

Center for Nuclear Theory

FWF Austrian Science Fund

Probing the Nucleon's Spin Structure: A String-Based Approach to Generalized Parton Distributions

Florian Hechenberger in collaboration with Ismail Zahed and Kiminad Mamo

Center for Nuclear Theory, Stony Brook University

QCD Evolution May 19, 2025

The proton as physics laboratory

- Easily accessible
- High-precision measurements
- But still a lot of discovery potential

Source: EIC Homepage

Introduction

- Generalized Parton Distributions (GPDs) and their moments contain full information (x, η, Δ) on flavor, spin and mass composition of a given hadron:
 - Parton Distribution Functions (PDFs) \Rightarrow momentum distribution
 - Form Factors \Rightarrow charge, shear, pressure distributions
 - spin, mass

Outline

1 GPDs and the Conformal Moment Expansion

2 Insights from Holography

3 Results

4 Conclusion and Outlook

Outline

1 GPDs and the Conformal Moment Expansion

2 Insights from Holography

3 Results

4 Conclusion and Outlook

Prerequisites

GPDs are coefficients in the decomposition of off-forward matrix elements

$$\mathcal{F}_{q,g}^{V,\mathcal{A}, au}(x,\eta,t,\mu) = \int rac{\mathrm{d}z^-}{2\pi} e^{i extsf{x}z^- P} \langle p_2 | \mathcal{O}_{q,g}^{V,\mathcal{A}, au} | p_1
angle$$

where, e.g.,

$$\mathcal{O}_{q}^{V} = \overline{\psi}_{q}(z_{1}^{-})[z_{1}^{-}, z_{2}^{-}]\gamma^{+}\psi_{q}(z_{2}^{-}), \quad \mathcal{O}_{g}^{V} = F_{a}^{+\mu}(z_{1}^{-})[z_{1}^{-}, z_{2}^{-}]^{ab}g_{\mu\nu}F_{b}^{\nu+}$$

and thus

$$F_{q,g}^{V}(x,\eta,t,\mu) = \overline{u}(p_2)\gamma^+ u_1(p_1) H_{q,g}(x,\eta,t,\mu) + \frac{i\Delta_{\nu}}{2m_N}\overline{u}(p_2)\sigma^{+\nu}u(p_1) E_{q,g}(x,\eta,t,\mu)$$

Prerequisites

GPDs are coefficients in the decomposition of off-forward matrix elements

$$\mathcal{F}_{q,g}^{V,\mathcal{A}, au}(x,\eta,t,\mu) = \int rac{\mathrm{d}z^-}{2\pi} e^{i extsf{x}z^- P} \langle p_2 | \mathcal{O}_{q,g}^{V,\mathcal{A}, au} | p_1
angle$$

where, e.g.,

$$\mathcal{O}_{q}^{V} = \overline{\psi}_{q}(z_{1}^{-})[z_{1}^{-}, z_{2}^{-}]\gamma^{+}\psi_{q}(z_{2}^{-}), \quad \mathcal{O}_{g}^{V} = F_{a}^{+\mu}(z_{1}^{-})[z_{1}^{-}, z_{2}^{-}]^{ab}g_{\mu\nu}F_{b}^{\nu+}$$

and thus

$$F_{q,g}^{V}(x,\eta,t,\mu) = \overline{u}(p_2)\gamma^+ u_1(p_1) H_{q,g}(x,\eta,t,\mu) + \frac{i\Delta_{\nu}}{2m_N}\overline{u}(p_2)\sigma^{+\nu}u(p_1) E_{q,g}(x,\eta,t,\mu)$$

Note: Dependence on three kinematical parameters (tricky), experimental extraction from convolution with scattering kernels \rightarrow Deconvolution problem (See Kiminad's talk)

Relation to Form Factors

Charge distribution

Mass distribution

$$F_1^q(t) = \int_{-1}^1 \mathrm{d}x \, H_q(x,0,t) = \mathbb{H}_q(n=1,\eta,t),$$

$$F_2^q(t) = \int_{-1}^1 \mathrm{d}x \, E_q(x,0,t) = \mathbb{E}_q(n=1,\eta,t),$$

$$A_q(t) + \eta^2 D_q(t) = \int \mathrm{d}x \, x \, H_q(x,\eta,t) = \mathbb{H}_q(n=2,\eta,t),$$

$$A_g(t) + \eta^2 D_g(t) = \int \mathrm{d}x \, H_g(x,\eta,t) = \mathbb{H}_g(n=2,\eta,t).$$

