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Why study PDFs and FFs?

• Parton distribution functions (PDFs): probability density to find

partons in hadron as function of fraction x of the hadron’s

momentum (carried by parton).

• Fragmentation functions (FFs) describe how high-energy parton

transforms into a jet of hadrons; counterpart of PDFs but describe

”reverse” process: parton hadronizes

• PDFs and FFs crucial for understanding internal structure of

hadrons and dynamics of partonic interactions

• PDFs and FFs central for analyses of most high energy processes in

QCD (i.e. data from LHC, RHIC, EIC).
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The Light Front

Light-front time: x+ = t + z , Light-front-space: x− = t − z

On light front:

• hadrons composed of frozen partons due to time dilation and

asymptotic freedom.

• hard processes can be split into perturbatively calculable hard block

times non-perturbative matrix elements like PDFs and FFs.
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PDFs are real time quantities

• PDFs inherently non-perturbative and valued on light front; hard to

access in standard Euclidean lattice formulations →
quasi-distributions [Ji; ’13]: light-cone correlations of quarks and

gluons calculated by boosting matrix elements of spatial correlations

to large momentum

• In Hamiltonian time evolution can compute both. Goal: Benchmark

qPDF vs PDF (in 1+1d)
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Quark fragmentation

• Light front formulation of fragmentation functions (FFs) was

suggested by Collins and Soper.

• Formulation is fully gauge invariant but inherently non-perturbative.

• Collins and Soper FFs are still not accessible to first principle QCD

lattice simulations, due to their inherent light front structure

• Introduce concept of quasi-FF

• Drell-Levy-Yan: FFs may be approximated from PDFs using crossing

and analyticity symmetries (assuming factorization etc)

• Goal: Crosscheck DLY FF with qFF

4



Generalized parton distributions (GPDs)

• GPDs: more detailed info on partonic structure of hadrons:

correlations between longitudinal parton momentum and transverse

spatial position → 3d picture of partonic content of hadrons

• Here: Establish first non-perturbative analysis of the qGPDs in

massive QED2

5



Building a computational framework

Idea:

Create controlled theoretical framework to benchmark performance

and accuracy of quantum simulations in nuclear physics

0. Problem where 1+1d toy model can be generalized to QCD4.

1. 1+1 d system that can be solved in the continuum limit

2. Solve corresponding discretized version using exact diagonalization

and tensor networks

3. Design quantum circuit

4. Quantum simulation in d = 1 + 1

5. ... d = 3 + 1
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Lattice Schwinger model in 1+1d



The massive Schwinger model: QED2

Massive Schwinger model: [Schwinger; ’62], [Coleman; ’76]

S =

∫
d2x

(
1

4
F 2
µν + ψ(i /D −m)ψ

)
with /D = /∂ − ig /A.

• ψ fermion field (Dirac spinor), ψ̄ = ψ†γ0

• Dµ = ∂µ − igA covariant derivative: coupling of gauge field Aµ to

fermion field. Charge of fermion: g .

• m mass of fermion (electron). Mass term breaks chiral symmetry

explicitly (m = 0 → exactly solvable)

• Fermions interact with gauge field (E-field between charged

fermions), leading to confinement (confines fermions into bound

states, like mesons in QCD).

• Interaction between fermions and gauge field → charge screening

(vacuum polarizes around charges); modifies vacuum significantly.
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The massive Schwinger model: QED2

Staggered fermions: ψ(0, z = na) = 1√
a

(
ψe(n)

ψo(n)

)
= 1√

a

(
φn:even

φn+1:odd

)
Optional: Jordan-Wigner map to spins φn =

∏
m<n[+iZm]

1
2 (Xn − iYn).

Spin-Hamiltonian:

H =
1

4a

N−2∑
n=1

(XnXn+1 + YnYn+1) +
m

2

N−1∑
n=0

(−1)nZn +
ag2

2

N−2∑
n=0

L2n

Ln = L0 +
∑n

m=0
Zm+(−1)m

2 .
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First excited state

Use open boundary conditions + eliminate gauge field using Gauss’s

law; solve system with exact diagonalization and tensor networks

Consider mass gap mη of first excited state |η(0)⟩ (meson-like state).

