Latest Developments in the Theory of Multi-Hadron Fragmentation Functions

Daniel Pitonyak Lebanon Valley College, Annville, PA, USA

QCD Evolution Workshop Jefferson Lab, Newport News, VA May 19, 2025

Based on

D. Pitonyak, C. Cocuzza, A. Metz, A. Prokudin and N. Sato, "Number density interpretation of dihadron fragmentation functions," Phys. Rev. Lett. **132**, 011902 (2024) [arXiv:2305.11995 [hep-ph]].

D. Pitonyak, C. Cocuzza, A. Metz, A. Prokudin and N. Sato, "Comment on "QCD factorization with multihadron fragmentation functions"," [arXiv:2502.15817 [hep-ph]], submitted to PRD.

D. Pitonyak

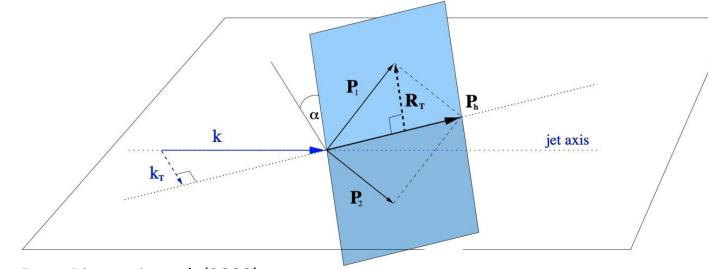
Outline

- Background and motivation: why dihadron fragmentation?
- Recent DiFF (and multi-hadron FF) theory developments: new definition and its number density interpretation, sum rules, and evolution equations
- Comments on previous DiFF definitions, dihadron cross section results, and other claims in the literature (especially regarding the compatibility of our new definition with factorization)
- Summary

D. Pitonyak

Background and Motivation

D. Pitonyak



From Bianconi, et al. (2000)

Bianconi, et al. (2000); Bacchetta, Radici (2003, 2004), ...

$$\begin{split} P_h &= P_1 + P_2 \qquad R = (P_1 - P_2)/2 \qquad \xi_1 = P_1^-/k^- \quad \xi_2 = P_2^-/k^- \\ &\xi = \xi_1 + \xi_2 \qquad \zeta = (P_1^- - P_2^-)/P_h^- = (\xi_1 - \xi_2)/\xi \\ P_1 &= \left(\frac{M_1^2 + \vec{R}_T^2}{(1+\zeta)P_h^-}, \frac{1+\zeta}{2}P_h^-, \vec{R}_T\right) \qquad P_2 = \left(\frac{M_2^2 + \vec{R}_T^2}{(1-\zeta)P_h^-}, \frac{1-\zeta}{2}P_h^-, -\vec{R}_T\right) \\ &\vec{R}_T^2 = \frac{1-\zeta^2}{4}M_h^2 - \frac{1-\zeta}{2}M_1^2 - \frac{1+\zeta}{2}M_2^2 \end{split}$$

Note: Sometimes the variable $\xi = (1 + \zeta)/2$ has been used, which is different from the momentum fraction ξ above.

D. Pitonyak

Dihadron fragmentation involves more structures than single-hadron fragmentation (only unpolarized hadron FFs are shown below)

Single-hadron FFs

$$\Delta^{h/q}(\xi, \vec{k}_T) \longrightarrow D_1^{h/q}(\xi, \xi^2 \vec{k}_T^2), \ -\frac{\epsilon_T^{ij} k_T^j}{M_h} H_1^{\perp h/q}(\xi, \xi^2 \vec{k}_T^2)$$

Dihadron FFs

(Bianconi, et al. (2000); Bacchetta, Radici (2003, 2004))

$$\Delta^{h_1 h_2/q}(\xi, \zeta, \vec{k}_T, \vec{R}_T) \longrightarrow \blacksquare$$

$$\begin{bmatrix}
D_{1}^{h_{1}h_{2}/q}(\xi,\zeta,\vec{k}_{T}^{2},\vec{R}_{T}^{2},\vec{k}_{T}\cdot\vec{R}_{T}), \\
\frac{\epsilon_{T}^{ij}R_{T}^{i}k_{T}^{j}}{M_{h}^{2}}G_{1}^{\perp h_{1}h_{2}/q}(\xi,\zeta,\vec{k}_{T}^{2},\vec{R}_{T}^{2},\vec{k}_{T}\cdot\vec{R}_{T}), \\
-\frac{\epsilon_{T}^{ij}R_{T}^{j}}{M_{h}}H_{1}^{\triangleleft' h_{1}h_{2}/q}(\xi,\zeta,\vec{k}_{T}^{2},\vec{R}_{T}^{2},\vec{k}_{T}\cdot\vec{R}_{T}), \\
-\frac{\epsilon_{T}^{ij}k_{T}^{j}}{M_{h}}H_{1}^{\perp' h_{1}h_{2}/q}(\xi,\zeta,\vec{k}_{T}^{2},\vec{R}_{T}^{2},\vec{k}_{T}\cdot\vec{R}_{T}),
\end{bmatrix}$$

