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The proton as physics laboratory

• Easily accessible

• High-precision measurements

• But still a lot of discovery potential

Source: EIC Homepage
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Introduction

• Generalized Parton Distributions (GPDs) and their moments contain full
information (x , η, ∆) on flavor, spin and mass composition of a given hadron:

- Parton Distribution Functions (PDFs) ⇒ momentum distribution
- Form Factors ⇒ charge, shear, pressure distributions
- spin, mass
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Prerequisites

GPDs are coefficients in the decomposition of off-forward matrix elements

FV ,A,T
q,g (x , η, t, µ) =

∫
dz−

2π
e ixz

−P⟨p2|OV ,A,T
q,g |p1⟩

where, e.g.,

OV
q = ψq(z

−
1 )[z−1 , z

−
2 ]γ+ψq(z

−
2 ), OV

g = F+µ
a (z−1 )[z−1 , z

−
2 ]abgµνF

ν+
b

and thus

FV
q,g (x , η, t, µ) = u(p2)γ

+u1(p1)Hq,g (x , η, t, µ) +
i∆ν

2mN
u(p2)σ

+νu(p1)Eq,g (x , η, t, µ)

Note: Dependence on three kinematical parameters (tricky), experimental extraction
from convolution with scattering kernels → Deconvolution problem (See Kiminad’s
talk)
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Relation to Form Factors

Charge distribution

Mass distribution

F q
1 (t) =

∫ 1

−1
dx Hq(x , 0, t) = Hq(n = 1, η, t),

F q
2 (t) =

∫ 1

−1
dx Eq(x , 0, t) = Eq(n = 1, η, t),

Aq(t) + η2Dq(t) =

∫
dx x Hq(x , η, t) = Hq(n = 2, η, t),

Ag (t) + η2Dg (t) =

∫
dx Hg (x , η, t) = Hg (n = 2, η, t).

Higher moments contain information on higher-spin probes with additional skewness
dependence fixed by polynomiality:

Hg (n, η, t) =
1

2

∫ 1

−1
dx xn−2Hq(x , η, t) =

n−2∑
k=0

ηkAg
n,k(t) + ηnDg

n (t)
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D. Müller, A. Schäfer, Nucl.Phys.B 739 (2006)

Conformal moment expansion for arbitrary GPD Gq,g = Hq,g , H̃q,g ,Eq,g , ...

Gq,g (x , t, η) =
∞∑

n=1,2

(−1)n±1pq,gn (x , η)Gq,g (n, t, η)

with pq,gn (x , η) ∼ C
3/2,5/2
n−1,n−2(−x/η) forming an ONB ⇒ project out conformal moments

Divergent as a sum of polynomials ⇒ resum via extension to complex conformal spin-j

n → j ,
∑
n

(−1)n±1 → 1

2i

∮
C

dj

sinπj
, pq,gn → pq,gj

Analytic continuation uniquely fixed by polynomiality, crossing symmetry...
⇒ Mellin-Barnes Integral:

Gq(x , t, η) ∼
1

2i

∫ c+i∞

c−i∞

dj

sinπj
pq,gj (x , η)Gq(j , t, η)
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Example: Quark GPD

Hq(x , η, t, µ) =
∞∑
n=1

(−1)n−1pn(x , η)Hq(n, η, t, µ)

pn(x , η) =
1

ηn
pn

(
x

η

)
, pn(x) = θ(1− |x |)2

n−1Γ(3/2 + n)

Γ(3/2)Γ(2 + n)
(1− x2)C

3/2
n−1(−x)

Gegenbauer polynomials C
3/2
n (x) diagonalize leading order evolution equations and

form an orthonormal basis.
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The non-singlet isovector and isoscalar GPDs are obtained by utilizing reflection
symmetry (pn(−x , η) = (−1)npn(x , η)) of the conformal partial waves

H
(−)
u±d(x , η, t, µ) =

∞∑
n=1

(−1)n−1(pn(x , η)− pn(−x , η)H(−)
u±d(n, η,∆, µ)

which corresponds to the exchange of a Regge trajectory with spin 1,3,5... cf. Vector
Meson Dominance (VMD) of electromagnetic form factors

10



Input Form Factors

Utilizing the MSTW (AAC) PDFs for the unpolarized (polarized) case

H(−)
u+d(j , η, t;µ0) =

∫ 1

0
dx

uv (x ;µ0) + dv (x ;µ0)

x1−j+α′
u+d t

j=1
= 3(F p

1 (t)− F n
1 (t)) ,

we can extract the Regge slopes from know form factors. And evolve to leading-order
via

H(−)
u±d(j , η, t, µ) = H(−)

u±d(j , η, t, µ0)

(
αs(µ

2
0)

αs(µ2)

) γ
qq;NS
j−1
β0

.

