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Why study PDFs and FFs?

e Parton distribution functions (PDFs): probability density to find
partons in hadron as function of fraction x of the hadron's
momentum (carried by parton).

e Fragmentation functions (FFs) describe how high-energy parton
transforms into a jet of hadrons; counterpart of PDFs but describe
"reverse” process: parton hadronizes

e PDFs and FFs crucial for understanding internal structure of
hadrons and dynamics of partonic interactions

e PDFs and FFs central for analyses of most high energy processes in
QCD (i.e. data from LHC, RHIC, EIC).



The Light Front

Light-front time: x* = t + z, Light-front-space: x~ =t — z

Minkowski coordinates Light front coordinates

On light front:
e hadrons composed of frozen partons due to time dilation and
asymptotic freedom.
e hard processes can be split into perturbatively calculable hard block
times non-perturbative matrix elements like PDFs and FFs.



PDFs are real time quantities

e PDFs inherently non-perturbative and valued on light front; hard to
access in standard Euclidean lattice formulations —
quasi-distributions [Ji; '13]: light-cone correlations of quarks and
gluons calculated by boosting matrix elements of spatial correlations
to large momentum

e In Hamiltonian time evolution can compute both. Goal: Benchmark
qPDF vs PDF (in 14+1d)




Quark fragmentation

e Light front formulation of fragmentation functions (FFs) was
suggested by Collins and Soper.

e Formulation is fully gauge invariant but inherently non-perturbative.

e Collins and Soper FFs are still not accessible to first principle QCD
lattice simulations, due to their inherent light front structure

e Introduce concept of quasi-FF

e Drell-Levy-Yan: FFs may be approximated from PDFs using crossing
and analyticity symmetries (assuming factorization etc)

e Goal: Crosscheck DLY FF with qFF




Generalized parton distributions (GPDs)

e GPDs: more detailed info on partonic structure of hadrons:
correlations between longitudinal parton momentum and transverse
spatial position — 3d picture of partonic content of hadrons

e Here: Establish first non-perturbative analysis of the qGPDs in
massive QED?2
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Building a computational framework

Create controlled theoretical framework to benchmark performance

and accuracy of quantum simulations in nuclear physics

0. Problem where 1+1d toy model can be generalized to QCDy,.
1. 141 d system that can be solved in the continuum limit

2. Solve corresponding discretized version using exact diagonalization
and tensor networks

3. Design quantum circuit
4. Quantum simulationind=1+1
..d=3+1
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Lattice Schwinger model in 1+1d




The massive Schwinger model: QED,

Massive Schwinger model:

5= [ e (372 + D~ mu) vith D~ 3 g

e ¢ fermion field (Dirac spinor), 1) = ¢f4°

e D, = 0, — igA covariant derivative: coupling of gauge field A, to
fermion field. Charge of fermion: g.

e m mass of fermion (electron). Mass term breaks chiral symmetry

explicitly (m = 0 — exactly solvable)

e Fermions interact with gauge field (E-field between charged
fermions), leading to confinement (confines fermions into bound
states, like mesons in QCD).

e Interaction between fermions and gauge field — charge screening
(vacuum polarizes around charges); modifies vacuum significantly.



The massive Schwinger model: QED,

©n+1:0dd

Staggered fermions: 1(0,z = na) = % <Z6E2;> = % < Piieven )

Optional: Jordan-Wigner map to spins @, = [, ,[+iZm]5(Xn — iY2).

Spin-Hamiltonian:

L N—1 o N—=2

m ag 2
H X n n - nn
43;( X1+ YaYor1) + 2;( 1)"Z, + ;Ln

Ln = LO =+ an:O Zm+(271)m.




First excited state

Use open boundary conditions + eliminate gauge field using Gauss's
law; solve system with exact diagonalization and tensor networks

Consider mass gap m,, of first excited state |1(0)) (meson-like state).
Strong coupling m/g < 1/7:

(split in pseudo-scalar mass due to U(1) anomaly + chiral condensate)

2

m? = m} +m2 = £ —ax m(u)o,
with chiral condensate (1)1)) = —e;—:ms, where vg = 0.577.

1
m 2 m
n:<1+2e75m> m1+e75£%1—{—1.78—
mg mgs mg mgs

: 1.
Weak coupling g > -0omy — 2m.



Mass gap of first excited state

Mass gap in finite spatial box receives finite size corrections

Eo = \/m2+7n2/L2 with L= N-aand m? = g?/m.
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at about m/g ~ 1/3.

. Crossing from strong to weak coupling

Works well numerically (even for a small number of gridpoints). 10



Boost operator in QED2

Boost excited state at equal time toward light cone K = [dx xH.