D. Pitonyak

Dihadron fragmentation involves more structures than single-hadron fragmentation (only unpolarized hadron FFs are shown below)

Single-hadron FFs

$$\int d^2 \vec{k}_T \, \Delta^{h/q}(\xi, \vec{k}_T) \longrightarrow D_1^{h/q}(\xi)$$

$$\underbrace{\int} d^{2}\vec{k}_{T} \,\Delta^{h_{1}h_{2}/q}(\xi,\zeta,\vec{k}_{T},\vec{R}_{T}) \longrightarrow \left\{ \begin{aligned} D_{1}^{h_{1}h_{2}/q}(\xi,\zeta,\vec{R}_{T}^{2}), \\ -\frac{\epsilon_{T}^{ij}R_{T}^{j}}{M_{h}}H_{1}^{\triangleleft h_{1}h_{2}/q}(\xi,\zeta,\vec{R}_{T}^{2}) \end{aligned} \right.$$

لي Lebanon Valley College

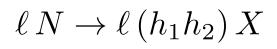
D. Pitonyak

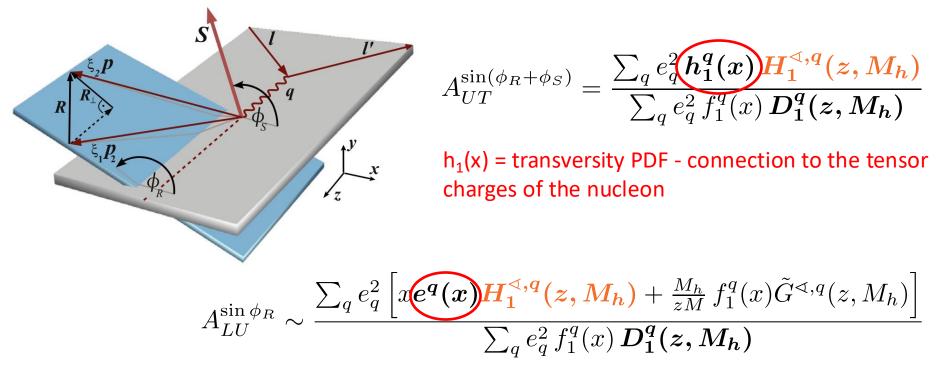
Dihadron fragmentation involves more structures than single-hadron fragmentation (only unpolarized hadron FFs are shown below)

 $\frac{\text{Single-hadron FFs}}{\int} d^2 \vec{k}_T \, \Delta^{h/q}(\xi, \vec{k}_T) \longrightarrow D_1^{h/q}(\xi)$

$$\int d^{2}\vec{k}_{T} \,\Delta^{h_{1}h_{2}/q}(\xi,\zeta,\vec{k}_{T},\vec{R}_{T}) \longrightarrow \begin{cases} D_{1}^{h_{1}h_{2}/q}(\xi,\zeta,\vec{R}_{T}^{2}), \\ -\frac{\epsilon_{T}^{ij}R_{T}^{j}}{M_{h}}H_{1}^{\triangleleft h_{1}h_{2}/q}(\xi,\zeta,\vec{R}_{T}^{2}) \\ -\frac{\epsilon_{T}^{ij}R_{T}^{j}}{M_{h}}H_{1}^{\triangleleft h_{1}h_{2}/q}(\xi,\zeta,\vec{R}_{T}^{2}) \end{cases}$$
chiral-odd "interference" FF (IFF)

(Collins, et al. (1994); Bianconi, et al. (2000); Bacchetta, Radici (2003, 2004); Courtoy, et al. (2012); Matevosyan, et al. (2018); Radici, et al. (2013, 2015, 2018); Benel, et al. (2020), Courtoy, et al. (2014, 2022); Cocuzza, et al. (2024))



