
1/24

tiktaalik: code for ultrafast GPD evolutiontiktaalik: code for ultrafast GPD evolution

Adam FreeseAdam Freese
May 22, 2025May 22, 2025

Comp. Phys. Comm. 311 (2025) 109552Comp. Phys. Comm. 311 (2025) 109552

1/24

GPD evolution code: the needsGPD evolution code: the needs

E Needs for x-space evolution code:
g Fast: for use in global analysis.
g Differentiable: for machine learning applications.
g Standalone: to be easily usable by anyone (for model calculations, lattice QCD, …)

E General form of evolution equation:

dH(x, ξ,Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ,Q2)

E Numerically solve by discretizing (pixelizing) in x:

dHi(ξ,Q
2)

d log(Q2)
≈

∑
j

Kij(ξ,Q
2)Hj(ξ,Q

2)

g Becomes amatrix equation!

E Solution found via evolution matrices:

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

g Evolution matrix is independent of model-scale GPD.

2/24

How fast is fast?How fast is fast?

E On a GPU:microseconds to evolve a GPD.

E Evolution is just matrix multiplication.

g Takes more time (milliseconds-seconds) to build matrices …
g …but this only needs to be done once.

3/24

tiktaalik: code to make evolution matricestiktaalik: code to make evolution matrices

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

E tiktaalik is code that builds matricesMij to evolve GPDs.

g Evolution done in x-space.
g Method based on finite elements.
g Easy-to-use Python interface.

E The code is available online!

g https://github.com/quantom-collab/tiktaalik
g Can do leading order (LO) and next-to-leading order (NLO) evolution!

https://github.com/quantom-collab/tiktaalik

Finite elementsFinite elements

4/24

InterpixelsInterpixels

E Interpixels (interpolated pixel): interpolation basis functions.

g Exploit linearity of polynomial interpolation:

P [y1 + y2](x) = P [y1](x) + P [y2](x)

g GPD pixelation is a sum of pixels:

H =


H1

H2

...
Hn

 = H1


1
0
...
0

+H2


0
1
...
0

+ . . .+Hn


0
0
...
1

 ≡ H1ê1 +H2ê2 + . . .+Hnên

g Interpolated pixelation is a sum of interpixels!

P [H](x) = H1P [ê1](x) +H2P [ê2](x) + . . .+HnP [ên](x)

E Interpixels are an example of a finite element.

g Used previously in some PDF evolution codes, e.g., HOPPET and APFEL.

5/24

Interpixel demoInterpixel demo

E Interpixel is a piecewise polynomial of fixed order.

g IncreaseNx without increasing interpolation order (avoids Runge phenomenon).
g I’m using fifth-order Lagrange interpolation.
g Knots at the discrete xi grid points.

E Each interpixel has oscillations.

g Oscillations cancel in sum.

6/24

Evolution matrices: what they doEvolution matrices: what they do

E Evolution matrix says how interpixels evolve into interpixels.

H ′
1 ×

H ′
2 ×

H ′
3 ×

H ′
4 ×


︸ ︷︷ ︸

H′
i(Q

2)

=




︸ ︷︷ ︸

Mij(ξ,Q
2
0→Q2)



H1 ×

H2 ×

H3 ×

H4 ×


︸ ︷︷ ︸

Hj(Q
2
0)

E The matrix depends only on the interpixels—independent of the GPD itself.

E The same matrix can be used for anymodel GPD.

7/24

Discretizing the integralDiscretizing the integral

E Right-hand size of evolution equation is an integral:

dH(x, ξ,Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ,Q2)

E Integral in evolution equation approximated usingGauss-Kronrod quadrature.

g The domain [−1, 1] is broken into six pieceswith boundaries:

−1 < min(−ξ,−|x|) < max(−ξ,−|x|) < 0 < min(ξ, |x|) < max(ξ, |x|) < 1

g x and ξ grids must be misaligned.
g 21-point quadrature used inside each region. (First release & paper used 15-point rule)

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ,Q2) ≈

Ng=6×21∑
g=1

wgK(x, yg, ξ, Q
2)H(yg, ξ, Q

2)

g Discretized grid {xi} and quadrature grid {yg} are not the same.
g xi- and ξ-dependent interpolation must be done.
g Interpixels are used for interpolation.

8/24

Integral discretization: now with interpixels!Integral discretization: now with interpixels!

E GPD at Gaussian weight points from piecewise polynomial interpolation:

H(yg, ξ, Q
2) ≈

Nx∑
j=1

Hj(ξ,Q
2)P [êj](yg)

g Interpolation decomposed into basis functions (interpixels).

E Integral is only over interpixels:

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ,Q2) ≈

Nx∑
j=1

 Ng∑
g=1

wgK(xi, yg, ξ, Q
2)P [êj](yg)


︸ ︷︷ ︸(

K(ξ,Q2)
)
ij

Hj(ξ,Q
2)

g Absorb interpixel into kernel matrix.
g Integral over interpixel independent of specific GPD.
g Method can be generalized to distributions (plus prescription etc.)

