Resummation of Flattened Jet Angularity Using Soft-Collinear Effective Theory

Yang-Ting Chien

QCD Evolution workshop, JLab May 19th, 2025

1

Outline

- Introduction
 - Jet angularity and soft-drop grooming
 - Collinear-drop and flattened jet angularity
- Soft Collinear Effective Theory
 - Factorization and resummation
- Monte Carlo comparison
- Conclusion

Jet angularity

OXIZ particle i $\lambda_{d}^{K} = \sum_{i \in j \in I} \frac{Z_{i}^{K}}{\binom{Q_{i}}{R_{0}}} \left(\frac{Q_{i}}{R_{0}}\right)^{d} \omega(Q)$ K=1 for IRC safety momentum $Z_i = \frac{P_t}{P_t}$ fraction $Z_i = \frac{P_t}{P_t}$ radius SUM over per particle contribution meighed by Q = 7 angles => angularity d=1 $\mathcal{W}(0)_{\uparrow}$ For \$20, W(0) is monotonic therefore weighs wide angle particles the most. Suffers from confaminations such as underlying events, pileup, or even event-wide radiation theoretical control challenging !

Soft-drop grooming

Soft-drop is one of the grooming techniques which can be calculated to high precision Soft-drop removes wideangle, soft particles

Collinear-drop

- Conventionally only particles surviving soft drop are studied. However, one could study the dropped particles as well
- One could even pick out an intermediate branch with two soft drop conditions

mass is the collinear drop AM? MSD

Useful application

D. Rankin's talk at ML4Jets 2020, 1910.02082

Higgs Tagging - gg

- Particle content of h→gg jet similar to QCD jet
 - Dedicated GRU struggles to differentiate
- MLP with expert features jet mass ratios
 - Similar concept to collinear drop [1907.11107], isolates color singlet

Flattened jet angularity

While groomed observables are mostly constructed using clustering algorithms, which often complicate theoretical calculations, in this talk we introduce a jet-shape based technique to suppress wide-angle radiations

Flattened jet angularity generalize the functional form of W(0)

Flattened jet angularity $\mathcal{O}(0)$ Annulus pt fraction X Similar observable: "color ring" for boosted boson tagging. 0 R₁ R₂ R 0 another implementation of Cullinear drop

is shown to

$$\begin{array}{c} \Psi(r=0.1) \text{ for 200 GeV Jets} \\ \hline \Psi(r=0.1) \text{ for 200 GeV Jets} \\$$

Lund plane and Soft Collinear Effective Theory

 $\lambda \omega : \sum_{i \in jet} Z_i \partial_i d_i$

$$\log \frac{1}{\lambda w} \sim \log \frac{1}{z} + d \log \frac{1}{0}$$

Jet angularity measurement represents
as a straight line on the Lynd
plane
$$(\log \frac{1}{0}, \log \frac{1}{2})$$
 with slope
 $-d$

Soft collinear effective theory factorizes QCD phace space into soft and collinear sectors described by Soft Wilson lines and collinear Wilson lines

Factorization of flattened jet angularity $\log \frac{1}{z}$ Piecevise polynomial angular weight WLO) becomes piecewise straight lines (polygons) $\alpha =$ S_{R_1} Each vertex requires two modes with stoudard exactly the same momentum scaling $\alpha = 2$ Soft SR, and $\log \frac{1}{\theta}$ $\log \frac{1}{R_1}$ $\log \frac{1}{R}$ for d: the dropped soft Standa the soft mode mode correspond collinear mode correspond to the to the measured for d=2 megsurement of of d=1 for Q=2 for O not below O up to RI

