May 20, 2025

First Neural Network extraction of unpolarized TMDs

Chiara Bissolotti Maria Goeppert Mayer Fellow Argonne National Laboratory PHY Division

Map Collaboration

with Valerio Bertone, Matteo Cerutti, Simone Rodini, Alessandro Bacchetta, Marco Radici, Lorenzo Rossi

based on arXiv:2502.04166

Transverse Momentum Distributions the distribution of guarks sharply depends on the orientation of their spins

from the TMD handbook arXiv:2304.03302

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

volution sets in

b* **prescription** and definition of $f_{\rm NP}$ → perturbative $f(x,b;\mu,\zeta) = \left[\frac{f(x,b;\mu,\zeta)}{f(x,b_*(b);\mu,\zeta)}\right] f(x,b_*(b);\mu,\zeta)$ non perturbative $f_{\rm NP}(x,b,\zeta)$ \longrightarrow fit to data

Non perturbative function depends on the choice of b*-prescription

Motivation

What would we like to accomplish?

goal. fit for the first time TMDs with NN

proof of concept

℁ do NN offer an advantage in fitting (real) data?

℁ we want to test the methodology

------ with closure tests

Data kinematical coverage high and low energy Drell-Yan data

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Parametrization

of the non-perturbative part of $f_1(x, k_T)$

MAP Collaboration arXiv:2502.04166

parametrization

$$f_{\rm NP}(x, b_T; \zeta) = \frac{\mathbb{NN}(x, b_T, \{p_i\})}{\mathbb{NN}(x, 0, \{p_i\})} \exp\left[-g_2^2 b_T^2 \ln\left(\frac{\zeta}{Q_0^2}\right)\right]$$

physically required constraints

$$f_{\rm NP}
ightarrow 1~$$
 for $~b_T
ightarrow 0$

with activation function

$$\sigma(z) = \frac{1}{2} \left(1 + \frac{z}{1+|z|} \right)$$

NATIONAL LABORATORY

PENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Comparison with data Iogarithmic accuracy: N3LL

Comparison with data Iogarithmic accuracy: N3LL

why are NN bands so much smaller than MAP22's?

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

IIII JUST TO COMPARE AGAIN

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 $\chi^2 = 0.97$

 $\chi^2 = 1.28$

Desc numerica	Scription of data				$\chi^2 = \sum_{i=1}^n \left($	$\frac{m_i - \bar{t}_i}{s_i} \Big)^2$	$+\sum_{\alpha=1}^k \lambda_{\alpha}^2$
	Experiment $N_{\rm d}$		$\overline{\chi}^2 \; (\overline{\chi}_D^2 + \overline{\chi}_\lambda^2)$		ur C	ncorrelated ontribution	penalty term
			NN	MAP22			100
	Fixed-target	233	$1.08 \ (0.98 + 0.10)$	$0.91 \ (0.70 + 0.21)$			
	RHIC	7	1.11 (1.03 + 0.07)	1.45(1.37+0.08)		rule o	rule of thumb: it's best
	Tevatron	71	$0.80 \ (0.73 + 0.06)$	1.20 (1.17 + 0.04)			when it's small
	LHCb	21	$0.98 \ (0.88 + 0.10)$	1.25 (1.05 + 0.20)			
	CMS	78	$0.40 \ (0.38 + 0.02)$	$0.41 \ (0.35 + 0.06)$			
	ATLAS	72	1.38(1.09+0.29)	3.51(3.03 + 0.49)		great improvement	
	Total	482	0.97 (0.86 + 0.11)	1.28 (1.09 + 0.20)	-		

MAP22 relies more on the shifts with respect to the NN fit

NN TMDs

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Ū.

extraction of $f_1(x, k_T)$ from DY data

MAP Collaboration arXiv:2502.04166

NN fit has larger bands

more reliable estimation uncertainties

process independent,

insensitive to the types of external hadrons involved,

not dependent on polarization, on the flavors of the quarks, and on the scale Q

N³LO

N³LL

MAPNN25

MAP22

1.0

0.5

0.0

-0.5

 $\gamma^{\overline{\mathrm{MS}}}(b_{\perp};\,\mu)$

IFY23

ART23

EEC24

ASWZ24

LPC23

DWF24

This Work

MAP24FI

PB24

ART25

Conclusions

first Neural Networks extraction

of the unpolarized quark TMD PDFs in the proton

at N3LL
$$\square$$
 Drell-Yan
data, 482 points
great description of data
 $\chi^2 = 0.97$

more reliable uncertainties

OROS

the genesis of a new fitting framework

MAP Collaboration

— more flexible, modular and versatile

- suited for fitting all kinds distributions, PDFs, TMDs, GPDs
- very fast
- written in C++ but with a python wrapper

to do next:

- Study b* prescription is there an impact on the extracted TMDs?
- Perform closure tests validate the use of NN
- perform NN TMD fit for DY + SIDIS

every TMD has the same general structure

many subtleties involved in TMD analyses

b* prescription, ζ-prescription, logarithmic accuracy

MAP Collaboration arXiv:2502.04166

0.5

0

-0.5

-1

correlation matrix

41 parameters

to validate the methodology

Level 0
_____ central pseudo-data is given by Central predictions of the known model
_____ no Monte Carlo noise
_____ is added on top of the central data
_____ each replica is fitting the same set of data

central pseudo-data is shifted by some noise η

- drawn from the experimental covariance matrix
- no MC noise is added each replica fits a subset of the same shifted data

central pseudo-data is shifted by level 1 noise η

MC noise is added on top of the level 1 shift

