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Transverse momentum dependent factorization

 The transverse momentum dependent (TMD) factorization

. ) e 2 22
scheme can be used for analysis of scattering with pj_ << < Q
production of a final state of transverse momentum p
which is much smaller than a hard scale TMD factorization limit for SIDIS

do 2 > bJ_pJ_ . = pJ_
d:Eddedei mgefH(Qvﬂ)[) db|b|JO( 8 >f1(ajabJ_>:u7<)D1( bLaMaC)_I_O(—)

The power corrections (i.e. terms of orderpl/Q2 to the
TMD factorization can be systematically calculated
see e.g. Balitsky, Tarasov (2017-2018); Arroyo-Castro, Scimemi, Vladimirov (2025)

 The region of applicability of the TMD factorization
corresponds to relatively large values of b,

p Q7 <<1:bl<AQCD




TMDPDFs as functions of four variables
« The TMDPDF is an intrinsically non-perturbative object
fi(ajv bJ_7 s C)

//" ‘\\ TMD factorization
kinematic variables factorization scales is valid

>

 |tis a function of four variables!
b1

d i

dl fz(a;', b1 3 K C) — Ty (,u, C)fZ(l'a by ; L, C) The anomalous dimensions are
LA known up to 4 loops
d 1 . Duhr, Mistlberger, Vita (2022)

dl sz ($, bisp, C) - 572 ('u7 b )f’& (I, b1; 1, C) Manteuffel, Panzer, Schabinger (2020)
n

 To appropriately restrain this function we want to extract as much perturbative information as possible,
including the dependence on the kinematic variables

* However, an appropriate calculation of the perturbative component of the function in the region of
applicability of the TMD factorization (large | < Aéch) Is challenging, and, in general, has not been

done



Collinear matching

Instead TMDPDFs have been directly calculated only in the region
of small b, <K Aéch

The conventional approach is to consider TMDPDFs in a small

—1 : : :
b, < AQCD approximation and expand them in terms of the Collinear matching TMD factorization

collinear PDFs - collinear matching: is valid
see e.g. Scimemi, Tarasov and Vladimirov (2019)

is valid

>

f’i(xabJ_vaC) :’Cl X fl(ivp,u) =+ biCZ 02 f2($;,u) + ...

0.‘
*

Matching coefficients (perturbative),

. F Collinear PDFs of rising twist
contains logs of IR origin

. However, the region of applicability of the TMD factorization corresponds to large b, < AECD. The
TMDPDFs genuinely contain contribution of all collinear twists!

Problem: Only first few terms of the collinear matching are known. To obtain the correct
structure of the TMDPDFs, which describes all collinear twist content of the distributions,
one would need to resum all terms of the collinear expansion, which at the moment is

not feasible!

b1



Non-perturbative function

* In practice a phenomenological solution is used: higher twist fNP
terms are dropped
2
fi(ma bJ_7 s C) — C’1 X fl(xa :u) +W
Collinear matching TMD factorization
» A phenomenological function fyp is introduced to extrapolate s valid is valid
the result from b, < AECD into the physical region b, < Aéch ;?
A
* The collinear matching “model” for unpolarized TMDPDF used in the phenomenology:
TMD distribution for the large b, S Ay,
- 5 e
fl (QZ‘, bJ_7 Hf, Cf)
Hf d C K(b*nub )/2
. 2 M f * 2
—(C & b i) e { [ P} (oF) fune (2,55 G, Qo)
1. /’L lub>|<
Collinear matching constructed in CSS evolution Phenomenological function containing all
the region of small b, < A&D collinear twist content of the distribution and

describing its behavior at large b, < A&;D

The procedure doesn’t allow us to reveal all collinear twist
content of the TMDPDFs which is important in the region of

TMD factorization = collinear factorization
applicability of the TMD factorization ization | 1Zatl




Collinear vs. TMD factorization

 The discrepancies between collinear and TMD
factorizations manifest themself in the phenomenology:

7;SIDIS 7,SIDIS At NLL, w(z,2,Q)) = 1. Beyond NLL, the prefactor becomes larger than one and
W - w(% Z, Q) guarantees that the integral of the TMD part of the cross section reproduces most of the
dx dz d|qT‘ dQ) dx dz d|qT‘ dQ) collinear cross section, as suggested by the data. Bacchetta, Bertone, Bissolotti, Bozzi,

Cerutti, Piacenza, Radici, Signori (2022)
» Significant dependence on the model for the non-perturbative

function and wide spread of the function in the b, dependence Moos, Scimemi, Viadimirov, Zurita (2025)
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Bacchetta, Bertone, Bissolotti, Cerutti,

Radiel, Rodinl, Rosst (2025) Can we better address the all collinear twist content of the TMDPDFs?