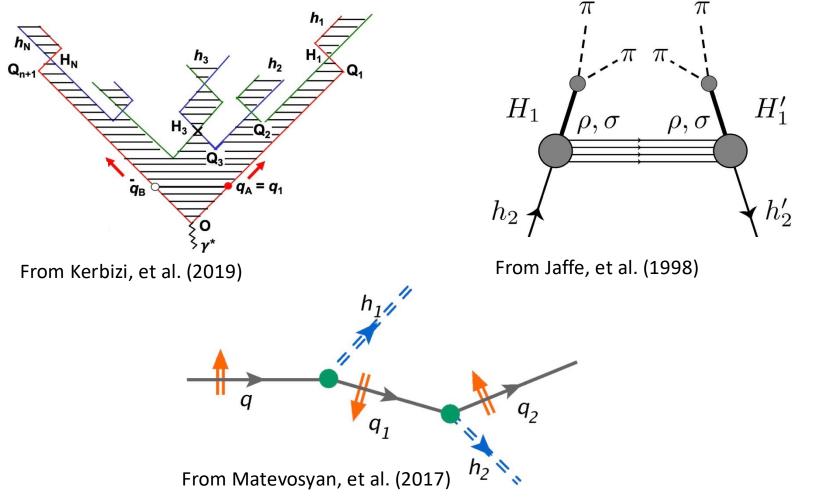


e(x) = twist-3 PDF - connection to the decomposition of the nucleon mass

(Collins, et al. (1994); Bianconi, et al. (2000); Bacchetta, Radici (2003, 2004); Courtoy, et al. (2012); Matevosyan, et al. (2018); Radici, et al. (2013, 2015, 2018); Benel, et al. (2020), Courtoy, et al. (2014, 2022); Cocuzza, et al. (2024))

D. Pitonyak

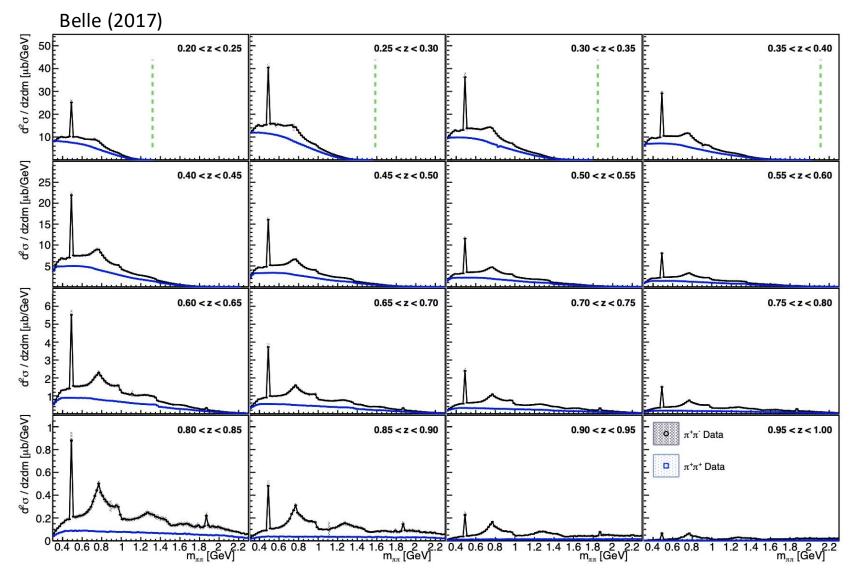
 DiFFs are interesting in their own right, e.g., one can test models for (un)polarized parton fragmentation/hadronization (Collins, Ladinsky (1994); Jaffe, et al. (1998); Bianconi, et al. (2000); Bacchetta, Radici (2006); Matevosyan, et al. (2017, 2018); Kerbizi, et al. (2019, 2023))



Ь¢

D. Pitonyak

There is also a complicated/interesting resonance structure that can/must be analyzed



5

D. Pitonyak

Recent DiFF Theory Developments

D. Pitonyak

- > An aside: notation and reference frames
 - For *n*-hadron FFs, $\xi_i = \frac{P_i^-}{k^-}$ and $\xi = \sum_{i=1}^n \xi_i$
 - The arguments of the FF will denote in which variables it is a number density, e.g., $D_1^{h_1h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$ is a number density in $(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$
 - "Parton frame" (p): parton has no transverse momentum, hadron has transverse momentum P_{\perp} useful in the formulation of FFs as number densities and proofs of sum rules
 - "Hadron frame" (h): hadron has no transverse momentum, parton has transverse momentum k_T more practical for phenomenology

$$V_{\rm p}^{-} = V_{\rm h}^{-} \equiv V^{-}$$
$$V_{\rm p}^{+} = (\vec{k}_{T}/k^{-})^{2} V^{-}/2 + V_{\rm h}^{+} - \vec{k}_{T} \cdot \vec{V}_{T}/k^{-}$$
$$\vec{V}_{\perp} = -(\vec{k}_{T}/k^{-})V^{-} + \vec{V}_{T}$$

D. Pitonyak

(TMD) PDFs and (single-hadron) FFs are defined in a way so that they are number densities in a parton model framework

Number sum rules

$$\sum_{i=u,d,s,..} \int_{0}^{1} d\xi \left[f_{1}^{i/N}(\xi) - f_{1}^{\overline{i}/N}(\xi) \right] = \mathcal{B} \quad (\mathcal{B} \text{ is the baryon number,} \\ \text{e.g.,= 3 for a proton)} \\ \sum_{h} \int_{0}^{1} d\xi D_{1}^{h/i}(\xi) = \langle \mathcal{N} \rangle \quad (<\mathcal{N} \text{> is the expectation value for the} \\ \text{total number of hadrons produced} \\ \text{when the parton fragments)} \end{cases}$$

Momentum sum rules

$$\sum_{i} \int_{0}^{1} d\xi \,\xi \, f_{1}^{i/N}(\xi) = 1 \qquad \sum_{h} \int_{0}^{1} d\xi \,\xi \, D_{1}^{h/i}(\xi) = 1$$

<u>Note</u>: Paper by Collins, Rogers (2024) has questioned sum rules for FFs, but their analysis does *not* affect the validity of the fundamental definition of single-hadron FFs, our DiFF (or *n*-hadron FF) definitions, nor their interpretations as a number densities.