Higher moments contain information on **higher-spin** probes with additional skewness dependence fixed by polynomiality:

$$\mathbb{H}_{g}(n,\eta,t) = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x^{n-2} H_{q}(x,\eta,t) = \sum_{k=0}^{n-2} \eta^{k} A_{n,k}^{g}(t) + \eta^{n} D_{n}^{g}(t)$$

D. Müller, A. Schäfer, Nucl.Phys.B 739 (2006)

Conformal moment expansion for arbitrary GPD $G_{q,g} = H_{q,g}, \widetilde{H}_{q,g}, E_{q,g}, ...$

$$G_{q,g}(x,t,\eta) = \sum_{n=1,2}^{\infty} (-1)^{n\pm 1} p_n^{q,g}(x,\eta) \mathbb{G}_{q,g}(n,t,\eta)$$

with $p_n^{q,g}(x,\eta) \sim C_{n-1,n-2}^{3/2,5/2}(-x/\eta)$ forming an ONB \Rightarrow project out conformal moments

D. Müller, A. Schäfer, Nucl.Phys.B 739 (2006)

Conformal moment expansion for arbitrary GPD $G_{q,g} = H_{q,g}, \widetilde{H}_{q,g}, E_{q,g}, ...$

$$G_{q,g}(x,t,\eta) = \sum_{n=1,2}^{\infty} (-1)^{n\pm 1} p_n^{q,g}(x,\eta) \mathbb{G}_{q,g}(n,t,\eta)$$

with $p_n^{q,g}(x,\eta) \sim C_{n-1,n-2}^{3/2,5/2}(-x/\eta)$ forming an ONB \Rightarrow project out conformal moments Divergent as a sum of polynomials \Rightarrow resum via extension to complex conformal spin-j

$$n \to j,$$
 $\sum_{n} (-1)^{n \pm 1} \to \frac{1}{2i} \oint_{\mathcal{C}} \frac{\mathrm{d}j}{\sin \pi j},$ $p_n^{q,g} \to p_j^{q,g}$

D. Müller, A. Schäfer, Nucl.Phys.B 739 (2006)

Conformal moment expansion for arbitrary GPD $G_{q,g} = H_{q,g}, \widetilde{H}_{q,g}, E_{q,g}, ...$

$$G_{q,g}(x,t,\eta) = \sum_{n=1,2}^{\infty} (-1)^{n\pm 1} p_n^{q,g}(x,\eta) \mathbb{G}_{q,g}(n,t,\eta)$$

with $p_n^{q,g}(x,\eta) \sim C_{n-1,n-2}^{3/2,5/2}(-x/\eta)$ forming an ONB \Rightarrow project out conformal moments Divergent as a sum of polynomials \Rightarrow resum via extension to complex conformal spin-j

$$n \to j,$$
 $\sum_{n} (-1)^{n \pm 1} \to \frac{1}{2i} \oint_{\mathcal{C}} \frac{\mathrm{d}j}{\sin \pi j},$ $p_{n}^{q,g} \to p_{j}^{q,g}$

Analytic continuation uniquely fixed by polynomiality, crossing symmetry... \Rightarrow Mellin-Barnes Integral:

$$G_q(x,t,\eta) \sim rac{1}{2i} \int_{c-i\infty}^{c+i\infty} rac{\mathrm{d}j}{\sin \pi j} p_j^{q,g}(x,\eta) \mathbb{G}_q(j,t,\eta)$$

Example: Quark GPD

$$H_q(x,\eta,t,\mu) = \sum_{n=1}^{\infty} (-1)^{n-1} p_n(x,\eta) \mathbb{H}_q(n,\eta,t,\mu)$$
$$p_n(x,\eta) = \frac{1}{\eta^n} p_n\left(\frac{x}{\eta}\right), \qquad p_n(x) = \theta(1-|x|) \frac{2^{n-1}\Gamma(3/2+n)}{\Gamma(3/2)\Gamma(2+n)} (1-x^2) C_{n-1}^{3/2}(-x)$$

Gegenbauer polynomials $C_n^{3/2}(x)$ diagonalize leading order evolution equations and form an orthonormal basis.