11



Difficulties at NLO

Moments no longer evolve autonomously but evolution has upper-triangular form

F q
j (η, t, µ) = Ej−1(µ, µ0)Fj(η, t, µ0) +

j−2∑
k=1

ηj−kBj−1,k−1(µ, µ0)Ek−1(µ, µ0)F
q
k (η, t, µ0)

where E and B are evolution operators containing various anomalous dimensions and
elements of the special conformal algebra

12



Analytic continuation of discrete sums

First example of fractional finite sum

− 1
2∑

k=1

1

k
= −2 log 2, (Euler, 1813)

j∑
k=k0

fk →
∞∑

k=k0

(fk − fk+j) → − 1

2i

∮
dk

tan(πk)
(f (k)− f (k + j − k0 + 1)),

see Nucl.Phys.B 1010 (2025) 116762 for a recent discussion in the GUMP framework.

∮
→
∫ k0−ϵ+i∞

k0−ϵ−i∞ = −1.38629... = −2 log 2 ✓
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Singlet Moments

• Spin-averaged gluon GPD

H
(+)
g (n, η, t, µ) =

∞∑
n=2

(−1)n+1(pgn (x , η) + pgn (−x , η))H(+)
g (n, η, t, µ),

cf. glueball dominance of gravitational form factors.

• Additional complications of mixing between quark and gluon singlet GPD through
evolution equations resolved by taking the diagonal combination

H±
j (j , η, t, µ0) =

1

2

Nf∑
q=1

H(+)
q (j , η, t, µ0) +

1

2

(
γqgj−1

γqqj−1 − γ∓j−1

)
H(+)

g (j , η, t, µ0)

• Quark and gluon singlet contributions poorly constrained by experiment

⇒ Use insights from Holography
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The Holographic Principle

Different forms of the AdS/CFT correspondence

4d N = 4 Super Yang-Mills (SYM) IIB String Theory on AdS5 × S5

Strongest form any N and λ = g2
YMN Quantum string theory, gs ̸= 0, α′/L2 ̸= 0

Strong form N → ∞, λ fixed but arbitrary Classical string theory, gs → 0, α′/L2 ̸= 0
Weak form N → ∞, λ large Classical supergravity, gs → 0, α′/L2 → 0

Holographic dictionary

Gauge theory Gravity theory
Gauge theory in flat spacetime Boundary of gravitational theory

Gauge invariant operators Fields sourcing these operators
Energy scale Radial coordinate

Global symmetry Gauge symmetry

Holographic QCD

Generalization to non-conformal and non-supersymmetric case
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Gravitational A and D form factors

Ψ(q1; z
′) Ψ(q2; z

′)

h2(t, z)

Ψ(q1; z
′) Ψ(q2; z

′)

h0(t, z)

Sgrav ∼
∫
ddxdz hMN TMN

QCD

⟨q2|Tµν |q1⟩ = u(q2)

(
A(k)γ(µpν) + B(k)

ip(µσν)αkα
2mN

+ D(k)
kµkν − ηµνk2

mN

)
u(q1)

17



K. A. Mamo, I. Zahed, PRD 101 (2020) 8, 086003

Ψ(q1; z
′) Ψ(q2; z

′)

h2(t, z)

• Form factors defined by overlap integrals of
holographic wave functions

• Graviton bulk-to-boundary propagator H(k , z)
determined from Einstein-Hilbert action with
measure

√
g e−ϕ(z)

• Normalizable nucleon modes ψL,R(z) obtained
from chiral boundary spinors with Dirac action

• Kaluza-Klein decomposition
Φ(xµ, z) =

∑
n φ(x

µ)ϕn(z) yields mode
equations for ϕn(z) with m2

n ∼ κ2n for
ϕ(z) = κ2z2

A(t) =
1

2g2
5

∫
dz

√
ge−ϕz

(
ψ2
R(z) + ψ2

L(z)
)
H(k , z), t = −k2

18
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• Holographic computations suggest that skewness dependence is only contained in
D and arises through non-degeneracy of tensor and scalar glueball spectrum

F(+)
g (j , η, t, µ0) = Ag (j , t;µ0) +Dgη(j , η,∆;µ0), Ag (j , t;µ0) =

∫ 1

0
dx

xg(x ;µ0)

x2−j+α′
T t
,

Dgη(j , η,∆, µ0) =
(
d̂j(η, t)− 1

)
× [Ag (j , t, µ0)−AgS(j , t, µ0)] ,

A(t, µ0) = Ag (j = 2, t, µ0), η2D(t, µ0) = Dgη(j = 2, t, µ0) .

