_Z)$ $\frac{d^3\sigma}{dxdQdz} = \frac{4\pi\alpha^2}{xQ^3} [(1+(1-y)^2F_2(x,z,Q) - y^2F_L(x,z,Q)]]$

Fragmentation structure function within collinear factorisation ($Q \gg \Lambda_{QCD}$) $F_i(x, z, Q) = x \sum_{q} e_q^2 \left[(C_{i,qq}(x, z, Q) \otimes f_q(x, Q) + C_{i,qg}(x, z, Q) \otimes f_g(x, Q)) \otimes D_q^{\Lambda}(z, Q) \right]$

 $q\bar{q}$

+
$$(C_{i,gq}(x,z,Q) \otimes f_q(x,Q))$$

Alessia Bongallino

SEMI INCLUSIVE DIS

$\ell(k) + N(P) \to \ell(k') + \Lambda(P_{\Lambda}) + X$

i = 2, L

MAPFF1.0

ALC: UNKNOWN

R. A. Khalek et al., Phys.Rev.D 104 (2021) 3, 034007

 $2)) \otimes D_g^{\Lambda}(z,Q) \Big|$

QCD Evolution 2025

All datasets provide $\frac{1}{\sigma_T} \frac{d\sigma^h}{dx_F} \longrightarrow \begin{array}{c} x_F < 0 \\ x_F > 0 \end{array}$ target fragmentation region $x_F > 0$ current fragmentation region

All datasets provide

 $x_F < 0$ target fragmentation region $\frac{1}{\sigma_T} \frac{d\sigma^h}{dx_F}$ current fragmentation region $x_{F} > 0$

and strengt

All datasets provide

 $x_F < 0$ target fragmentation region $\frac{1}{\sigma_T} \frac{d\sigma^h}{dx_F}$ current fragmentation region $x_{F} > 0$

And STREET

Handled with **fracture functions** F. A. Ceccopieri, D. Mancusi (2013)

All datasets provide

 $x_F < 0$ target fragmentation region $\frac{1}{\sigma_T} \frac{d\sigma^h}{dx_F}$ current fragmentation region $x_F > 0$

dare entrand

All datasets provide $\frac{1}{\sigma_T} \frac{d\sigma^h}{dx_F} \longrightarrow \begin{array}{c} x_F < 0 \\ x_F > 0 \end{array}$ target fragmentation region

We restrict to $x_F > 0$ for proper SIDIS analysis, with $x_F = z$

$$\frac{dM}{dz} = \left[\int_{Q_{min}}^{Q_{max}} dQ \int_{x_{min}}^{x_{max}} dx \int_{z_{min}}^{z_{max}} dz \frac{d}{dx} \right]_{z_{min}}^{z_{max}} dz \frac{d}{dx} dz$$

Bin by bin integration

All datasets provide $\frac{1}{\sigma_T} \frac{d\sigma^h}{dx_F} \longrightarrow \begin{cases} x_F < 0 & \text{target fragmentation region} \\ x_F > 0 & \text{current fragmentation} \end{cases}$

We restrict to $x_F > 0$ for proper SIDIS analysis, with $x_F = z$

$$\frac{dM}{dz} = \left[\int_{Q_{min}}^{Q_{max}} dQ \int_{x_{min}}^{x_{max}} dx \int_{z_{min}}^{z_{max}} dz \frac{d}{dx} \right]_{z_{min}}^{z_{max}} dz \frac{d}{dx} dz$$

Experiment	Q^2 range	x rang
CHIO @ Fermilab	$4 < Q^{2} < 50$	0.001 < x
EMC	Q^2 > 4	0.02 < x
E665	$Q^{2} > 1$	0.003 < x
H1	$10 < Q^2 < 70$	0.0001 < x

Whole range of integration in x and Q (as specified by the collaboration)

Phase space reduction

$$Q_{\text{max}} < \sqrt{s}$$

$$x_{min} = \max \left[x_{min}^{collab}, \frac{Q^2}{sy_{max}} \right]$$

$$x_{max} = \min \left[x_{max}^{collab}, \frac{Q^2}{sy_{min}}, \frac{Q^2}{Q^2 + W^2} \right]$$

Nanga Parbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting fra distributions.