The non-singlet isovector and isoscalar GPDs are obtained by utilizing reflection symmetry $(p_n(-x,\eta) = (-1)^n p_n(x,\eta))$ of the conformal partial waves

$$H_{u\pm d}^{(-)}(x,\eta,t,\mu) = \sum_{n=1}^{\infty} (-1)^{n-1} (p_n(x,\eta) - p_n(-x,\eta) \mathbb{H}_{u\pm d}^{(-)}(n,\eta,\Delta,\mu)$$

which corresponds to the exchange of a Regge trajectory with spin 1,3,5... cf. Vector Meson Dominance (VMD) of electromagnetic form factors

Input Form Factors

Utilizing the MSTW (AAC) PDFs for the unpolarized (polarized) case

$$\mathbb{H}_{u+d}^{(-)}(j,\eta,t;\mu_0) = \int_0^1 dx \, \frac{u_v(x;\mu_0) + d_v(x;\mu_0)}{x^{1-j+\alpha'_{u+d}t}} \stackrel{j=1}{=} 3(F_1^p(t) - F_1^n(t)) \,,$$

we can extract the Regge slopes from know form factors. And evolve to leading-order via

$$\mathbb{H}_{u\pm d}^{(-)}(j,\eta,t,\mu) = \mathbb{H}_{u\pm d}^{(-)}(j,\eta,t,\mu_0) \left(\frac{\alpha_s(\mu_0^2)}{\alpha_s(\mu^2)}\right)^{\frac{\gamma_{j-1}^{qq,\eta_s}}{\beta_0}}$$

.

Difficulties at NLO

Moments no longer evolve autonomously but evolution has upper-triangular form

$$F_{j}^{q}(\eta, t, \mu) = \mathcal{E}_{j-1}(\mu, \mu_{0})F_{j}(\eta, t, \mu_{0}) + \sum_{k=1}^{j-2} \eta^{j-k} \mathcal{B}_{j-1,k-1}(\mu, \mu_{0})\mathcal{E}_{k-1}(\mu, \mu_{0})F_{k}^{q}(\eta, t, \mu_{0})$$

where ${\cal E}$ and ${\cal B}$ are evolution operators containing various anomalous dimensions and elements of the special conformal algebra

Analytic continuation of discrete sums

First example of fractional finite sum

$$\sum_{k=1}^{-\frac{1}{2}} \frac{1}{k} = -2 \log 2, \qquad \text{(Euler, 1813)}$$

Analytic continuation of discrete sums

First example of fractional finite sum

$$\sum_{k=1}^{-\frac{1}{2}} \frac{1}{k} = -2 \log 2, \qquad \text{(Euler, 1813)}$$

$$\sum_{k=k_0}^J f_k \rightarrow \sum_{k=k_0}^\infty (f_k - f_{k+j}) \rightarrow -\frac{1}{2i} \oint \frac{\mathrm{d}k}{\tan(\pi k)} (f(k) - f(k+j-k_0+1))$$

see Nucl.Phys.B 1010 (2025) 116762 for a recent discussion in the GUMP framework.

Singlet Moments

• Spin-averaged gluon GPD

$$H_{g}^{(+)}(n,\eta,t,\mu) = \sum_{n=2}^{\infty} (-1)^{n+1} (p_{n}^{g}(x,\eta) + p_{n}^{g}(-x,\eta)) \mathbb{H}_{g}^{(+)}(n,\eta,t,\mu),$$

cf. glueball dominance of gravitational form factors.

Singlet Moments

• Spin-averaged gluon GPD

$$H_{g}^{(+)}(n,\eta,t,\mu) = \sum_{n=2}^{\infty} (-1)^{n+1} (p_{n}^{g}(x,\eta) + p_{n}^{g}(-x,\eta)) \mathbb{H}_{g}^{(+)}(n,\eta,t,\mu),$$

cf. glueball dominance of gravitational form factors.