Strong coupling m/g ≪ 1/π:

(split in pseudo-scalar mass due to U(1) anomaly + chiral condensate)

m2
η = m2

S +m2
π =

g2

π
− 4πm⟨ψψ⟩0,

with chiral condensate ⟨ψψ⟩0 = − eγE
2π mS , where γE = 0.577.

mη

mS
=

(
1 + 2eγE

m

mS

) 1
2

≈ 1 + eγE
m

mS
≈ 1+ 1.78

m
mS

Weak coupling m
g ≫ 1

π : mη → 2m.
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Mass gap of first excited state

Mass gap in finite spatial box receives finite size corrections

E0 =
√
m2

s + π2/L2 with L = N · a and m2
s = g2/π.
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at about m/g ∼ 1/3.

Works well numerically (even for a small number of gridpoints). 10



Boost operator in QED2

Boost excited state at equal time toward light cone K =
∫
dx xH.

η′ is the lowest massive meson in the spectrum at strong coupling

|η(χ)⟩ = e iχK|η(0)⟩, χ ≡ 1

2
ln

(
1 + v

1− v

)
,

:H : |η(χ)⟩ = mη coshχ|η(χ)⟩,
:P : |η(χ)⟩ = mη sinhχ|η(χ)⟩.

with pµ = γmη(1, v), γ = coshχ = 1/
√
1− v2.

To benchmark the accuracy of the boost, consider

∆(v) ≡ ⟨η(v)| :H : |η(v)⟩ = ⟨η(v)|H|η(v)⟩ − E0.

11



Boosted excited state: exact diagonalization

∆(v) ≡ ⟨η(v)| :H : |η(v) ≡ mη γ(χ); fix mlat=0, N = 24, g = 1, a = 1
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Error in excess of 10% (at around v ≳ 0.83), and in excess of 20% (at

around v ≳ 0.91). Also, the overlap ⟨η(0)|0(v)⟩ is nonzero.

Large amount of resource needed (already in 1+1d). 24 gridpoints far

too little ⇒ Quantum hardware needed eventually to study 3+1 d
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Boosted excited state using matrix product states
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Where is the limit?

χ = 1
2 log

(
1+v
1−v

)
;χ = 2 ↔ v = 0.964;χ = 3 ↔ v = 0.995;χ = 4 ↔ 0.999
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Where is the limit?

χ = 1
2 log

(
1+v
1−v

)
;χ = 2 ↔ v = 0.964;χ = 3 ↔ v = 0.995;χ = 4 ↔ 0.999
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Summary for N=202

χ = 1
2 log

(
1+v
1−v

)
;χ = 2 ↔ v = 0.964;χ = 3 ↔ v = 0.995;χ = 4 ↔ 0.999
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Light front wavefunctions

Light front wavefunctions φn(ζ) in 2-particle Fock-space approx solve:

(ζP symmetric momentum fraction of partons, ζ = 2x − 1) [Bergknoff; ’77]

M2
nφn(ζ)

=
1

2
m2

S

∫ 1

−1

dζ ′ φn(ζ
′) +

4m2

1− ζ2
φn(ζ)− 2m2

S PP

∫ 1

−1

dζ ′
φn(ζ

′)− φn(ζ)

(ζ ′ − ζ)2

’t Hooft equation + U(1) anomaly; Mn is mass gap

Due to pole: φn(±1)
!
= 0, PDF: qη(x) = |φ(x)|2.

Expansion using orthonormal Jacobi polynomials P2β,2β
n [Mo, Perry; ’93]
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Boosted quasi-distributions

The partonic distribution function (PDF) for the boosted pseudo-scalar

(in rest frame) is defined as

qη(x , v) =

+∞∫
−∞

dz

4π
e−izζp1

⟨η(0)| e−iχK ψ(0, z)[z ,−z ]γ+γ5ψ(0,−z) e iχK |η(0)⟩.

with p1 = γmηv and ζ = 2x − 1 with x the parton fraction. Here

γ+ = γ0 + γ1, [z ,−z ] is link along spatial direction. PDA similar.