• <u>APFEL++</u>

NNAD & ceres-solver

NNAD

NNAD stands for Neural Network Analytic Derivatives and is a C++ implementation of the analytic derivatives of a feed-forward neural network with arbitrary architecture with respect to its free parameters. We implemented the back-propagation method using three strategies: analytic, automatic (when interfaced with ceres-solver) and numeric differentiation.

Alessia Bongallino

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD

 $\mathscr{G}\left(\mathbf{x}^{(k)}\right)$

ALC: NOTICE

<u>Nanga Parbat</u>

Chi square, Replica generation

Statistical framework relies on Monte Carlo sampling method

With $\mathbf{x}^{(k)} = \{x_1^{(k)}, x_2^{(k)}, \dots, x_{N_{dat}}^{(k)}\}, k = 1, \dots, N_{rep}$ replicas of a set of N_{dat} values $\mu = {\mu_1, \mu_2, ..., \mu_{N_{dat}}}$ expectation values = measured data

$$C_{ij} = \delta_{ij}\sigma_{i,\text{unc}}^2 + \sum_{\beta} \sigma_{i,\text{corr}}^{(\beta)}\sigma_{j,\text{corr}}^{(\beta)}$$
 Elements of the covariance matrix

Generation of replicas using the Cholesky decomposition $\mathbf{L}, (\mathbf{C} = \mathbf{L} \cdot \mathbf{L}^T)$

With $\mathbf{r}^{(k)}$ such that

$$\frac{1}{N_{\text{rep}}} \sum_{k}^{N_{\text{rep}}} x_i^{(k)} \simeq \mu_i, \quad \frac{1}{N_{\text{rep}}} \sum_{k}^{N_{\text{rep}}} x_i^{(k)} x_j^{(k)} \simeq \mu_i \mu_j + C_{ij}$$

10

Data is assumed to be sampled from a multivariate Gaussian distribution:

$$\propto \exp\left[\left(\mathbf{x}^{(k)}-\mu\right)^T C^{-1} \left(\mathbf{x}^{(k)}-\mu\right)\right]$$

$$\mathbf{x}^{(k)} = \boldsymbol{\mu} + L \cdot \mathbf{r}^{(k)}$$

• APFEL++

Computation of SIA and SIDIS cross sections

Superior Based

Perturbative expansion of the coefficient functions (NLO and NNLO)

$$C(x, z, Q) = \sum_{n} \left(\frac{\alpha_s(Q)}{4\pi}\right)^n C^{(n)}(x, z)$$

- DGLAP Evolution of FFs
- ▶ PDF for SIDIS

$$\frac{4\pi\alpha^2}{Q^2}F_2^h(z,Q)$$

$$\frac{x^2}{3}[(1+(1-y)^2F_2(x,z,Q^2)-y^2F_L(x,z,Q^2)]]$$

NNAD & ceres-solver

Parameterisation choice: single one-layered feed-forward Neural Network

 $\mathcal{N}_i(z,\theta)$

$$z D_i^{\Lambda}(z, \mu_0 = 5 \text{ GeV}) = \left(\mathcal{N}_i(z, \theta) - \mathcal{N}_i(1, \theta)\right)^2$$

7 independent flavours

 D_{u}^{Λ} , D_{d}^{Λ} , D_{s}^{Λ} , $D_{\bar{u}}^{\Lambda} = D_{\bar{d}}^{\Lambda} = D_{\bar{s}}^{\Lambda}$, $D_{c^{+}}^{\Lambda}$, $D_{b^{+}}^{\Lambda}$, D_{g}^{Λ}

QCD Evolution 2025

12

And strengt

Parameterisation

$$z D_i^{\Lambda}(z, \mu_0 = 5 \text{ GeV}) = \left(\mathcal{N}_i(z, \theta) - \mathcal{N}_i(1, \theta)\right)^2$$

