An Impact Study of the 3D Structure of the Nucleon through DVCS and EIC Simulations

Kemal Tezgin Virginia Tech

05/19/2025

QCD Evolution Jefferson Lab, Newport News, VA May 19 – 23, 2025

Outline

EpIC Monte-Carlo Event Generator

- Modular structure, automated tasks
- QED radiative corrections

EIC Impact Study

- Event generation with EpIC
- Detector simulations
- Nucleon tomography
- CFFs

• Summary

EpIC

- EpIC: an event generator for exclusive processes
- Built on the PARTONS framework B. Berthou et al., Eur. Phys. J. C78 (2018)
 - Multiple GPD models
 - Flexible architecture
- Multiple channels: DVCS, TCS, DVMP (π^0), DDVCS, ...


```
Aschenauer et al., Eur. Phys. J. C 82 (2022)
```

- Written in C++, open source https://pawelsznajder.github.io/epic
- XML interface

- EpIC uses the mini FOAM to generate kinematics randomly Jadach and Sawicki, Comput. Phys. Commun. 177 (2007)
- Fully integrated with ROOT
- Works for dimensions less than 20

GPDs

Chiral-even GPDs parametrize the off-forward nucleon bilinear matrix elements at a light-like separation:

$$\begin{split} P^{+} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle p', \lambda' \right| \bar{\psi}_{q}(-\frac{z}{2}) \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \gamma^{+} \psi_{q}(\frac{z}{2}) \left| p, \lambda \right\rangle \bigg|_{z^{+}=0, \vec{z}_{T}=0} \\ &= \bar{u}(p', \lambda') \bigg[H^{q} \gamma^{+} + E^{q} \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2m} \bigg] u(p, \lambda) \,, \end{split}$$

$$P^{+} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p', \lambda' | \bar{\psi}_{q}(-\frac{z}{2}) \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \gamma^{+} \gamma_{5} \psi_{q}(\frac{z}{2}) | p, \lambda \rangle \bigg|_{z^{+}=0, \vec{z}_{T}=0}$$
$$= \bar{u}(p', \lambda') \bigg[\tilde{H}^{q} \gamma^{+} \gamma_{5} + \tilde{E}^{q} \frac{\gamma_{5} \Delta^{+}}{2m} \bigg] u(p, \lambda) ,$$

parameters:
$$x$$
, $\xi = \frac{p^+ - p'^+}{p^+ + p'^+}$, $t = \Delta^2$, μ^2 with $\Delta^{\alpha} = p'^{\alpha} - p^{\alpha}$

CFFs at LO

CFFs at LO can be computed as follows:

$$\begin{aligned} \mathcal{H}^{q}(\xi,t) &= \int_{-1}^{1} dx \, \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] H^{q}(x,\xi,t) \\ &= \left[-\text{P.V.} \int_{-1}^{1} dx \left(\frac{1}{x + \xi} + \frac{1}{x - \xi} \right) H^{q}(x,\xi,t) \right] + i\pi \left(H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right) \end{aligned}$$

Therefore:

$$\operatorname{Re}\mathcal{H}^{q}(\xi,t) = -\operatorname{P.V.} \int_{-1}^{1} dx \left(\frac{1}{x+\xi} + \frac{1}{x-\xi}\right) H^{q}(x,\xi,t)$$
$$\operatorname{Im}\mathcal{H}^{q}(\xi,t) = \pi \left(H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t)\right)$$

Leptoproduction of a real photon

7

- Input file:
 - GPD (or CFF) model
 - Number of events, kinematic limits
 - Beam target type, beam helicity
 - mFOAM parameters
 - Radiative corrections

• Output file: 4 – vectors of all particles

A generated_events_number 200000 A generation_date Sun May 21 10:39:51 2024\| A hadron_polarisation 0|0|0 A integrated_cross_section_uncertainty 7.90629280603228e-05 A integrated_cross_section_value 0.114101152889887 A lepton_polarisation 1 A service_name DVCSGeneratorService A suprocesses_type DVCS HepMC::Asciiv3-END_EVENT_LISTING

Radiative corrections

- QED radiative corrections can have a significant impact on the interpretation of experimental data
- Collinear approximation: Negligible transverse component of the four-momenta of the emitted photon

Radiative corrections

• DIS cross-section in collinear approximation

$$\frac{d^{2}\sigma}{dxdy} = \int_{0}^{1} \frac{dz_{1}}{z_{1}} D_{e/e}(z_{1}) \int_{0}^{1} \frac{dz_{3}}{z_{3}^{2}} \bar{D}_{e/e}(z_{3}) \frac{y}{\hat{y}} \frac{d\hat{\sigma}_{\text{Born}}}{d\hat{x}d\hat{y}}$$