MSTT(-erious) factorization: calculation of the
TMDPDFs in the region of large b,

 The collinear matching procedure doesn’t allows us to fully
uncover the all collinear twist structure of the TMDPDFs

 To obtain this structure one has to perform calculation directly
in the region of validity of the TMD factorization corresponding

tolarge b; S ééD

 One needs calculation of TMDPDFs in the background field of

Collin

Direct calculation of the TMDPDFs in
the region of applicability of the TMD
factorization

TMD factorization
is valid

atching

general kKinematics Mukherjee, Skokov, Tarasov, Tiwari (2024) - MSTT factorization

PN
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In the collinear limit we effectively assume strong separation
between quantum fields and the background in transverse

momentum = scattering in the background of collinear partons

>

b1

LEBP—l_

Pl

s

k1

Bbs

At large b, < Aé};D we have to discard the assumption about

ordering in transverse momentum and consider scattering in a
background B8 of general kinematics



The background field method and the QCD factorization

 The calculation in general kinematics can be efficiently performed in the background field method

* |n the background field method the QCD factorization is defined by a
separation of the QCD fields (i.e. A — C + B) into different modes separated
by factorization scales o

dO_:HZ(O_)®<P1‘OZ|P2>O' ................................................................................ o

(PP = [ DB W, (B(t)O:(B) W, (B(t:))e'Secn P

* |n the context of the TMD factorization o = (,142, () and 0 is a TMD operator

« Evaluation of the functional integral over B fields is hard in general, so, following
the logic of the background field method, one can split the field into different

components introducing IR scales ¢’ and integrate over quantum component

q bg q
b, — b, + b, B
T T .......... 0‘

e.g. perturbative mode e.g. non-perturbative mode 1




Background field method and the QCD evolution

« After splitting of the field B into two components, we aim to
integrate over quantum modes B in a fixed background of B"g

f|e|dS The integration over Bq f|e|ds |S done perturbatively_ The ................................................................................ O
result has the following structure: | B

. ) / |

<P1‘Oi‘P2>a — g Cq;j(O',O'/)®<P1‘Oj‘P2>G ................................................................................. O
| o'  Bbs
: \ \ (P11O; | Py)

result of integration operator constructed g
over BY fields from BPE fields

- The coefficient function C;; describes dependence on the

factorization scales ¢ (UV) and ¢’ (IR), and contains information

on the perturbative component of the TMDPDFs. We aim to
perturbatively calculate this function

 The result of calculation is defined by the structure of the

factorization scales o and ¢, i.e. the definition of the
factorization scheme




Separation of the field modes

One can separate the field modes using explicit cut-offs (e.g. high-energy rapidity factorization), but this is

usually technically hard

R X

Instead one can use the renormalization approach. The
divergent integrals are regularized and the corresponding
scales play the role of the cut-offs, while the singular poles
should be appropriately subtracted

We use the dimensional regularization for the transverse
integrals

The rapidity divergent integrals are regularized as

/ U >un/ LA
o K 0o K

J. Chiu, A. Jain, D. Neill, I. Rothstein (2013)

To resolve potential double counting due to overlap between field
modes in rapidity the matrix element constructed from fields B4

and B2 is to be multiplied by a soft factor

filzp,b1) =~/Sb1)Bi(xp,bL)



Calculation of quark TMDPDFs in the backaround field method

- 5)|P.5)

U (21 25, b1) = ey, bo) [z, 00lpy (00, 25 |ba(zg . —bu)
B0, b1) = [ T (P S (-

2T
o0 (2, b,) = fi(x, b)) + ibpd" M fis(z,b) )

» We integrate over BY fields at the NLO order in a

background field, e.g. g(y) field in the diagram (a), which is

defined by the IR scales (//tlzR,p)

C_?(Zl_, bJ-)

v




The structure of the result

2
CF /dz,u/cfzp embL/dzhei(k“p”“

1 2.2 2—2 1
1 °C d-—=k, . U 1
X / du{ “ } 2 (uzl , UZq ZJ_) | J o UF / 5 Lt‘iwl”m/ du Z/{W] (21_722_7 _bJ_)
0 1 —u (1—u)pl+uk¢ T 2 27 k4 0 1 —u 2
T TMD operator of size 7, instead T
of its collinear counterpart