7 independent flavours

 D_{u}^{Λ} , D_{d}^{Λ} , D_{s}^{Λ} , $D_{\bar{u}}^{\Lambda} = D_{\bar{d}}^{\Lambda} = D_{\bar{s}}^{\Lambda}$, $D_{c^{+}}^{\Lambda}$, $D_{b^{+}}^{\Lambda}$, D_{g}^{Λ}

$$\chi^{2(k)} \equiv \left(T(\theta^{(k)}) - x^{(k)} \right)^T C^{-1} \left(T(\theta^{(k)}) - x$$

Propagation of PDF correlated uncertainties for SIDIS using the NNPDF31_nlo_pch_as_0118 set Minimisation algorithm: **Levenberg-Marquardt** implemented in **Ceres-solver** NN and analytical derivatives provided by **NNAD**

13

ALCO STREET

Experiment	χ^2 per point	N_{dat} after cuts
SIDIS		
${ m E665}$ ${ m \Lambda}$	1.65	2
${ m E665}ar{\Lambda}$	1.87	2
$\mathrm{EMC}\ \Lambda$	3.55	3
H1 $\Lambda + \bar{\Lambda}$	0.91	2
CHIO Fermilab Λ	1.17	4
CHIO Fermilab $\bar{\Lambda}$	1.56	4
SIA $\Lambda + \bar{\Lambda}$		
ALEPH	0.45	25
ARGUS	1.43	16
BELLE	0.70	15
CELLO	0.60	7
DELPHI 91.2 GeV	4.75	11
DELPHI 183 GeV	3.37	5
DELPHI 189 GeV	2.58	5
HRS	0.96	12
MARK II	3.09	15
OPAL	0.88	15
SLD B	0.52	8
SLD C	1.61	8
SLD UDS	1.99	8
SLD	0.65	16
TASSO 14 GeV	0.25	3
TASSO 22 GeV	0.51	4
TASSO 33 GeV	0.77	5
TASSO 34.8 GeV	2.77	10
TASSO 42.1 GeV	1.04	4
Total	1.54	209

14

and might

Alessia Bongallino

QCD Evolution 2025

Experiment	χ^2/N_{dat} NLO	NNLO
SIDIS		
${ m E665}$ Λ	1.65	1.66
${ m E665}\ ar{\Lambda}$	1.87	1.83
$\mathrm{EMC}\;\Lambda$	3.55	3.79
H1 $\Lambda + \bar{\Lambda}$	0.91	0.95
CHIO Fermilab Λ	1.17	1.06
CHIO Fermilab $\bar{\Lambda}$	1.56	1.43
SIA $\Lambda + \bar{\Lambda}$		
ALEPH	0.45	0.45
ARGUS	1.43	1.39
BELLE	0.70	0.61
CELLO	0.60	0.59
DELPHI 91.2 GeV	4.75	4.71
DELPHI 183 GeV	3.37	3.30
DELPHI 189 GeV	2.58	2.50
HRS	0.96	0.95
MARK II	3.09	3.01
OPAL	0.88	0.86
SLD B	0.52	0.49
SLD C	1.61	1.63
SLD UDS	1.99	2.08
SLD	0.65	0.66
TASSO 14 GeV	0.25	0.25
TASSO 22 GeV	0.51	0.51
TASSO 33 GeV	0.77	0.78
TASSO $34.8 \mathrm{GeV}$	2.77	2.75
TASSO 42.1 GeV	1.04	1.06

/÷ ..

Alessia Bongallino

Total

1.54

1.51

Extension of calculation at N2LO $\rightarrow \chi^2 = 1.51$

ALC: UNK

Experiment	χ^2/N_{dat} NLO	NNLO
SIDIS		
${ m E665}$ Λ	1.65	1.66
${ m E665}\ ar{\Lambda}$	1.87	1.83
$\mathrm{EMC}\;\Lambda$	3.55	3.79
H1 $\Lambda + \bar{\Lambda}$	0.91	0.95
CHIO Fermilab Λ	1.17	1.06
CHIO Fermilab $\bar{\Lambda}$	1.56	1.43
SIA $\Lambda + \bar{\Lambda}$		
ALEPH	0.45	0.45
ARGUS	1.43	1.39
BELLE	0.70	0.61
CELLO	0.60	0.59
DELPHI 91.2 GeV	4.75	4.71
DELPHI 183 GeV	3.37	3.30
DELPHI 189 GeV	2.58	2.50
HRS	0.96	0.95
MARK II	3.09	3.01
OPAL	0.88	0.86
SLD B	0.52	0.49
SLD C	1.61	1.63
SLD UDS	1.99	2.08
SLD	0.65	0.66
TASSO 14 GeV	0.25	0.25
TASSO 22 GeV	0.51	0.51
TASSO 33 GeV	0.77	0.78
TASSO $34.8 \mathrm{GeV}$	2.77	2.75
TASSO 42.1 GeV	1.04	1.06