D. Pitonyak

$$D_1^{h/q}(\xi, \vec{P}_\perp) = \frac{1}{N_c} \frac{1}{4\xi} \sum_X \int \frac{dx^+ d^2 \vec{x}_\perp}{(2\pi)^3} e^{ik^- x^+} \operatorname{Tr} \left[\langle 0 | \mathcal{W}(\infty, x) \psi_q(x^+, 0^-, \vec{x}_\perp) | P; X \rangle \right] \\ \times \langle P; X | \bar{\psi}_q(0^+, 0^-, \vec{0}_\perp) \mathcal{W}(0, \infty) | 0 \rangle \gamma^- \right]$$

D. Pitonyak

$$D_{1}^{h/q}(\xi, \vec{P}_{\perp}) = \frac{1}{N_{c}} \frac{1}{4\xi} \sum_{X} \int \frac{dx^{+} d^{2} \vec{x}_{\perp}}{(2\pi)^{3}} e^{ik^{-}x^{+}} \operatorname{Tr} \left[\langle 0 | \mathcal{W}(\infty, x) \psi_{q}(x^{+}, 0^{-}, \vec{x}_{\perp}) | P; X \rangle \right] \\ \times \langle P; X | \bar{\psi}_{q}(0^{+}, 0^{-}, \vec{0}_{\perp}) \mathcal{W}(0, \infty) | 0 \rangle \gamma^{-}$$

$$\sum_{h} \int_{0}^{1} d\xi \int d^{2} \vec{P}_{\perp} D_{1}^{h/q}(\xi, \vec{P}_{\perp}) = \frac{1}{N_{c}} \frac{1}{2} \int dx^{+} d^{2} \vec{x}_{\perp} e^{ik^{-}x^{+}} \operatorname{Tr} \left[\langle 0 | \mathcal{W}(\infty, x) \psi_{q}(x^{+}, 0^{-}, \vec{x}_{\perp}) \hat{N} \bar{\psi}_{q}(0^{+}, 0^{-}, \vec{0}_{\perp}) \times \mathcal{W}(0, \infty) | 0 \rangle \gamma^{-} \right] \times \mathcal{W}(0, \infty) | 0 \rangle \gamma^{-} \right]$$

where
$$\hat{N} \equiv \sum_{h} \int \frac{dP^{-}d^{2}\vec{P}_{\perp}}{(2\pi)^{3} 2P^{-}} \hat{a}_{h}^{\dagger} \hat{a}_{h} = \sum_{h} \int \frac{d\xi \, d^{2}\vec{P}_{\perp}}{(2\pi)^{3} 2\xi} \hat{a}_{h}^{\dagger} \hat{a}_{h}$$

Introduce "good" quark fields $\psi_{-,q} \equiv \frac{1}{2}\gamma^+\gamma^-\psi_q$, insert their anticommutator, and use $\{\psi_{-,q}(x^+, 0^-, \vec{x}_\perp), \psi^{\dagger}_{-,q}(0^+, 0^-, \vec{0}_\perp)\} = \frac{1}{2\sqrt{2}}\gamma^+\gamma^-\delta(x^+)\delta^{(2)}(\vec{x}_\perp)$

$$\sum_{h} \int_{0}^{1} d\xi \int d^{2} \vec{P}_{\perp} D_{1}^{h/q}(\xi, \vec{P}_{\perp}^{2}) = \langle \mathcal{N} \rangle$$

$$\Delta_{\alpha\beta}^{h_1h_2/i}(\xi_1,\xi_2,\vec{P}_{1\perp},\vec{P}_{2\perp}) = \frac{1}{N_i} \sum_X \int \frac{dx^+ d^2 \vec{x}_\perp}{(2\pi)^3} e^{ik \cdot x} \mathcal{O}_{\alpha\beta}^{h_1h_2/i}(x) \Big|_{x^-=0}$$

<u>quark fragmentation</u> ($N_i = N_c$)

$$\mathcal{O}_{\alpha\beta}^{h_1h_2/q}(x) = \langle 0|\mathcal{W}(\infty, x)\psi_{q,\alpha}(x^+, 0^-, \vec{x}_\perp)|P_1, P_2; X\rangle \\ \times \langle P_1, P_2; X|\bar{\psi}_{q,\beta}(0^+, 0^-, \vec{0}_\perp)\mathcal{W}(0, \infty)|0\rangle$$