Both defined at equal time for a fixed boost, reduce to Ji’s light front

partonic functions in the large rapidity limit χ≫ 1. The PDF is

qη(ζ, v) =
1

2π

∑
n

e−inζaP(v)⟨η(0)|e−iχ(v)K(φ†
n+φ

†
n+1)(φ−n+φ−n+1)e

iχ(v)K |η(0)⟩

≡ 1

2π

∑
n

e−inζaP(v) D(na).
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Spatial quasi-distribution function using exact diagonalization
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Parameters for strong coupling result: v = 0.925 and m/ms = 0.1 (red

disks) and improved mass mlat (blue triangles), we fixed N = 26, with

a = g = 1. Black lines are inverse Fourier transforms of light front wave

function result (scaled to peak).

Large amount of resource needed (already in 1+1d). 26 gridpoints far

too little ⇒ Quantum hardware needed eventually to study 3+1 d
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PDFs from matrix product states (tensor networks)

Now consider matrix element with vacuum expectation value subtracted,

i.e.

D(na)− ⟨0|e−iχ(v)K(φ†
n+φ

†
n+1)(φ−n+φ−n+1)e

iχ(v)K |0⟩
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PDFs from tensor networks (preliminary)
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(Pre-liminary) Tensor network results for v=0.995055 (χ = 3) in red.

Black curve is two-particle Fock space solution.
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Hamiltonian evolution to light front

Trade boost for Hamiltonian time evolution. Use the boost and ”time”

identities:

e−iχKψ(0,−z)e iχK = eχγ
5/2ψ(−γvz , γz)

ψ(−vz , z) = e−ivzHψ(0, z)e ivzH

Resulting eventually in:

qη =
1

2π

∑
n

e−inζamηv ⟨η(0)| (φ†
n + φ†

n+1) e
−i2vnH (φ−n + φ−n+1) |η(0)⟩

Problem so far: bond dimension in TN simulation is growing very fast

during time evolution
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Quasi-GPDs

Light front GPD for η′ in QED2 is off-diagonal ME of analogue of

leading twist-2 quark operator in QCD4

H(x , ξ, t) =
1

2

∫ +∞

−∞

dz−

2π
e iζP

+z−×

〈
P +

∆

2

∣∣ψ(−z−)[−z−,+z−]−γ
+γ5ψ(+z−)

∣∣P − ∆

2

〉
.

where []− is Wilson-line along light cone direction

2D: no transverse momentum; skewness is tied to momentum transfer

through mass-shell condition m2
η = t

4

(
1− 1

ξ2

)
. In our language:

H(x , ξ, t, v) =
1

2

∫ +∞

−∞

dz

2π
e−izζP1(v)×

⟨η(0)| e−i(χ(v)+ξ+)K ψ(0,−z)[−z ,+z ]Sγ
+γ5ψ(0,+z) e i(χ(v)+ξ−)K |η(0)⟩.
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Conclusions and Outlook

Conclusions:

• Introduced the concept of quasi-fragmentation functions

• Formulated quasi-distribution functions/amplitudes and

quasi-fragmentation functions in language suitable for quantum

computation

Outlook (in progress):

• qGPD (Generalized Parton Distribution) works analogous ⇒ info

about skewness

• Much finer lattices are needed for the comparison → tensor networks

• Check the proposal for the qFF versus the FF computed from DLY

• Multi-flavor case

• Set up the calculation on a quantum computer
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Quark fragmentation

• Quark fragmentation (Field and Feynman): quark jet model to

describe meson production in semi-inclusive processes

• Quark jet model independent parton cascade model: hard parton

depletes its longitudinal momentum by emitting successive mesons

through chain process (e.g. string breaking in Lund model)

• Jet fragmentation and hadronization important for collider

experiments to extract partonic structure of matter, gluon helicity in

nucleons and mechanism behind the production of diffractive dijets.