Factorization of flattened jet angularity

Compare factorization of collinear drop

Resummation using RG evolution

$$\frac{P_{i}^{\mathrm{FA}}(x,\mu)J_{R_{1}i}^{\mathrm{un}}(\mu)}{J_{R_{2}i}^{\mathrm{un}}(\mu)} = \exp\left[2C_{i}S(\mu_{R_{1}},\mu_{J_{R_{1}}}) - 2C_{i}S(\mu_{R_{2}},\mu_{J_{R_{1}}}) + 2C_{i}S(\mu_{J_{R_{2}}},\mu_{J_{R_{1}}})\right] + 2C_{i}S(\mu_{J_{R_{2}}},\mu_{J_{R_{1}}}) + 2C_{i}S(\mu_{J_{R_{2}}},\mu_{J_{R_{2}}}) + 2C_{i}S(\mu_{J_{R_{2}}},\mu_{J_{R$$

$$O_{Re} - | \circ \phi \text{ expression for the soft and Aropped Soft function} \\ S_{\overline{R}_{1}i}(x_{1}, \mu) = \frac{2E_{J}g^{2}C_{i}\mu^{2\epsilon}e^{\epsilon\gamma_{E}}\Omega_{d-2}}{(2\pi)^{d-1}(4\pi)^{\epsilon}} \int \frac{dq^{+}dq^{-}}{(q^{+}q^{-})^{1+\epsilon}} \,\delta(q^{-} - 2E_{J}x_{1}) \,\Theta\Big(\frac{q^{+}}{q^{-}} - \frac{R_{1}^{2}}{4}\Big) \\ S_{R_{2}i}(x_{2}, \mu) = \frac{2E_{J}g^{2}C_{i}\mu^{2\epsilon}e^{\epsilon\gamma_{E}}\Omega_{d-2}}{(2\pi)^{d-1}(4\pi)^{\epsilon}} \int \frac{dq^{+}dq^{-}}{(q^{+}q^{-})^{1+\epsilon}} \,\delta(q^{-} - 2E_{J}x_{2}) \,\Theta\Big(\frac{R_{2}^{2}}{4} - \frac{q^{+}}{q^{-}}\Big)$$

$$\begin{split} & \overbrace{Q}^{\text{Ne}-\log p} \quad \text{anomalus} \quad \text{dimensions} \\ & \frac{d\log \tilde{S}_{\overline{R}_{1}i}}{d\log \mu} = 2C_{i}\gamma_{\text{cusp}} \ln \frac{\mu_{J_{R_{1}}}}{\nu \mu} - 2\gamma^{S_{\overline{R}_{1}i}} \equiv \gamma_{S_{\overline{R}_{1}i}} \\ & \frac{d\log \tilde{S}_{R_{2}i}}{d\log \mu} = -2C_{i}\gamma_{\text{cusp}} \ln \frac{\mu_{J_{R_{2}}}}{\nu \mu} - 2\gamma^{S_{R_{2},i}} \equiv \gamma_{S_{R_{2}i}} \\ & \gamma_{P_{i}^{\text{FA}}} = \gamma_{S_{\overline{R}_{1}i}} + \gamma_{S_{R_{2}i}} = -2C_{i}\gamma_{\text{cusp}} \log \frac{R_{2}}{R_{1}} = \gamma_{J_{R_{2}i}} - \gamma_{J_{R_{1}i}} \end{split}$$

Monte Carlo and analytic studies (preliminary)

Chien, Stewart, JHEP06(2020)064

- Peripheral rings ensure dropping collinear radiation and probes soft radiation
- Hadronization corrections shift to smaller values
- Native scale choices: \(\mu_{\vec{R_1}}\) = \(E_J x R_1, \(\mu_{R_2} = E_J x R_2\)\) breaks down at large values of \(x\) and scale merging/fixed order matching needs to be done. Constraints from recoil need to be considered.
- Sudakov peak position predicted and sensitive to the running of strong coupling constant

Conclusions

Explore a new jet substructure observable called flattened jet angularity

- a jet-shape based generalization of the classic jet angularity
- worked out the factorization expressions, still need to complete EFT scale merging and matching to fixed-order calculation
- phenomenological applications is on the way
- Such observables do not rely on grooming nor clustering algorithms
- Their hadronization corrections can give interesting information about nonperturbative QCD effects within jets

Stay tuned !