<u>gluon fragmentation</u> ($N_i = N_c^2 - 1$)

$$\mathcal{O}_{\alpha\beta}^{h_1h_2/g}(x) = \langle 0 | \mathcal{W}^{ba}(\infty, x) F^a_{+\alpha}(x^+, 0^-, \vec{x}_\perp) | P_1, P_2; X \rangle$$
$$\times \langle P_1, P_2; X | F^c_{+\beta}(0^+, 0^-, \vec{0}_\perp) \mathcal{W}^{cb}(0, \infty) | 0 \rangle$$

NB: we will focus on quark fragmentation, but similar results hold for gluon fragmentation

D. Pitonyak

$$\frac{1}{64\pi^{3}\xi_{1}\xi_{2}} \operatorname{Tr}\left[\Delta^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^{-}\right] = D_{1}^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})$$

$$\frac{1}{64\pi^{3}\xi_{1}\xi_{2}} \operatorname{Tr}\left[\Delta^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^{-}\right] = D_{1}^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})$$

D. Pitonyak

$$\begin{split} &\sum_{h_1} \sum_{h_2} \int d\xi_1 \, d^2 \vec{P}_{1\perp} \int d\xi_2 \, d^2 \vec{P}_{2\perp} D_1^{h_1 h_2 / q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \\ &= \frac{1}{N_c} \frac{1}{2} \int dx^+ d^2 \vec{x}_\perp \, e^{ik^- x^+} \operatorname{Tr} \bigg[\langle 0 | \mathcal{W}(\infty, x) \psi_q(x^+, 0^-, \vec{x}_\perp) \bigg(\sum_{h_1} \sum_{h_2} \hat{N}_{h_1} \hat{N}_{h_2} - \sum_{h_1} \hat{N}_{h_1} \bigg) \bar{\psi}_q(0^+, 0^-, \vec{0}_\perp) \\ &\times \mathcal{W}(0, \infty) | 0 \rangle \, \gamma^- \end{split}$$

 $\begin{array}{ll} \text{where} \qquad \hat{N}_{h_{j}} \equiv \int \frac{dP_{j}^{-}d^{2}\vec{P}_{j\perp}}{(2\pi)^{3}\,2P_{j}^{-}} \, \hat{a}_{h_{j}}^{\dagger} \hat{a}_{h_{j}} = \int \frac{d\xi_{j}d^{2}\vec{P}_{j\perp}}{(2\pi)^{3}\,2\xi_{j}} \, \hat{a}_{h_{j}}^{\dagger} \hat{a}_{h_{j}} \\ & \ddots \\ & \sum_{h_{1}} \sum_{h_{2}} \int_{0}^{1} d\xi_{2} \int_{0}^{1-\xi_{2}} d\xi_{1} \int d^{2}\vec{P}_{1\perp} \int d^{2}\vec{P}_{2\perp} D_{1}^{h_{1}h_{2}/q} (\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp}) = \langle \mathcal{N}(\mathcal{N}-1) \rangle \end{array}$

Expectation value for the total number of *hadron pairs* produced when the parton fragments 10

D. Pitonyak

We can also show the number density interpretation of $D_1^{h_1h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$ by starting from the operator definition and using expressions for the quark field operator $\psi(x)$ in terms of (quark) lightcone creation and annihilation operators to find

$$\sum_{h_1} \sum_{h_2} D_1^{h_1 h_2}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \langle \vec{k}_1 | \vec{k}_2 \rangle = \langle \vec{k}_1 | \frac{d \left(\hat{N}(\hat{N} - 1) \right)}{d\xi_1 d\xi_2 d^2 \vec{P}_{1\perp} d^2 \vec{P}_{2\perp}} | \vec{k}_2 \rangle$$

For the single hadron case, the analogous result reads (Collins (2011))

$$\sum_{h} D_1^h(\xi, \vec{P}_{\perp}) \langle \vec{k}_1 | \vec{k}_2 \rangle \equiv \langle \vec{k}_1 | \frac{d\hat{N}}{d\xi d^2 \vec{P}_{\perp}} | \vec{k}_2 \rangle$$

In both cases, the relevant number operator is differential in the momentum fractions and transverse momenta of the final-state hadrons.

