tiktaalik: code for ultrafast GPD evolution

Adam Freese May 22, 2025 Comp. Phys. Comm. 311 (2025) 109552

GPD evolution code: the needs

- * Needs for x-space evolution code:
 - **Fast**: for use in global analysis.
 - Differentiable: for machine learning applications.
 - 📂 Standalone: to be easily usable by anyone (for model calculations, lattice QCD, ...)
- * General form of evolution equation:

$$\frac{\mathrm{d}H(x,\xi,Q^2)}{\mathrm{d}\log(Q^2)} = \int_{-1}^{+1} \mathrm{d}y \, K(x,y,\xi,Q^2) H(y,\xi,Q^2)$$

* Numerically solve by discretizing (pixelizing) in x:

$$\frac{\mathrm{d}H_i(\xi,Q^2)}{\mathrm{d}\log(Q^2)} \approx \sum_j K_{ij}(\xi,Q^2)H_j(\xi,Q^2)$$

Becomes a matrix equation!

* Solution found via evolution matrices:

$$H_i(\xi, Q^2) = \sum_i M_{ij}(\xi, Q_0^2 \to Q^2) H_j(\xi, Q_0^2)$$

Evolution matrix is **independent of model-scale GPD**.

How fast is fast?

- * On a GPU: microseconds to evolve a GPD.
- * Evolution is just matrix multiplication.

 \implies Takes more time (milliseconds-seconds) to build matrices ...

 \rightarrowtail ...but this only needs to be done once.

tiktaalik: code to make evolution matrices

$$H_i(\xi, Q^2) = \sum_j M_{ij}(\xi, Q_0^2 \to Q^2) H_j(\xi, Q_0^2)$$

- * tiktaalik is code that builds matrices M_{ij} to evolve GPDs.
 - \implies Evolution done in *x*-space.
 - Method based on finite elements.
 - 🖙 Easy-to-use Python interface.
- * The code is available online!
 - https://github.com/quantom-collab/tiktaalik
 - 🖙 Can do leading order (LO) and next-to-leading order (NLO) evolution!

Finite elements

Interpixels

- * Interpixels (interpolated pixel): interpolation basis functions.
 - 🖙 Exploit linearity of polynomial interpolation:

$$P[y_1 + y_2](x) = P[y_1](x) + P[y_2](x)$$

BPD pixelation is a sum of pixels:

$$\boldsymbol{H} = \begin{bmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{bmatrix} = H_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + H_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + H_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \equiv H_1 \hat{e}_1 + H_2 \hat{e}_2 + \dots + H_n \hat{e}_n$$

Market Market Market Interprised interprised in the second second

 $P[\mathbf{H}](x) = H_1 P[\hat{e}_1](x) + H_2 P[\hat{e}_2](x) + \ldots + H_n P[\hat{e}_n](x)$

- * Interpixels are an example of a **finite element**.
 - 📂 Used previously in some PDF evolution codes, e.g., HOPPET and APFEL.

Interpixel demo

- * Interpixel is a *piecewise* polynomial of fixed order.
 - Increase N_x without increasing interpolation order (avoids Runge phenomenon).
 I'm using fifth-order Lagrange interpolation.
 Knots at the discrete x_i grid points.
- * Each interpixel has oscillations.
 - ⇒ Oscillations cancel in sum.

Evolution matrices: what they do

* Evolution matrix says how interpixels evolve into interpixels.

- * The matrix depends only on the interpixels—independent of the GPD itself.
- * The same matrix can be used for any model GPD.

Discretizing the integral

* Right-hand size of evolution equation is an integral:

$$\frac{\mathrm{d}H(x,\xi,Q^2)}{\mathrm{d}\log(Q^2)} = \int_{-1}^{+1} \mathrm{d}y \, K(x,y,\xi,Q^2) H(y,\xi,Q^2)$$

★ Integral in evolution equation approximated using Gauss-Kronrod quadrature.
 ⇒ The domain [-1, 1] is broken into six pieces with boundaries:

 $-1 < \min(-\xi, -|x|) < \max(-\xi, -|x|) < 0 < \min(\xi, |x|) < \max(\xi, |x|) < 1$

 $x \text{ and } \xi \text{ grids must be misaligned.}$ $x \text{ and } \xi \text{ grids must be misaligned.}$ $x \text{ and } \xi \text{ grids must be misaligned.}$ $x \text{ and } \xi \text{ grids must be misaligned.}$

$$\int_{-1}^{+1} \mathrm{d}y \, K(x, y, \xi, Q^2) H(y, \xi, Q^2) \approx \sum_{g=1}^{N_g = 6 \times 21} w_g K(x, y_g, \xi, Q^2) H(y_g, \xi, Q^2)$$

 $\begin{array}{l} \rightleftharpoons & \text{Discretized grid } \{x_i\} \text{ and quadrature grid } \{y_g\} \text{ are not the same.} \\ & \rightleftharpoons & x_i\text{-} \text{ and } \xi\text{-dependent interpolation must be done.} \\ & \blacksquare & \text{Interpixels are used for interpolation.} \end{array}$

Integral discretization: now with interpixels!

* GPD at Gaussian weight points from piecewise polynomial interpolation:

$$H(y_g, \xi, Q^2) \approx \sum_{j=1}^{N_x} H_j(\xi, Q^2) P[\hat{e}_j](y_g)$$

Interpolation decomposed into basis functions (interpixels).