 $D_{u^+}^{\Lambda}, \quad D_{d^+}^{\Lambda}, \quad D_{d^+}^{\Lambda},$

/× .

Alessia Bongallino

Total

1.54

1.51

Extension of calculation at N2LO $\rightarrow \chi^2 = 1.51$

SIA only, symmetric parameterisation $\rightarrow \chi^2 = 1.42$

$$D_{s^+}^{\Lambda}, \quad D_{c^+}^{\Lambda}, \quad D_{b^+}^{\Lambda}, \quad D_g^{\Lambda}$$

ALC: UNKNOWN

FFS

N2LO

and might

 D_s^{Λ} dominates!

QCD Evolution 2025

16

 $D_u^{\Lambda} \operatorname{vs} D_d^{\Lambda}$

NLO

Alessia Bongallino

N2LO

Compatible!

17

an myle

Comparison with DSV & AKK

18

Server and

QCD Evolution 2025

CONCLUSIONS

RECAP: New steps towards a better comprehension of the Λ baryon production in fragmentation

- Network and Monte Carlo sampling method as statistical framework at NLO and N2LO
- $\chi^2 = 1.51$ at N2LO obtained requiring 7 independent flavours

Next steps:

- Extend dataset to CC SIDIS and pp collisions
- Include target and hadron mass corrections for SIDIS
- Try new flavour combinations (such as requiring isospin symmetry)
- Improve kinematic constraints in the analysis

Determination of Λ unpolarized collinear fragmentation function from SIA and SIDIS NC data by means of Neural

Joint International Workshop on Hadron Structure and Spectroscopy (IWHSS 2025) and the QCD Structure of the Nucleon (QCD-N'25)

01-05 set 2025 Centro Carlos Santamaría Europe/Zurich fuso orario

Inserisci il termine di ri Q

Sintesi

Call for abstract

Registration Fee

Pre-registration

Venue, Travel & Accommodation

Committees

Contact iwhss-qcdn-202

Harut Avakian Miguel Echevarria Bakur Parsamyan **Gunar Schnell**

Inizio 1 set 2025, 08:30 Finisce 5 set 2025, 17:00 Europe/Zurich

Centro Carlos Santamaría Plaza Elhuyar, 2 20018 San Sebastián Spain Vai alla mappa

Alessia Bongallino

IWHSS& OCD-N 2025

01-05th Sep, 2025 San Sebastián, Spain

The five day long joint "21st International Workshop on Hadron Structure and Spectroscopy" and 6th workshop on the "QCD Structure of the Nucleon" (IWHSS-QCD-N'25) will be held in San Sebastián, Spain, from September 1 to 5, 2025.

The joint workshop is a collaborative effort between the IWHSS and QCD-N workshop series, with the organizational oversight being handled by the HERMES, COMPASS, and JLab communities.

The IWHSS series comprises 21 editions of annual workshops organized by COMPASS Collaboration on Hadron Structure and Spectroscopy, with most recent editions being the IWHSS-CPHI-2024 (Yerevan, Armenia), IWHSS-2023 (Prague, Czechia) and IWHSS-2022 (CERN, Switzerland).

The prior editions of the QCD-N meetings, organized by HERMES Collaboration, were convened in the following locations: Alcalá de Henares (2021), Getxo (2016), Bilbao(2012), Frascati (2006) and Ferrara (2002).

A designated session of the workshop will be allocated for the celebration of the 30th anniversary of HERMES data taking.

The joint workshop will be preceded by the COMPASS Collaboration meeting on September 1 (morning).

https://indico.cern.ch/event/1527657/