• Additional complications of mixing between quark and gluon singlet GPD through evolution equations resolved by taking the diagonal combination

$$\mathbb{H}_{j}^{\pm}(j,\eta,t,\mu_{0}) = \frac{1}{2} \sum_{q=1}^{N_{f}} \mathbb{H}_{q}^{(+)}(j,\eta,t,\mu_{0}) + \frac{1}{2} \left(\frac{\gamma_{j-1}^{qg}}{\gamma_{j-1}^{qq} - \gamma_{j-1}^{\mp}} \right) \mathbb{H}_{g}^{(+)}(j,\eta,t,\mu_{0})$$

Singlet Moments

• Spin-averaged gluon GPD

$$H_{g}^{(+)}(n,\eta,t,\mu) = \sum_{n=2}^{\infty} (-1)^{n+1} (p_{n}^{g}(x,\eta) + p_{n}^{g}(-x,\eta)) \mathbb{H}_{g}^{(+)}(n,\eta,t,\mu),$$

cf. glueball dominance of gravitational form factors.

• Additional complications of mixing between quark and gluon singlet GPD through evolution equations resolved by taking the diagonal combination

$$\mathbb{H}_{j}^{\pm}(j,\eta,t,\mu_{0}) = \frac{1}{2} \sum_{q=1}^{N_{f}} \mathbb{H}_{q}^{(+)}(j,\eta,t,\mu_{0}) + \frac{1}{2} \left(\frac{\gamma_{j-1}^{qg}}{\gamma_{j-1}^{qq} - \gamma_{j-1}^{\mp}} \right) \mathbb{H}_{g}^{(+)}(j,\eta,t,\mu_{0})$$

Quark and gluon singlet contributions poorly constrained by experiment
 ⇒ Use insights from Holography

Outline

1 GPDs and the Conformal Moment Expansion

2 Insights from Holography

3 Results

4 Conclusion and Outlook

The Holographic Principle

Different forms of the AdS/CFT correspondence

	4d $\mathcal{N} =$ 4 Super Yang-Mills (SYM)	IIB String Theory on $AdS_5 \times S_5$
Strongest form	any ${\it N}$ and $\lambda=g_{ m YM}^2{\it N}$	Quantum string theory, $g_s eq 0$, $lpha'/L^2 eq 0$
Strong form	${\it N} ightarrow\infty,~\lambda$ fixed but arbitrary	Classical string theory, $g_s ightarrow 0, \; lpha'/L^2 eq 0$
Weak form	${\it N} ightarrow\infty,~\lambda$ large	Classical supergravity, $g_s ightarrow 0, \; lpha'/L^2 ightarrow 0$

The Holographic Principle

Different forms of the AdS/CFT correspondence

	4d $\mathcal{N}=$ 4 Super Yang-Mills (SYM)	IIB String Theory on $AdS_5 imes S_5$
Strongest form	any ${\it N}$ and $\lambda = g_{ m YM}^2 {\it N}$	Quantum string theory, $g_s eq 0$, $lpha'/L^2 eq 0$
Strong form	${\it N} ightarrow\infty,~\lambda$ fixed but arbitrary	Classical string theory, $g_s ightarrow 0, \; lpha'/L^2 eq 0$
Weak form	${\it N} ightarrow\infty,~\lambda$ large	Classical supergravity, $g_s ightarrow 0, \; lpha'/L^2 ightarrow 0$

Holographic dictionary

Gauge theory

Gauge theory in flat spacetime Gauge invariant operators Energy scale Global symmetry

Gravity theory

Boundary of gravitational theory Fields sourcing these operators Radial coordinate Gauge symmetry

The Holographic Principle

Different forms of the AdS/CFT correspondence

	4d $\mathcal{N}=$ 4 Super Yang-Mills (SYM)	IIB String Theory on $AdS_5 imes S_5$
Strongest form	any ${\it N}$ and $\lambda = g_{ m YM}^2 {\it N}$	Quantum string theory, $g_s eq 0$, $lpha'/L^2 eq 0$
Strong form	${\it N} ightarrow\infty,~\lambda$ fixed but arbitrary	Classical string theory, $g_s ightarrow 0, \; lpha'/L^2 eq 0$
Weak form	${\it N} ightarrow\infty,~\lambda$ large	Classical supergravity, $g_s ightarrow 0, \; lpha'/L^2 ightarrow 0$

Holographic dictionary

Gauge theory

Gauge theory in flat spacetime Gauge invariant operators Energy scale Global symmetry

Gravity theory

Boundary of gravitational theory Fields sourcing these operators Radial coordinate Gauge symmetry

Holographic QCD

Generalization to non-conformal and non-supersymmetric case

Gravitational A and D form factors

• Form factors defined by overlap integrals of holographic wave functions

- Form factors defined by overlap integrals of holographic wave functions
- Graviton bulk-to-boundary propagator $\mathcal{H}(k, z)$ determined from Einstein-Hilbert action with measure $\sqrt{g} e^{-\phi(z)}$