7’ is the lowest massive meson in the spectrum at strong coupling

2 1—v
‘H: [n(x)) = my coshx|n(x)),
P2 In(x)) = mysinhx|n(x))-

() = € n(0)), x = 11n(1 - )

with p* = ym,(1,v), v = coshy =1/v1— v2.
To benchmark the accuracy of the boost, consider

A(v) = (n(v)] H: [n(v)) = (n(v)[Hln(v)) — Eo.
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Boosted excited state: exact diagonalization

A(v) = (n(v)| :H: [n(v) = myy(x); fix ma=0, N =24,g=1,a=1

AW); Moy (v) rel err
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Error in excess of 10% (at around v 2 0.83), and in excess of 20% (at
around v > 0.91). Also, the overlap (1(0)|0(v)) is nonzero.

Large amount of resource needed (already in 1+1d). 24 gridpoints far
too little = Quantum hardware needed eventually to study 3+1 d
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Boosted excited state using matrix product states
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Tensor network calculation with N = 180 and lattice spacing a =

0.33. Largest symmetric error only 1.2%!
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Where is the limit?

Energy Difference vs gap*cosh(x)
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Where

Momentum

is the limit?

Momentum vs gap*sinh(x)
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Summary for N=202

First Deviation Point (>10% symmetric, x = 0.6) vs a

X at first deviation
| |

®  Energy deviation
u Momentum deviation
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X = %m(}f;);x — 2 v=00964 =3¢ v=0.995y = 4 ¢ 0.999
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Light front wavefunctions

Light front wavefunctions ¢,(¢) in 2-particle Fock-space approx solve:
(¢P symmetric momentum fraction of partons, ¢ = 2x — 1) [Bergknoff; '77]

M?,(pn(C)

1, /‘1 - ’ 4m’ 2 /1 , n(C") — @n(C)
=_m d¢" () + ——=n(¢) — 2mz PP d¢' ——5—"
5 5- ) G (C) 17C2§0 (C) S . g (C/_<)2

't Hooft equation + U(1) anomaly; M, is mass gap

Due to pole: @,(1) = 0, PDF: g, (x) = |o(x)|2.
Expansion using orthonormal Jacobi polynomials P2%:28 [, perry; 03]

25" 8= 0.1v3/7 (blue),

B =+/3/7 (red),

B = 10v/3/7 (black) using
13 Jacobi polynomials.
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Boosted quasi-distributions

The partonic distribution function (PDF) for the boosted pseudo-scalar
(in rest frame) is defined as

Gn(x,v) = / 92 gizcr (1(0)] e~ NE (0, 2)[z2, — 2y (0, —2) X [1(0)).

with p! = ymyv and ( = 2x — 1 with x the parton fraction. Here
vt =4% 4+ 41, [z, —2z] is link along spatial direction. PDA similar.

Both defined at equal time for a fixed boost, reduce to Ji's light front
partonic functions in the large rapidity limit x > 1. The PDF is

1 » » ,
an(C.v) =5 D e M (n(0)e X (4 oh 1) (Pt —ns1) X n(0))

1

=5 d e~ MCaP(V) D(na).
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Spatial quasi-distribution function using exact diagonalization

Im(D(z))

Parameters for strong coupling result: v = 0.925 and m/mg = 0.1 (red
disks) and improved mass my,; (blue triangles), we fixed N = 26, with

a = g = 1. Black lines are inverse Fourier transforms of light front wave
function result (scaled to peak).

Large amount of resource needed (already in 1+1d). 26 gridpoints far
too little = Quantum hardware needed eventually to study 3+1 d
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PDFs from matrix product states (tensor networks)

Now consider matrix element with vacuum expectation value subtracted,

ie.

N=422, m=0.18, g=0.5, a=0.0625

D(na) — {0le™ ¥ (] o], 1 ) (0-nto—nr1)e™

“10)

N=422, m=0.18, g=0.5, a=0.0625 .

Re(D)
Im(D)

1

)

Parameters: m = 0.18, N = 422, a = 0.0625, g = 0.5.
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PDFs from tensor networks (preliminary)

N=422, m=0.18, g=0.5, a=0.0625

PDF

(Pre-liminary) Tensor network results for v=0.995055 (x = 3) in red.
Black curve is two-particle Fock space solution.
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Hamiltonian evolution to light front

Trade boost for Hamiltonian time evolution. Use the boost and "time’
identities:

e X (0, —z)e™® = eX75/27/)(—7vz,72)

’l/)(*VZ, Z) _ efivsz(O’Z)eivzH
Resulting eventually in:

1 —inCam,v —i2vn
G =5 D €I (0)] (] + Phyr) € (oot oo nia) [0(0))

Problem so far: bond dimension in TN simulation is growing very fast
during time evolution
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Quasi-GPDs

Light front GPD for 1’ in QED?2 is off-diagonal ME of analogue of
leading twist-2 quark operator in QCD4

1 [T dz= e
[ He iCPTz
H(x,&,t) 2/ o€ X

— 00

(P+ S[H(-2 e 4]y ()P - 3).

where []_ is Wilson-line along light cone direction

2D: no transverse momentum; skewness is tied to momentum transfer

through mass-shell condition qu7 = 2(1 — 512> In our language:

1 [T®dz _,
H(X7§, t, V) = 5/ ﬁ e—lzCPl(V)x

(n(0)] e IR0, —2)[~2, +2]57 7 (0, +2) XTI [ (0)).