• FFs describe how a high-energy parton transforms into a jet of

hadrons; counterpart of PDFs but describe ”reverse” process: parton

hadronizes
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Collins-Soper fragmentation functions (I)

Measures the amount of meson outgoing from the quark.

On light front, gauge-invariant definition of the QCD quark

fragmentation Q → Q + H was given by Collins and Soper. Introduce

the spatially symmetric qFF

dη
q (z , v) =

1

z

∫
dZ

4π
e−i( 2

z −1)P(v)Z

Tr

(
γ+γ5⟨0|ψ(−Z )[−Z ,∞]†a†out(P(v))aout(P(v))[∞,Z ]ψ(Z )|0⟩

)
where P(v) = γ(v)mηv is momentum fraction carried by the emitted η

from mother quark jet with momentum P(v)/z .

The asymptotic time limit implements the LSZ reduction on source field

a†out(P)aout(P) =
2

f 2
e iHt |ψ†γ5ψ(0,P(v))|2e−iHt |t→+∞.
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Collins-Soper fragmentation function (II)

The symmetric qFF can be recast in terms of the spatial qFF correlator

dη
q (z , v) =

1

z

∫
dZ

4π
e−i( 2

z −1)P(v)Z C(Z , v ,∞),

C(Z , v , t)=
2

f 2
Tr

(
γ+γ5⟨0|ψ(0,−Z )[−Z ,∞]†e iHte iχ(v)K|ψ†γ5ψ(0,mη)|2

e−iχ(v)Ke−iHt [∞,Z ]ψ(0,Z )|0⟩
)
.

Under combined boost and time evolution, the equal-time fermion field is

now lying on the light cone.

Computed C(Z , v ,∞) in lattice model using exact diagonalization/tensor

networks.
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Discretized Lattice qFF

Recall:

C(Z , v , t)=
2

f 2
Tr

(
γ+γ5⟨0|ψ(0,−Z )[−Z ,∞]†e iHte iχ(v)K|ψ†γ5ψ(0, 0)|2

e−iχ(v)Ke−iHt [∞,Z ]ψ(0,Z )|0⟩
)
.

Same discretization as for PDF. New element:

|ψ†γ5ψ(0, 0)|2 =
1

a2

∣∣∣∣∑
n

(σ+
n σ

−
n+1 − σ+

n+1σ
−
n )

∣∣∣∣2,
where σ±

n = 1
2 (Xn ± iYn). Discretized form of the symmetric spatial qFF:

C(n, v , t) =
4

aF 2

∑
i,j=e,o

e inγamη ⟨0|ψi (−n)e iHt |ψ†γ5ψ(0, 0)|2e−iHtψ†
j (n)|0⟩.
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Drell-Levy-Yan relation

Crossing symmetry and charge conjuga-

tion: Estimate of the CS FF in terms of

PDFs using the DLY

dDLY (z , v) = zd−3 pη

(
1

z
, v

)

pη ≡ |φ2|2 ∼ probability of finding parton of momentum fraction x in

hadron p(x). DLY: is related to the amount of meson spit out by parton

with fraction of momentum z .

Using the EVP:

dDLY (z , 1) =
z̄2

z(z̄µ2 + z2ᾱ)2

(
f −

∫ 1

0

dx
φ(x)

(x − 1/z)2

)2

with µ2 = M2/m2
S and 1 + ᾱ = α = m2/m2

S . 29



DLY
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Strong coupling DLY fragmentation function (light quarks): β = 0

(blue) and β = 0.2 (red). The divergence for small masses (small β) is in

agreement with the exact bosonization description of QED2

DLY fragmentation function for heavy quarks: FF is peaked in the

forward (jet) direction, with a strong suppression as z → 0 (vanishes for

1 = z = 0).
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Can it work on a QC? [Li, Xing, Zhang (QuNu Collaboration), arXiv:2406.05683]

In NJL model using QuSpin

and projectQ
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