- Form factors defined by overlap integrals of holographic wave functions
- Graviton bulk-to-boundary propagator $\mathcal{H}(k, z)$ determined from Einstein-Hilbert action with measure $\sqrt{g} e^{-\phi(z)}$
- Normalizable nucleon modes ψ_{L,R}(z) obtained from chiral boundary spinors with Dirac action

- Form factors defined by overlap integrals of holographic wave functions
- Graviton bulk-to-boundary propagator $\mathcal{H}(k,z)$ determined from Einstein-Hilbert action with measure $\sqrt{g} e^{-\phi(z)}$
- Normalizable nucleon modes $\psi_{L,R}(z)$ obtained from chiral boundary spinors with Dirac action
- Kaluza-Klein decomposition $\Phi(x^{\mu}, z) = \sum_{n} \varphi(x^{\mu})\phi_{n}(z) \text{ yields mode}$ equations for $\phi_{n}(z)$ with $m_{n}^{2} \sim \kappa^{2}n$ for $\phi(z) = \kappa^{2}z^{2}$

$$A(t) = \frac{1}{2g_5^2} \int \mathrm{d}z \sqrt{g} e^{-\phi} z \left(\psi_R^2(z) + \psi_L^2(z)\right) \mathcal{H}(k, z), \quad t = -k^2$$

• Holographic computations suggest that skewness dependence is only contained in *D* and arises through non-degeneracy of tensor and scalar glueball spectrum

$$\begin{split} \mathbb{F}_{g}^{(+)}(j,\eta,t,\mu_{0}) &= \mathcal{A}_{g}(j,t;\mu_{0}) + \mathcal{D}_{g\eta}(j,\eta,\Delta;\mu_{0}), \qquad \mathcal{A}_{g}(j,t;\mu_{0}) = \int_{0}^{1} \mathrm{d}x \, \frac{xg(x;\mu_{0})}{x^{2-j+\alpha'_{T}t}}, \\ \mathcal{D}_{g\eta}(j,\eta,\Delta,\mu_{0}) &= \left(\hat{d}_{j}(\eta,t) - 1\right) \times \left[\mathcal{A}_{g}(j,t,\mu_{0}) - \mathcal{A}_{gS}(j,t,\mu_{0})\right], \\ \mathcal{A}(t,\mu_{0}) &= \mathcal{A}_{g}(j=2,t,\mu_{0}), \qquad \eta^{2} D(t,\mu_{0}) = \mathcal{D}_{g\eta}(j=2,t,\mu_{0}). \end{split}$$

• Holographic computations suggest that skewness dependence is only contained in *D* and arises through non-degeneracy of tensor and scalar glueball spectrum

$$\mathbb{F}_{g}^{(+)}(j,\eta,t,\mu_{0}) = \mathcal{A}_{g}(j,t;\mu_{0}) + \mathcal{D}_{g\eta}(j,\eta,\Delta;\mu_{0}), \qquad \mathcal{A}_{g}(j,t;\mu_{0}) = \int_{0}^{1} \mathrm{d}x \, \frac{xg(x;\mu_{0})}{x^{2-j+\alpha_{T}'t}} \\ \mathcal{D}_{g\eta}(j,\eta,\Delta,\mu_{0}) = \left(\hat{d}_{j}(\eta,t) - 1\right) \times \left[\mathcal{A}_{g}(j,t,\mu_{0}) - \mathcal{A}_{gS}(j,t,\mu_{0})\right], \\ \mathcal{A}(t,\mu_{0}) = \mathcal{A}_{g}(j=2,t,\mu_{0}), \qquad \eta^{2}D(t,\mu_{0}) = \mathcal{D}_{g\eta}(j=2,t,\mu_{0}).$$

R. Nishio, T. Watari, PRD 90 (2014) 12, 125001

• Skewness dependence $\hat{d}_j(\eta, t)$ determined from 2-to-2 open (quark) and closed (gluon) string scattering amplitude in cubic string field theory

$$\hat{d}_{j}(\eta,t)=\ _{2}F_{1}\left(-rac{j}{2},-rac{j-1}{2};rac{1}{2}-j;rac{4m_{N}^{2}}{-t}\,\eta^{2}
ight)$$

Helicity from Holography

The 10-dimensional type-II supergravity actions contain various form fields

$$\begin{array}{cccc} \mathsf{IIA} & \mathsf{IIB} \\ \mathsf{C}_1, & \mathsf{B}_2, & \mathsf{C}_3 & \mathsf{C}_2, & \mathsf{B}_2, & \mathsf{C}_4 \end{array}$$

whose dynamics are governed by (twisted) field strengths.