— 00
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Conclusions and Outlook

Conclusions:

e Introduced the concept of quasi-fragmentation functions

e Formulated quasi-distribution functions/amplitudes and
quasi-fragmentation functions in language suitable for quantum
computation

Outlook (in progress):
e qGPD (Generalized Parton Distribution) works analogous = info
about skewness
e Much finer lattices are needed for the comparison — tensor networks
e Check the proposal for the qFF versus the FF computed from DLY
e Multi-flavor case

e Set up the calculation on a quantum computer
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Quark fragmentation

e Quark fragmentation (Field and Feynman): quark jet model to
describe meson production in semi-inclusive processes

e Quark jet model independent parton cascade model: hard parton
depletes its longitudinal momentum by emitting successive mesons
through chain process (e.g. string breaking in Lund model)

e Jet fragmentation and hadronization important for collider
experiments to extract partonic structure of matter, gluon helicity in
nucleons and mechanism behind the production of diffractive dijets.

e FFs describe how a high-energy parton transforms into a jet of
hadrons; counterpart of PDFs but describe "reverse” process: parton
hadronizes

quark
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Collins-Soper fragmentation functions (1)

Measures the amount of meson outgoing from the quark.

On light front, gauge-invariant definition of the QCD quark
fragmentation Q@ — Q + H was given by Collins and Soper. Introduce
the spatially symmetric qFF

I 1 dz —i(2-1)P(v)Z
dq](ZaV):z e (:-1P(V)

Tr (7*75<0l¢(—2)[—2, o] al i (P(v))aout (P(v)) o0, Z]¢(Z)0>>

where P(v) = v(v)m,v is momentum fraction carried by the emitted 7
from mother quark jet with momentum P(v)/z.

The asymptotic time limit implements the LSZ reduction on source field

2 i
aiut(P)aout(P) = ﬁe’HtWTVS(/)(OvP(V))Fe Ht|tﬁ+oo'
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Collins-Soper fragmentation function (I1)

The symmetric qFF can be recast in terms of the spatial qFF correlator

1 [dZ _;
dl(z,v) = p Eef’(gfl)’)(v)z C(Z,v,0),

CZ v, )= 2T (7720060, 2)[- 2, ] P8 X 50, m, )
o e o0, 200, 2)0)).

Under combined boost and time evolution, the equal-time fermion field is
now lying on the light cone.
Computed C(Z, v, o0) in lattice model using exact diagonalization/tensor

networks.
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Discretized Lattice qFF

Recall:
(2, v, t)= fﬂ( *(0[(0, ~2)[~ Z, oc] ™4 eX ¥ |y 4515(0,0)
e XK g=ilit[ng Z]4(0, Z)|o>) .
Same discretization as for PDF. New element:

Z(Uﬁan_ﬂ - U;LHU;)

n

2

1
[WT50(0,0)* =

)

where oF = %(Xn +iY,). Discretized form of the symmetric spatial qFF:

4 . . .
Clnv,t)=—5 D e (0fgh;(—n)e ™[y Tys1(0,0) P (n)]0).

ij=e,o
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Drell-Levy-Yan relation

Crossing symmetry and charge conjuga-
tion: Estimate of the CS FF in terms of
PDFs using the DLY

PHYSICAL REGION FOR
SCATTERING PROCESS (i}

_ 1
dpiy(z,v) =23 p, (z’ V)

PHYSICAL REGION FOR
ANNIHILATION PRPCESS (ii)

Py = |p2|? ~ probability of finding parton of momentum fraction x in
hadron p(x). DLY: is related to the amount of meson spit out by parton
with fraction of momentum z.

Using the EVP:

dpy(z,1) = Z(Z;ﬂz—i2207)2 (f B /01 dX(Xf(i(/)ZV)2

with y?> = M?/m% and 1+ a = a = m?*/mz. 20
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Strong coupling DLY fragmentation function (light quarks): 5 =0
(blue) and 8 = 0.2 (red). The divergence for small masses (small 3) is in
agreement with the exact bosonization description of QED2

DLY fragmentation function for heavy quarks: FF is peaked in the
forward (jet) direction, with a strong suppression as z — 0 (vanishes for
1=z=0).
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work on a QC?
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