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \int_{0}^{1} dz_{1}z_{1} D_{e/e}(z_{1}) \int_{0}^{1} \frac{dz_{3}}{z_{3}^{2}} \bar{D}_{e/e}(z_{3}) \frac{y}{\hat{y}} \frac{d\hat{\sigma}_{\text{Born}}}{d\hat{x}d\hat{Q}^{2}} \quad \text{Kripfganz, Möhring, Spiesberger, Z. Phys. C 49 (1991)}$$

• DVCS cross-section:

$$\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\,\mathrm{d}Q^{2}\,\mathrm{d}t\,\mathrm{d}\phi\,\mathrm{d}\phi_{S}} = \int_{z_{1}^{\mathrm{min}}}^{1} \mathrm{d}z_{1}z_{1}D(z_{1})\int_{z_{3}^{\mathrm{min}}}^{1} \frac{\mathrm{d}z_{3}}{z_{3}^{2}}\overline{D}(z_{3}) \times \frac{y}{\hat{y}} \frac{\mathrm{d}^{5}\hat{\sigma}_{\mathrm{Born}}}{\mathrm{d}\hat{x}\,\mathrm{d}\hat{Q}^{2}\,\mathrm{d}t\,\mathrm{d}\phi\,\mathrm{d}\phi_{S}}$$

$$z_{1} = \frac{E_{e}-E_{\gamma}}{E_{e}}, \qquad z_{3} = \frac{E_{e'}}{E_{e'}+E_{\gamma'}} \qquad E_{\gamma} \ge \epsilon E_{e}, \qquad D(z) = \sum_{n=0}^{\infty} D^{(n)}(z)$$

$$\hat{x} = \frac{z_{1}xy}{z_{1}z_{3}+y-1}, \qquad \hat{y} = \frac{z_{1}z_{3}+y-1}{z_{1}z_{3}}, \qquad \hat{Q}^{2} = \frac{z_{1}}{z_{3}}Q^{2} \qquad D^{(1)}(z) = \delta(1-z), \qquad D^{(0)}(z) = \delta(1-z) \left[\frac{\alpha}{2\pi}D^{(1)}(z) = \delta(1-z)\right] \left[\frac{\alpha}{2\pi}D^{(2)}(z) = \delta(1-z)\left(\frac{\alpha}{2\pi}D^{(2)}(z)\right) = \delta(1-z)\left(\frac{\alpha}{2\pi}D^{(2)}(z)\right)$$

EpIC – DVCS

- 1M generated events
- Pre-calculated tables for the CFFs obtained from the convolution of GK GPDs and LO coefficients functions
- DVCSProcessBMJ12 for the evaluation of DVCS cross-section
- No radiative corrections

EIC Impact Study

- Simulate events using EpIC MC at EIC kinematics
 - Produce pure DVCS, BH and DVCS+BH+INT events within the expected EIC kinematics
 - Include 2nd order radiative corrections
- Apply detector effects and reconstruct events
 - Process simulated events through EICROOT framework to model detector response
 - Use reconstruction algorithms to extract kinematics

- Evaluate the impact of EIC data on nucleon tomography Aschenauer, Fazio, Kumerički, Müller JHEP 09 (2013)
 - Assess how detector-corrected data improve the spatial imaging
 - Quantify the precision of extracted CFFs

Event Generation Conditions

• MC Events generated in kinematics:

$$\begin{split} &10^{-5} < x_{Bj} < 0.95 \\ &0.0001 < y < 0.95 \\ &0.7 \, GeV^2 < Q^2 < 1000 \, GeV^2 \\ &0.01 \, GeV^2 < |t| < 1.6 \, GeV^2 \\ &0.03 \, rad < \phi < 2\pi - 0.03 \, rad \quad \epsilon = 10^{-4} \end{split}$$

• Cuts at the analysis level:

 $1 \, GeV^2 < Q^2 < 100 \, GeV^2$ 0.01 < y < 0.6 (in nucleon tomography analysis) 0.01 < y < 0.85 (in the extraction of CFFs) $0.00001 < x_{Bj} < 0.7$ $0.03 \, GeV^2 < |t| < 1.5 \, GeV^2$

DVCS CFFs obtained from convoluting the GK model GPDs with LO coefficient functions

$E_e \; [{ m GeV}]$	$E_p \; [{ m GeV}]$	0.01 < y < 0.6		0.01 < y < 0.85		
		σ / $\sigma_{ m DVCS}$ [nb]	$N \ / \ N_{ m DVCS}$ (in M)	σ / $\sigma_{ m DVCS}$ [nb]	$N \ / \ N_{ m DVCS}$ (in M)	
5	41	0.83 / 0.36	8.3 / 3.6	1.72 / 0.39	17.2 / 3.9	
10	100	0.85 / 0.38	8.5 / 3.8	1.76 / 0.41	17.6 / 4.1	
18	275	0.90 / 0.43	9.0 / 4.3	$1.79 \ / \ 0.45$	17.9 / 4.5	