Helicity from Holography

The 10-dimensional type-II supergravity actions contain various form fields

$$\begin{array}{cccc} \text{IIA} & \text{IIB} \\ C_1, & B_2, & C_3 & C_2, & B_2, & C_4 \end{array}$$

whose dynamics are governed by (twisted) field strengths. (Broken) Supersymmetry requires the inclusion of a Chern-Simons term

$$S_{\mathrm{CS}}^{\mathrm{Dp}} = \mathcal{T}_{\mathcal{P}} \sum_{\boldsymbol{q}} \int_{\mathrm{Dp}} \sqrt{\hat{\mathcal{A}}(\mathcal{R})} \mathrm{Tr} \, \exp\left(2\pi lpha' \mathcal{F} + \mathcal{B}
ight) \wedge \mathcal{C}_{\boldsymbol{q}}$$

Form fields contain $1^{\pm-}$ glueballs whose interactions with the proton are governed by the Chern-Simons term

Parametrization of Moments

- Reggeize (N)LO MSTW and AAC PDFs to parametrize input moments
- Non-singlet moments fixed by (axial) Pauli and Dirac form factors
- Singlet moments fixed by η' meson trajectory (helicity) or lattice (unpolarized)
- Gluon moments fixed using gravitational A and D form factors from holography

Outline

1 GPDs and the Conformal Moment Expansion

Insights from Holography

3 Results

4 Conclusion and Outlook

Comparison to Lattice QCD

Non-singlet \widetilde{H} Moments

23

Non-singlet *E* Moments

Singlet moments

- Unpolarized H moments \rightarrow Kiminad's talk (almost unchanged at NLO)
- In AdS_n with point-like baryons $B(t) = 0 \Rightarrow$ No singlet E GPDs.

Note: Large errors due to simple Gaussian error propagation (vs. Hessian)

(a) Non-singlet isovector GPD *E* compared to ETMC 2020 (green, turquoise), PRL 127 (2021) 18, 182001 (purple), PRD 110 (2024) 3, 3 (orange) at $\mu = (2, 2, 3)$ GeV and (b) evolved non-singlet isovector axial GPD compared to ETMC 2020 (green) and PLB 824 (2022) 136821 (purple) at a resolution of $\mu = (2, 3)$ GeV.

Impact Parameter Space

Vector-type quark moments for transversely polarized proton

$$\rho_{n,\perp}^{q} = \int \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2\pi)^{2}} \left(\mathbb{H}_{q}^{(-)}(n,\eta=0,-\Delta_{\perp}^{2}) + i \frac{\Delta_{y}}{2m_{N}} \mathbb{E}_{q}^{(-)}(n,\eta=0,-\Delta_{\perp}^{2}) \right) e^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}}$$

Quark Helicity

$$S_z^q(\vec{b}_{\perp},\mu) = \frac{1}{2} \int \frac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} \widetilde{\mathbb{H}}_q(n=1,\eta=0,-\Delta_{\perp}^2,\mu) \, e^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}}$$

28

Quark Orbital Angular Momentum

$$L^q_z(ec{b}_\perp) = rac{1}{2}\int rac{\mathrm{d}^2\Delta_\perp}{(2\pi)^2} \left(\mathbb{H}_q(2,0,-\Delta_\perp^2) + \mathbb{E}_q(2,0,-\Delta_\perp^2) - \widetilde{\mathbb{H}}_q(1,0,-\Delta_\perp^2)
ight) \, e^{-iec{b}_\perp\cdot\Delta_\perp}$$

Outline

1 GPDs and the Conformal Moment Expansion

Insights from Holography

3 Results

4 Conclusion and Outlook

• The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior

- The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior
- The (N)LO string-based approach agrees reasonably well with current lattice estimates while at the same time relying only on a minimal set of free parameters