9/24

Differential matrix equationDifferential matrix equation

E Discretization+interpixels turns the evolution equation into amatrix differential equation:

dHi(ξ,Q
2)

d log(Q2)
=

Nx∑
j=1

Kij(ξ,Q
2)Hj(ξ,Q

2)

E Can be solved with standard techniques, like Runge-Kutta.

Hi(ξ, t, Q
2
fin) =

Nx∑
j=1

Mij(ξ,Q
2
ini → Q2

fin)Hj(ξ,Q
2
ini)

g OnlyKij—notHj itself—is needed to buildMij .

Features and limitations of tiktaalikFeatures and limitations of tiktaalik

10/24

Features of tiktaalikFeatures of tiktaalik

E Two grid types:
1 Linear x spacing—ideal for ξ & 0.2
2 Hybrid log-linear spacing—ideal for ξ . 0.2

Logarithmic in DGLAP region, linear in ERBL region.

g Pick grid type when initializing kernel matrices.

E Leading order (LO) and next-to-leading order (NLO) GPD evolution

g Set evolution order when initializing evolution matrices.
g Kernel initialization prepares both LO&NLO kernels.
g Splitting functions from Belitsky, Freund &Müller, Nucl Phys B 574 (2000) 347

E Easy installation via pip.

https://inspirehep.net/literature/511674

11/24

Linear x gridLinear x grid

ξ = 0.3, linear spacing
E User chooses x grid type, via grid_type kwarg.

E grid_type=1 (default) gives linear spacing.

E Great for ξ & 0.2

E Awful at ξ . 0.1

12/24

Hybrid log-linear x gridHybrid log-linear x grid

ξ = 10−4, hybrid log-linear spacing
E User chooses x grid type, via grid_type kwarg.

E grid_type=2 gives the hybrid spacing.

g Logarithmic when |x| > |ξ|
g Linear when |x| < |ξ|

E Great for ξ . 0.1

E Okay at ξ > 0.2, except for |x| → 1

E Best choice for HERMES & EIC analyses!

13/24

NLO evolution: non-singlet demoNLO evolution: non-singlet demo
ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

E tiktaalik features next-to-leading order (NLO) evolution!

14/24

NLO evolution: quark singlet demoNLO evolution: quark singlet demo
ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

E NLO has a massive impact on singlet quark distribution at small ξ

15/24

NLO evolution: gluon demoNLO evolution: gluon demo
ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

E Gluon distribution smaller at NLO—not sure why.

16/24

Limitations of tiktaalikLimitations of tiktaalik

E Lower bound on ξ values where tiktaalik is reliable.

g Leading order: ξ & 3× 10−6

g Next-to-leading order: ξ & 2× 10−5

g You should use hybrid grid for these.

E For linear grids, x = ξ must be avoided.

g Partly due to how integrals are broken up.
g Partly due to undefined behavior (nans) in function definitions.
g The hybrid log-linear grids automatically avoid x = ξ.

E tiktaalik assumes 3 ≤ nfl. ≤ 5

BenchmarksBenchmarks

17/24

Defining accuracy benchmarksDefining accuracy benchmarks

E Accuracy benchmarks done on the integral:

S(x, ξ) =

∫ +1

−1
dy K(x, y, ξ)H(y, ξ)

E “Ground truth” from different numerical method.

g We don’t have an analytic solution.
g Adaptive quadrature for ground truth.

E Percent error estimated via:

100%× |Struth(x, ξ)− Stiktaalik(x, ξ)|
|Struth(x, ξ)|

g Artificial spikes when truth goes to zero.

E Goloskokov-Kroll model used in benchmarks.

18/24

Accuracy benchmarks: non-singletAccuracy benchmarks: non-singlet

ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

E Benchmarks at next-to-leading order (NLO), &Nx = 100.

19/24

Accuracy benchmarks: quark-from-quarkAccuracy benchmarks: quark-from-quark

ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

E Some error spikes are artifacts of zero crossings.

20/24

Accuracy benchmarks: quark-from-gluonAccuracy benchmarks: quark-from-gluon

ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

21/24

Accuracy benchmarks: gluon-from-quarkAccuracy benchmarks: gluon-from-quark

ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

22/24

Accuracy benchmarks: gluon-from-gluonAccuracy benchmarks: gluon-from-gluon

ξ = 0.3, linear spacing ξ = 10−4, hybrid log-linear spacing

23/24

Leading order comparison to PARTONS/APFEL++Leading order comparison to PARTONS/APFEL++

E Excellent agreement, but differences∼ 1% at x ≈ ±ξ.
E Comparison done at leading order (LO).

Wrapping upWrapping up

24/24

The EndThe End

E First paper published!

g Computer Physics Communications 311 (2025) 109552

E Code package tiktaalik is public!

g https://github.com/quantom-collab/tiktaalik
g tiktaalik is open source, & all are welcome to contribute!

E Developers:

g AF (lead)
g Daniel Adamiak
g Ian Cloët
g Jian-Wei Qiu
g Nobuo Sato
g Marco Zaccheddu

Thank you for your time!

https://authors.elsevier.com/a/1kgce2OInvcbg
https://github.com/quantom-collab/tiktaalik

	Finite elements
	Features and limitations of tiktaalik
	Benchmarks
	Wrapping up