1
UHJF](Z;,ZQ_, §bJ_

finite term regulated by the non-
zero value of the background

transverse momentum k;, — p, usual UV divergencies leading to

the CSS evolution
/1 du \( % )77/1 du (1—u)—”'7

n is a regulator of the UV rapidity divergence
and v is the corresponding scale

 Similar expressions can be easily obtained for all other
diagrams




The structure of the result. Distribution functions

[y 1] L asCp 1 4 1 , [y 1] usual UV divergencies leading
¢ (aj’ bL) a o DV (77 +1+ ln(xBP+) €TV - Ly )P (aj’ bL) to the CSS evolution
1
- - du| u 1 +1, T
+2a,C /CZQZL /dLQ J_e”tpﬂu /dLQkJ_GZ(kL—PL)ZL / [ } (I)[’Y ] ~ .z
i P o u Ll—wuly (1—u)pt +uks (u L)
finite terms don’t develop a singularity b2 ,UQ T
1/€;, and doesn’t have logarithms L; ' = In (4;_22}; )

« The UV poles can be removed in the usual way by the soft factor and the UV renormalization factor

2
S9 — &SCF[ 2 | 4( 1 | L/b“f‘/)( 1 - In ’LLUV) _ Jruv2 il } <«—— soft factor

| |
27T e%]v €UV 7 % b 0

ozs(]p[ 1 1 (3

| - In(
2T 2

UV renormalization — Zy = 1 5—
v €UV

 The result is the same for both unpolarized and Sivers functions

(x, bJ_) = fl(a:, bJ_) -+ zbk§ka1LT(a:, bJ_)

 The second term describes all collinear twist content of the TMDPDFs. Let’s see it more explicitly

"]

HlY




Collinear matching procedure

The result for the diagram in the MSTT factorization scheme:

+ _ . 1 OéSCF 1 1% 1 + . . 1
1
. . 1 + 1
2 . d2 d—2 ’LPJ_bJ_/d—Qk, Z(kJ__pJ_)ZJ_/ d [ u ] ] B 1
+ 200 CF/ ZJ_/ pPl€ 1€ , u 1 —wult (1 - u)pi 4 U,kiu (UZl y Uzg QZJ_)
A

ettt i e no Qrdering IN transverse Variables -cccccvrrimiiiiiiii i i et :

» How is the result related to the collinear matching expansion? Let’s expand the TMD operators in r.h.s. in terms
of collinear operators:

1 1
Z/{[”Yu] (uzl_’uz2_7 §ZJ_) — O[vu](uzf,uz;) + §Zk0ﬁ7u]

 Each term of the expansion develops a new singularity and a delta-
function for the background transverse momentum

1
Z/{hﬂ(zl—, 22_, §bJ_)

(uzy ,uzy )+ ...

&SCF ]- %4 ]. + o
— 4+ 14+1 )( | L“U‘/)O” (21,
a 2T <77 T n(mBP"I_) CEUV b (Zl 22

1 " szpL | N :  The collinear matching expansion
+ 2a5CF / du{ } / —e'PLhL /szkl(Qw)z(kL —p )OO0 (uzy ,uzy ) ; introduces an additional ordering in
0 1 —ul+ Py - transverse momentum between the
e quantum modes and the background




Ordering of transverse momenta in the collinear matching procedure

—I—] 1 OéSCF

Z/{h (Zl_azQ_? §bJ-)

a 27'('

O 1 :
27T €ETR 0

« The presence of a new 1/¢;, manifests the fact that the collinear

matching procedure introduces a new factorization condition defined
by the strong ordering of the transverse momentum

* The exact MSTT result doesn’t have this ordering, i.e. the
factorization condition for transverse momentum

 The ordering is justified only in the
region of small b, < Aé};D

Y

U

1 —

Pl

_I_

O

(1+1+1n(xB”P+))( L L*gw)ow(z;,z;)

CUv

+] B B IR singularity in all terms of the expansion
(UZl , UZo ) =+ O(b) onto the collinear PDFs = factorization

Part of the DGLAP kernel
generated by the diagram

. o . wide separation in transverse
collinear expansion is valid, enough phase

. momentum factorization
space for large transverse logarithms = d
factorization in transverse momentum

TMD factorization is valid, no phase space

to develop large transverse logarithms =
no factorization in transverse momentum

>bJ_



Leading collinear twist

(= 4= L _%CF(l. v )(1 . )[ﬂ - =1
Z/{ (2172272bl)a_ 27T 77 ! 1+1I1(£EBP+) €LYV | LbUV Z/{7 (2172272bJ_)
1
' ' 1 - 1
200,C d2 d-2 ZPLbL/d—Qk z(kL—pL)zL/ A { U } Z/[[’V] _ _ 1
+ 20 F/ ZJ_/ pLe 1€ | u | —ul . (1—u)pi—|—uki (uzl,uZQ,QZL)