$$\begin{split} \frac{1}{64\pi^{3}\xi_{1}\xi_{2}} \mathrm{Tr} \Big[\Delta^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^{-} \Big] &= D_{1}^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp}) \\ \frac{1}{64\pi^{3}\xi_{1}\xi_{2}} \mathrm{Tr} \Big[\Delta^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^{-}\gamma_{5} \Big] &= -\frac{\epsilon_{\perp}^{ij}R_{\perp}^{i}P_{h\perp}^{j}}{zM_{h}^{2}} G_{1}^{\perp h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp}) \\ \frac{1}{64\pi^{3}\xi_{1}\xi_{2}} \mathrm{Tr} \Big[\Delta^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})i\sigma^{i-}\gamma_{5} \Big] &= -\frac{\epsilon_{\perp}^{ij}R_{\perp}^{j}}{M_{h}}H_{1}^{\triangleleft' h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp}) \\ &+ \frac{\epsilon_{\perp}^{ij}P_{h\perp}^{j}}{zM_{h}}H_{1}^{\perp' h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp}) \end{split}$$

D. Pitonyak

NB: number density interpretation holds not only for unpolarized quarks (γ^- projection) but also for longitudinally ($\gamma^-\gamma^5$ projection) and transversely ($i\sigma^{i-}\gamma^5$ projection) polarized quarks

$\underbrace{\text{Number sum rule}}_{h_1} \sum_{h_2} \int_0^1 d\xi_2 \int_0^{1-\xi_2} d\xi_1 \int d^2 \vec{P}_{1\perp} \int d^2 \vec{P}_{2\perp} D_1^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = \langle \mathcal{N}(\mathcal{N}-1) \rangle$

$$\longrightarrow D_1^{h_1h_2/i}(w, x, \vec{Y}, \vec{Z}) \equiv \mathcal{J} \cdot D_1^{h_1h_2/i}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$
is a number density
Jacobian for the variable transformation

from $(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$ to (w, x, \vec{Y}, \vec{Z})

is a number density

$\underbrace{\text{Number sum rule}}_{h_1} \sum_{h_2} \int_0^1 d\xi_2 \int_0^{1-\xi_2} d\xi_1 \int d^2 \vec{P}_{1\perp} \int d^2 \vec{P}_{2\perp} D_1^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = \langle \mathcal{N}(\mathcal{N}-1) \rangle$ $\longrightarrow D_1^{h_1 h_2/i}(w, x, \vec{Y}, \vec{Z}) \equiv \mathcal{J} \cdot D_1^{h_1 h_2/i}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$

Jacobian for the variable transformation from $(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$ to (w, x, \vec{Y}, \vec{Z})

Using this prescription, we can define a DiFF that is a density in any momentum variables of choice for the number of hadron pairs $(h_1 h_2)$ fragmenting from the parton

$$\underbrace{\sum_{h_1} \sum_{h_2} \int_0^1 d\xi_2 \int_0^{1-\xi_2} d\xi_1 \int d^2 \vec{P}_{1\perp} \int d^2 \vec{P}_{2\perp} D_1^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = \langle \mathcal{N}(\mathcal{N}-1) \rangle}_{\mathbf{is a number density}}$$

$$\underbrace{\longrightarrow D_1^{h_1 h_2/i}(w, x, \vec{Y}, \vec{Z})}_{\mathbf{is a number density}} \equiv \underbrace{\mathcal{J}} \cdot D_1^{h_1 h_2/i}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})}_{\mathbf{jacobian for the variable transformation}}_{from (\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \text{ to } (w, x, \vec{Y}, \vec{Z})}$$

Momentum sum rule

$$\sum_{h_1} \int_0^{1-\xi_2} d\xi_1 \int d^2 \vec{P}_{1\perp} \,\xi_1 \, D_1^{h_1 h_2/i}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = (1-\xi_2) \, D_1^{h_2/i}(\xi_2, \vec{P}_{2\perp})$$

Generalization to n-hadron fragmentation

$$\frac{1}{4(16\pi^3)^{n-1}\xi_1\cdots\xi_n} \operatorname{Tr}\left[\Delta^{\{h_i\}_n/q}(\{\xi_i\}_n,\{\vec{P}_{i\perp}\}_n)\gamma^-\right] = D_1^{\{h_i\}_n/q}(\{\xi_i\}_n,\{\vec{P}_{i\perp}\}_n)$$

$$\sum_{h_1} \cdots \sum_{h_n} \int d\xi_n \cdots d\xi_1 \int d^2 \vec{P}_{1\perp} \cdots d^2 \vec{P}_{n\perp} D_1^{\{h_i\}_n/i} (\{\xi_i\}_n, \{\vec{P}_{i\perp}\}_n) = \left\langle \prod_{k=0}^{n-1} (\mathcal{N} - k) \right\rangle$$

D. Pitonyak

Connection to phenomenology/experiment - work in a frame where the dihadron has no transverse momentum and integrate over k_T (and perhaps $\boldsymbol{\zeta}$)

$$D_1^{h_1 h_2/i}(w, x, \vec{Y}, \vec{Z}) \equiv \mathcal{J} \cdot D_1^{h_1 h_2/i}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