R. Nishio, T. Watari, PRD 90 (2014) 12, 125001

• Skewness dependence d̂j(η, t) determined from 2-to-2 open (quark) and closed
(gluon) string scattering amplitude in cubic string field theory

d̂j(η, t) = 2F1

(
− j

2
,− j − 1

2
;
1

2
− j ;

4m2
N

−t
η2
)

19
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Helicity from Holography

The 10-dimensional type-II supergravity actions contain various form fields

IIA IIB
C1, B2, C3 C2, B2, C4

whose dynamics are governed by (twisted) field strengths.

(Broken) Supersymmetry requires the inclusion of a Chern-Simons term

SDp
CS = Tp

∑
q

∫
Dp

√
Â(R)Tr exp

(
2πα′F + B

)
∧ Cq

Form fields contain 1±− glueballs whose interactions with the proton are governed by
the Chern-Simons term

20
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Parametrization of Moments

• Reggeize (N)LO MSTW and AAC PDFs to parametrize input moments

• Non-singlet moments fixed by (axial) Pauli and Dirac form factors

• Singlet moments fixed by η′ meson trajectory (helicity) or lattice (unpolarized)

• Gluon moments fixed using gravitational A and D form factors from holography

21
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Comparison to Lattice QCD

Non-singlet H̃ Moments
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Non-singlet E Moments
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Singlet moments

• Unpolarized H moments → Kiminad’s talk (almost unchanged at NLO)

• In AdSn with point-like baryons B(t) = 0 ⇒ No singlet E GPDs.
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Note: Large errors due to simple Gaussian error propagation (vs. Hessian)
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(a) Non-singlet isovector GPD E compared to ETMC 2020 (green, turquoise), PRL
127 (2021) 18, 182001 (purple), PRD 110 (2024) 3, 3 (orange) at µ = (2, 2, 3) GeV
and (b) evolved non-singlet isovector axial GPD compared to ETMC 2020 (green) and
PLB 824 (2022) 136821 (purple) at a resolution of µ = (2, 3) GeV.
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Impact Parameter Space

Vector-type quark moments for transversely polarized proton
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Quark Helicity
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Quark Orbital Angular Momentum
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Conclusion
• The spin-j operators defining the conformal moments are mapped to overlap
integrals of spin-j fields in the bulk geometry which display Regge behavior

• The (N)LO string-based approach agrees reasonably well with current lattice
estimates while at the same time relying only on a minimal set of free parameters

• It currently supports H, H̃, E GPDs and their moments with a clear identification
of ’who-is-who’ due to the field-operator map

Outlook
• Full results on NLO GPDs should be finished soon

• Planned implementation of Ẽ moments and GPDs (nucleon tensor charge)

• In simple AdS5−like geometries Bg,sea ≡ 0. Most recent lattice evaluationa shows
Bg (0) ≈ −Bu+d+s(0) ≲ 5% ⇒ Use moduli space quantization of Nf = 2
instanton in more sophisticated geometries

• Stay tuned for an open source release of a corresponding Python package

aPRL 132 (2024) 25, 251904
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Thank you for your attention!

Questions, comments, suggestions: florian.hechenberger@stonybrook.edu

mailto:florian.hechenberger@stonybrook.edu
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Summary of extracted quantities

q u + d u − d u d

Jq +0.171(22) +0.421(86) +0.296(44) −0.125(44)
Sq
z +0.206(56) +0.640(81) +0.423(49) −0.217(49)

Lqz −0.035(60) −0.219(118) −0.127(66) +0.092(66)
Cq
z −1.463(170) −0.398(179) −0.930(120) −0.532(120)
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(Nested) Harmonic Sums

• NLO anomalous dimensions contain various (nested harmonic sums)

S±m(n) =
n∑

i=1

(signm)i

im
, S±m,j1,...,jp(n) =

n∑
i=1

(signm)i

im
Sj1,...,jp(i)

easily implemented in computer algebra software, though numerically costly.

• Non-diagonal part of evolution equation contains elements of special conformal
algebra (djk , gjk ...). Defined by overlap integrals of Gegenbauer polynomials →
Careful analytic continuation
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Spin-Orbit Correlation (neglecting O(mq) from transversity moments)
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