Reconstructed events

15

Radiative corrections

- DVCS subprocess only no detector effects
- RCs affect the edges of the y-spectra
- Negligible shift of the mean kinematic variables $<\!x_{Bj}\!>$ and $<\!Q^2\!>$ obtained in bins used in the extractions
- The relative magnitude of this shift is at the order of 1%

Nucleon tomography at EIC

• Nucleon tomography based on GPDs:

$$qig(x,ec{b}_otig) = \int rac{d^2ec{\Delta}_ot}{(2\pi)^2} e^{-iec{b}_ot\cdotec{\Delta}_ot}} H^qig(x,0,t=-ec{\Delta}_ot^2ig)$$
 Burkardt, Int. J. Mod. Phys. A 18 (2003)

- The "direct" extraction of nucleon tomography is based on two assumption:
 - i. The dominance of the imaginary part of the CFF ${\mathcal H}$
 - ii. Constant skewness, i.e., $H^q(\xi, \xi, t) / H^q(\xi, 0, t) = const$ (valid only at small ξ)

Akhunzyanov et al. (COMPASS), Phys. Lett. B 793 (2019)

$$\frac{d\sigma^{\gamma^* p \to \gamma p}}{dt} \propto \left(\text{Im}\mathcal{H}(\xi, t) \right)^2 \propto \left(\sum_q e_q^2 H^{q(+)}(\xi, \xi, t) \right)^2 \propto \left(\sum_q e_q^2 H^{q(+)}(\xi, 0, t) \right)^2 \quad \text{(LO/LT)}$$

$$\sum_{q} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} e_q^2 H^{q(+)}(\xi, 0, t = -\vec{\Delta}_{\perp}^2) = q^{\text{DVCS}}(\xi, \vec{b}_{\perp}) = \sum_{q} e_q^2 q^{(+)}(\xi, \vec{b}_{\perp})$$

Nucleon tomography at EIC

Distribution of events corrected for acceptance and after subtraction of the BH contribution as a function of t (left) Resulting tomographic picture (right)

E. Aschenauer, V. Batozskaya, S. Fazio, A. Jentsch, J. Kim, K. Kumerički, H. Moutarde, K. Passek-K., D. Sokhan, H. Spiesberger, P. Sznajder, KT, arXiv:2503.05908

EIC impact on CFFs

CFFs extracted from the Beam Spin Asymmetry:

$$A_{LU}(\phi) = \frac{d^4\sigma^+(\phi) - d^4\sigma^-(\phi)}{d^4\sigma^+(\phi) + d^4\sigma^-(\phi)}$$

$$d^4\sigma^+(\phi) - d^4\sigma^-(\phi) \propto \sin \phi \times \operatorname{Im}\left(F_1\mathcal{H} + \frac{x_{Bj}}{2}, (F_1 + F_2)\tilde{\mathcal{H}} - \frac{t}{4m^2}F_2\mathcal{E}\right)$$
Small at EIC kinematics
No statistically significant effect
An ensemble of 200 NNs were trained:
Im $\mathcal{F}(\xi, t, Q^2) = \xi^{\alpha} \cdot \operatorname{ANN}(\xi, t, Q^2), \quad \mathcal{F} = (\mathcal{H}, \mathcal{E}, \ldots)$
Similar to analyses:
Kumerički, Müller, Schäfer, JHEP 07 (2011)
Moutarde, Sznajder, Wagner, Eur. Phys. J. C 79 (2019)
$$K_{\text{Log}}(z) = \frac{1}{2} + \frac{1}{2} +$$

E. Aschenauer, V. Batozskaya, S. Fazio, A. Jentsch, J. Kim, K. Kumerički, H. Moutarde, K. Passek-K., D. Sokhan, H. Spiesberger, P. Sznajder, KT, arXiv:2503.05908

——— GK

JLAB unpolarized data

Unpolarized JLab DVCS data alone leads to degenerate CFF extractions in MCMC analysis

F. Georges et al. (Jefferson Lab Hall A), PRL 128 (2022)

Summary

- EpIC: A MC event generator for exclusive processes utilizing a flexible architecture
- Includes initial and final state QED radiative corrections
- Enables precision tests of spatial imaging and CFFs (and GPDs) extraction
- EIC impact studies suggest that the EIC has huge potential for accessing the 3D structure of the nucleon

Back up

Probabilities for reconstructing all final states

$E_e [{ m GeV}]$	$E_p \; [\text{GeV}]$	$p_{e'}$	$p_{p'}$	p_γ	$p_{e'+p'+\gamma}$
5 10 18	$41 \\ 100 \\ 275$	$0.90 \\ 0.90 \\ 0.87$	$0.76 \\ 0.90 \\ 0.81$	$0.72 \\ 0.59 \\ 0.46$	$0.49 \\ 0.48 \\ 0.29$

Back up

Probability of emitting a sizable photon as a function of the IR cut-off parameter ϵ

Back up