NB: The following are number densities in the respective function arguments

$$D_1^{h_1 h_2/q}(\xi,\zeta,\vec{R}_T) = \frac{\xi}{32\pi^3(1-\zeta^2)} \int d^2\vec{k}_T \,\Delta^{h_1 h_2/q}(\xi_1,\xi_2,\vec{P}_{1\perp},\vec{P}_{2\perp})$$

$$D_1^{h_1 h_2/q}(\xi_1, \xi_2, \vec{R}_T) = \frac{\xi^2}{64\pi^3 \xi_1 \xi_2} \int d^2 \vec{k}_T \, \Delta^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

$$D_1^{h_1 h_2/q}(\xi, M_h) = \frac{\xi M_h}{64\pi^2} \int d\zeta \int d^2 \vec{k}_T \, \Delta^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

D. Pitonyak

Connection to phenomenology/experiment - work in a frame where the dihadron has no transverse momentum and integrate over k_T (and perhaps $\boldsymbol{\zeta}$)

$$D_1^{h_1 h_2/i}(w, x, \vec{Y}, \vec{Z}) \equiv \mathcal{J} \cdot D_1^{h_1 h_2/i}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

NB: The following are number densities in the respective function arguments

$$D_1^{h_1 h_2/q}(\xi,\zeta,\vec{R}_T) = \frac{\xi}{32\pi^3(1-\zeta^2)} \int d^2\vec{k}_T \,\Delta^{h_1 h_2/q}(\xi_1,\xi_2,\vec{P}_{1\perp},\vec{P}_{2\perp})$$

$$D_1^{h_1 h_2/q}(\xi_1, \xi_2, \vec{R}_T) = \frac{\xi^2}{64\pi^3 \xi_1 \xi_2} \int d^2 \vec{k}_T \, \Delta^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

$$D_1^{h_1 h_2/q}(\xi, M_h) = \frac{\xi M_h}{64\pi^2} \int d\zeta \int d^2 \vec{k}_T \, \Delta^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

This DiFF is especially relevant for phenomenology and analyzing experimental data. This operator definition appeared for the first time in our work in Phys. Rev. Lett. **132**, 011902 (2024).

D. Pitonyak

Another check of the correct definition as a number density is to perform parton model calculations of cross sections, e.g., in $e^+e^- \rightarrow (h_1h_2) X$

$$e^{+}e^{-} \rightarrow (h_{1}h_{2}) X$$

$$\frac{d\sigma}{dz \, dM_{h}} = \sum_{q} \left[\frac{4\pi N_{c} \alpha_{em}^{2}}{3Q^{2}} e_{q}^{2} \right] D_{1}^{h_{1}h_{2}/q} (z, M_{h}) \left| \begin{array}{c} e^{+}e^{-} \rightarrow h X \\ \frac{d\sigma}{dz} = \sum_{q} \hat{\sigma}_{0}^{q} D_{1}^{h/q} (z) \\ \downarrow \\ \text{total partonic cross section for } e^{+}e^{-} \rightarrow \gamma \rightarrow q\bar{q} \equiv \hat{\sigma}_{0}^{q} \\ NB: \text{ also checked it works for gluon DiFF using } e^{+}e^{-} \rightarrow H \rightarrow gg \end{array} \right]$$

This is exactly the structure $d\sigma$ should have if D_1 has a number density interpretation

D. Pitonyak

Another check of the correct definition as a number density is to perform parton model calculations of cross sections, e.g., in $e^+e^- \rightarrow (h_1h_2) X$

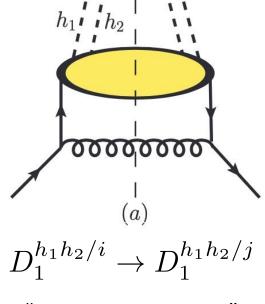
$$e^{+}e^{-} \rightarrow (h_{1}h_{2}) X$$

$$\frac{d\sigma}{dz \, d\zeta d^{2} \vec{R}_{T}} = \sum_{q} \underbrace{\frac{4\pi N_{c} \alpha_{\rm em}^{2}}{3Q^{2}} e_{q}^{2}}_{q} D_{1}^{h_{1}h_{2}/q}(z, \zeta, \vec{R}_{T}) \begin{vmatrix} e^{+}e^{-} \rightarrow h X \\ \frac{d\sigma}{dz} = \sum_{q} \hat{\sigma}_{0}^{q} D_{1}^{h/q}(z) \\ \vdots \\ for all partonic cross section for e^{+}e^{-} \rightarrow \gamma \rightarrow q\bar{q} \equiv \hat{\sigma}_{0}^{q} \\ NB: \text{ also checked it works for gluon DiFF using } e^{+}e^{-} \rightarrow H \rightarrow gg \end{vmatrix}$$