- The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior
- The (N)LO string-based approach agrees reasonably well with current lattice estimates while at the same time relying only on a minimal set of free parameters
- It currently supports H, \tilde{H} , E GPDs and their moments with a clear identification of 'who-is-who' due to the field-operator map

- The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior
- The (N)LO string-based approach agrees reasonably well with current lattice estimates while at the same time relying only on a minimal set of free parameters
- It currently supports H, \tilde{H} , E GPDs and their moments with a clear identification of 'who-is-who' due to the field-operator map

Outlook

• Full results on NLO GPDs should be finished soon

- The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior
- The (N)LO string-based approach agrees reasonably well with current lattice estimates while at the same time relying only on a minimal set of free parameters
- It currently supports H, \tilde{H} , E GPDs and their moments with a clear identification of 'who-is-who' due to the field-operator map

Outlook

- Full results on NLO GPDs should be finished soon
- Planned implementation of \tilde{E} moments and GPDs (nucleon tensor charge)

- The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior
- The (N)LO string-based approach agrees reasonably well with current lattice estimates while at the same time relying only on a minimal set of free parameters
- It currently supports H, \tilde{H} , E GPDs and their moments with a clear identification of 'who-is-who' due to the field-operator map

Outlook

- Full results on NLO GPDs should be finished soon
- Planned implementation of \tilde{E} moments and GPDs (nucleon tensor charge)
- In simple AdS_5 -like geometries $B_{g,sea} \equiv 0$. Most recent lattice evaluation^a shows $B_g(0) \approx -B_{u+d+s}(0) \leq 5\% \Rightarrow$ Use moduli space quantization of $N_f = 2$ instanton in more sophisticated geometries

- The spin-j operators defining the conformal moments are mapped to overlap integrals of spin-j fields in the bulk geometry which display Regge behavior
- The (N)LO string-based approach agrees reasonably well with current lattice estimates while at the same time relying only on a minimal set of free parameters
- It currently supports H, \tilde{H} , E GPDs and their moments with a clear identification of 'who-is-who' due to the field-operator map

Outlook

- Full results on NLO GPDs should be finished soon
- Planned implementation of \tilde{E} moments and GPDs (nucleon tensor charge)
- In simple AdS_5 -like geometries $B_{g,sea} \equiv 0$. Most recent lattice evaluation^a shows $B_g(0) \approx -B_{u+d+s}(0) \leq 5\% \Rightarrow$ Use moduli space quantization of $N_f = 2$ instanton in more sophisticated geometries
- Stay tuned for an open source release of a corresponding Python package

^aPRL 132 (2024) 25, 251904

Thank you for your attention!

Questions, comments, suggestions: florian.hechenberger@stonybrook.edu

Backup Slides

Summary of extracted quantities

q	u + d	u - d	и	d
Jq	+0.171(22)	+0.421(86)	+0.296(44)	-0.125(44)
S_z^q	+0.206(56)	+0.640(81)	+0.423(49)	-0.217(49)
L_z^q	-0.035(60)	-0.219(118)	-0.127(66)	+0.092(66)
C_z^q	-1.463(170)	-0.398(179)	-0.930(120)	-0.532(120)

(Nested) Harmonic Sums

• NLO anomalous dimensions contain various (nested harmonic sums)

$$S_{\pm m}(n) = \sum_{i=1}^{n} \frac{(\mathrm{sign} \ m)^{i}}{i^{m}}, \quad S_{\pm m, j_{1}, \dots, j_{p}}(n) = \sum_{i=1}^{n} \frac{(\mathrm{sign} \ m)^{i}}{i^{m}} S_{j_{1}, \dots, j_{p}}(i)$$

easily implemented in computer algebra software, though numerically costly.

 Non-diagonal part of evolution equation contains elements of special conformal algebra (*d_{jk}*, *g_{jk}*...). Defined by overlap integrals of Gegenbauer polynomials → Careful analytic continuation Spin-Orbit Correlation (neglecting $\mathcal{O}(m_q)$ from transversity moments)

$$C_z^q(ec{b}_\perp) = rac{1}{2} \int rac{\mathrm{d}^2 \Delta_\perp}{(2\pi)^2} \left(\widetilde{\mathbb{H}}_q(2,0,-\Delta_\perp^2) - \mathbb{H}_q(1,0,-\Delta_\perp^2)
ight) \, e^{-iec{b}_\perp\cdot\Delta_\perp}$$