« The MSTT result develops exact logarithms when the factorization condition for transverse
momentum is imposed in the region of small /|, < Aé}m

* The result matches IR logarithms of all order terms of the collinear expansion

g CF in full agreement with the known

1 1 . .
f1 (QE, bJ_) _ ( I 1 n ln( 1% )> ( | L'IL;UV> fl (LU) result for the collider matching

a 2 1] Tl CUV MSTT contains contribution of the
higher order collinear twists as well

asCr /1 Vdup u - X
( | L51R> / — fl (_) + O (bz) note that the expansion converge
0

2 €IR u Ll —uls U only at small b, < Agey,

« The MSTT result perfectly matches with known terms of the collinear expansion but contains contribution of all
collinear terms which is essential for the region of validity of the TMD factorization large b, < Aé}jD



Higher collinear twists

» The MSTT result for the sum of all diagrams partially reproduces contribution of higher order

collinear twists, but contain contribution of all of them
in full agreement with the known

| P CF 1 1) 1 result for the contribution of this
_ | HUV L diagram to the collider matchin
flT(m’ bJ‘) ) ( +1+4 ln( + )> ( | Lb )T‘-T( z, 0, :C) resglt for the Sivers function ’
a T 1] ZBBP CEUV

() [, et D voe

€IR u ULl —ul+ U U

« The MSTT result contains only mixing with leading twist TMDPDFs. To reproduce higher collinear
twist terms one has to consider mixing with higher twist TMD operators

mixing with higher twist TMD
operators can be systematically
analyzed as well

Mukherjee, Skokov, Tarasov,
Tiwari, arXiv:2502.15889

 The result of the collinear matching for the Sivers function contain contribution of the mixing with
higher twist TMD operators even in the leading term



Virtual diagrams

* virtual diagram in the collinear matching procedure. Expanding the MSTT result:

e 27’(’ — U
A 1 1

~..... scaleless integral =0
CUV €IR

1 2 260 d—Q—Qek, 1 2 -
Z/{[’Y+](21,22,§b¢) S F/ 2 L/O dul (Ohﬂ(zl,zQ) )
L

* in the collinear matching, when the factorization in transverse
momentum is imposed, all terms of the collinear expansion are trivial
in agreement with the standard result

 |Inthe MSTT approach, without the factorization in transverse
momentum the diagram generates a finite term

2 260 d—2—2€k 1 1
_ g Ho F / kQ 1 / du1 Uu Z/[[7+](Z1_722_7 §ZJ_)
0

e 27’(’ — U

g°C
F/dQZJ_/a—I—QpJ_e’LpJ_(bJ_—ZJ_)/d— kJ_esz_(ZJ_—bJ_)
non-trivial dynamics in

1 2 . .
k 4 1 the MSTT factorization!
X d J— Z/{[’V ] _7 _7 _
/o SR u)p2 gy B )

1
Z/{[’Y ](Zl 722 ,§bJ_)




Virtual diagrams for the gluon TMD operator

 In the conventionally used collinear matching approach these diagrams contain scaleless integrals, which
are zero in the dimensional regularization. In the MSTT approach we observe a non-trivial structure

/ rapidity divergence on the IR type!

|
Vir d ] —1
B?j(leg’ “(zp,bL) = —QOéch/ ?Z/JZPLGZ“M /sz/ﬂe wrbiy (2 pr — kL k)
0

d?k
This doesn’t depend /dQZJ_fBZ(k p)LzLBlm(CE’B,ZJ_ 4045N / | / = bg CUB,Z?J_)
— 2

on the value of xp



BFKL dynamics RRTOUPRRRRY logarithmic dependence

on p; “virtual” part of the

BFKL evolution kernel
Bg(l)—l—bg;virt (.CUB bJ_) _ as N, 1 I 1 1 n ln( 0 ) 2 |
*J ’ 2 \€r  €r \& rp Pt 12

€EIR (- :
/d2ZJ_ /d-ZpJ_esz_ (b—2z) 1 (MIR> gzlpjpm pzplgmj Blm(pr ZJ_) €, :

5N €
| f /szL/dLpr?’“(b Z”(MUV) UVBZg(xBazL)

S SR LV

27T (EUV QNC

We observe that the virtual diagrams have a non-trivial structure.
This Is different from the conventional approach

The gluon TMDPDFs at large x5z contain logarithms of the BFKL

type!

To reveal this structure one has to take into account all-collinear
twist content of the TMDPDFs in the region of large b, < AéCD

using the MSTT approach




Thank you for your attention!