* Integral is only over interpixels:

$$\int_{-1}^{+1} dy \, K(x, y, \xi, Q^2) H(y, \xi, Q^2) \approx \sum_{j=1}^{N_x} \underbrace{\left(\sum_{g=1}^{N_g} w_g K(x_i, y_g, \xi, Q^2) P[\hat{e}_j](y_g)\right)}_{\left(K(\xi, Q^2)\right)_{ij}} H_j(\xi, Q^2)$$

- Absorb interpixel into kernel matrix.
- 🖙 Integral over interpixel independent of specific GPD.
- Method can be generalized to distributions (plus prescription etc.)

Differential matrix equation

* Discretization+interpixels turns the evolution equation into a matrix differential equation:

$$\frac{\mathrm{d}H_i(\xi, Q^2)}{\mathrm{d}\log(Q^2)} = \sum_{j=1}^{N_x} K_{ij}(\xi, Q^2) H_j(\xi, Q^2)$$

* Can be solved with standard techniques, like Runge-Kutta.

$$H_i(\xi, t, Q_{\text{fin}}^2) = \sum_{j=1}^{N_x} M_{ij}(\xi, Q_{\text{ini}}^2 \to Q_{\text{fin}}^2) H_j(\xi, Q_{\text{ini}}^2)$$

 \bowtie Only K_{ij} —not H_j itself—is needed to build M_{ij} .

Features and limitations of tiktaalik

Features of tiktaalik

- * Two grid types:
 - **D** Linear x spacing—ideal for $\xi \gtrsim 0.2$
 - 2 Hybrid log-linear spacing—ideal for $\xi \lesssim 0.2$
 - ▶ Logarithmic in DGLAP region, linear in ERBL region.
 - Pick grid type when initializing kernel matrices.
- Leading order (LO) and next-to-leading order (NLO) GPD evolution
 Set evolution order when initializing evolution matrices.
 Kernel initialization prepares both LO & NLO kernels.
 Splitting functions from Belitsky, Freund & Müller, Nucl Phys B 574 (2000) 347
- * Easy installation via pip.

Linear x grid

- * User chooses x grid type, via grid_type kwarg.
- * grid_type=1 (default) gives linear spacing.
- * Great for $\xi \gtrsim 0.2$
- * Awful at $\xi \lesssim 0.1$

Hybrid log-linear x grid

- * User chooses x grid type, via grid_type kwarg.
- * grid_type=2 gives the hybrid spacing. \Rightarrow Logarithmic when $|x| > |\xi|$ \Rightarrow Linear when $|x| < |\xi|$
- * Great for $\xi \lesssim 0.1$
- * Okay at $\xi > 0.2$, except for $|x| \to 1$
- * Best choice for HERMES & EIC analyses!

NLO evolution: non-singlet demo

13/24

* tiktaalik features next-to-leading order (NLO) evolution!

NLO evolution: quark singlet demo

14/24

* NLO has a massive impact on singlet quark distribution at small ξ

NLO evolution: gluon demo

* Gluon distribution smaller at NLO—not sure why.

Limitations of tiktaalik

- * Lower bound on ξ values where tiktaalik is reliable.
 - $\Longrightarrow\,$ Leading order: $\xi\gtrsim 3\times 10^{-6}$
 - ${} \bowtie$ Next-to-leading order: $\xi \gtrsim 2 \times 10^{-5}$
 - Markov You should use hybrid grid for these.
- * For linear grids, $x = \xi$ must be avoided.
 - Partly due to how integrals are broken up.
 - Partly due to undefined behavior (nans) in function definitions.
 - \bowtie The hybrid log-linear grids automatically avoid $x = \xi$.
- * tiktaalik assumes $3 \leq n_{\mathrm{fl.}} \leq 5$

Benchmarks

Defining accuracy benchmarks

* Accuracy benchmarks done on the integral:

$$S(x,\xi) = \int_{-1}^{+1} \mathrm{d}y \, K(x,y,\xi) H(y,\xi)$$

- * "Ground truth" from different numerical method.
 ⇒ We don't have an analytic solution.
 ⇒ Adaptive quadrature for ground truth.
- * Percent error estimated via:

$$100\% \times \frac{|S_{\text{truth}}(x,\xi) - S_{\text{tiktaalik}}(x,\xi)|}{|S_{\text{truth}}(x,\xi)|}$$

Artificial spikes when truth goes to zero.

* Goloskokov-Kroll model used in benchmarks.

17/24

Accuracy benchmarks: non-singlet

* Benchmarks at next-to-leading order (NLO), & $N_x = 100$.

Accuracy benchmarks: quark-from-quark

* Some error spikes are artifacts of zero crossings.

Accuracy benchmarks: quark-from-gluon

Accuracy benchmarks: gluon-from-quark

Accuracy benchmarks: gluon-from-gluon

Leading order comparison to PARTONS/APFEL++

* Excellent agreement, but differences ~ 1% at x ≈ ±ξ.
* Comparison done at leading order (LO).

23/24

Wrapping up

The End

* First paper published!

🖙 Computer Physics Communications 311 (2025) 109552

* Code package tiktaalik is public!

https://github.com/quantom-collab/tiktaalik

- 📂 tiktaalik is open source, & all are welcome to contribute!
- * Developers:
 - ⊯ AF (lead)
 - 🖙 Daniel Adamiak
 - 🖙 Ian Cloët
 - 🖙 Jian-Wei Qiu
 - 🖙 Nobuo Sato
 - 🖙 Marco Zaccheddu

Thank you for your time!