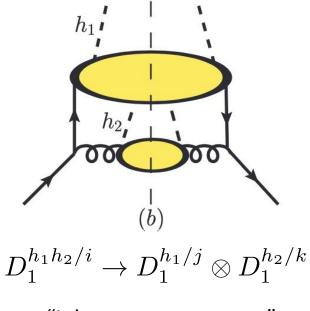
This is exactly the structure $d\sigma$ should have if D_1 has a number density interpretation

D. Pitonyak

Evolution equations for DiFFs



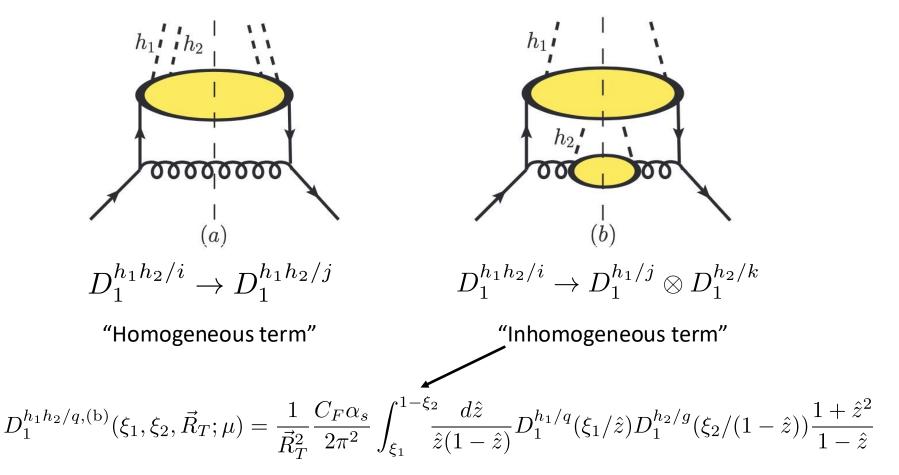
"Homogeneous term"



"Inhomogeneous term"

D. Pitonyak

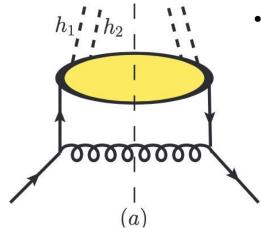
Evolution equations for DiFFs



The inhomogeneous terms are *not* UV divergent at $O(\alpha_s)$ when one keeps the dependence on R_T (see also Ceccopieri, et al. (2007))

D. Pitonyak

Evolution equations for DiFFs

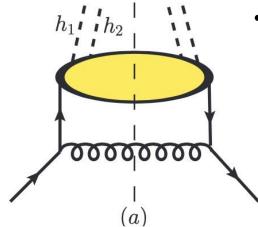


- Evolution is independent of the target (in the case of PDFs) or final state (in the case of FFs) (Collins (2011))
 - The evolution equations for the DiFFs have the same splitting functions as single-hadron collinear FFs. The only potential change is in the integration measure of the convolution integral depending on which DiFF is under consideration.

$$D_1^{h_1 h_2/q}(\xi,\zeta,\vec{R}_T) = \frac{\xi}{32\pi^3(1-\zeta^2)} \int d^2\vec{k}_T \operatorname{Tr}\left[\Delta^{h_1 h_2/q}(\xi_1,\xi_2,\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^-\right]$$

D. Pitonyak

Evolution equations for DiFFs



- Evolution is independent of the target (in the case of PDFs) or final state (in the case of FFs) (Collins (2011))
 - The evolution equations for the DiFFs have the same splitting functions as single-hadron collinear FFs. The only potential change is in the integration measure of the convolution integral depending on which DiFF is under consideration.

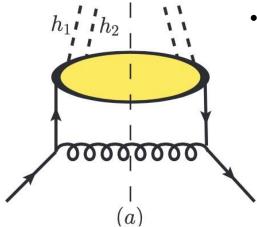
$$D_1^{h_1 h_2/q}(\xi,\zeta,\vec{R}_T) = \frac{\xi}{32\pi^3(1-\xi^2)} \int d^2\vec{k}_T \operatorname{Tr}\left[\Delta^{h_1 h_2/q}(\xi_1,\xi_2,\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^-\right]$$

ζ dependence is not altered by evolution

$$D_1^{h/q}(\xi) = \frac{\xi}{4} \int d^2 \vec{k}_T \operatorname{Tr}[\Delta^{h/q}(\xi, \vec{k}_T)\gamma^-]$$

D. Pitonyak

Evolution equations for DiFFs



- Evolution is independent of the target (in the case of PDFs) or final state (in the case of FFs) (Collins (2011))
 - The evolution equations for the DiFFs have the same splitting functions as single-hadron collinear FFs. The only potential change is in the integration measure of the convolution integral depending on which DiFF is under consideration.

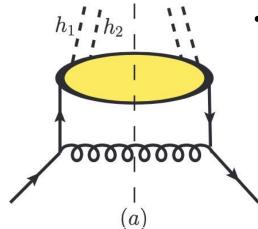
$$\frac{\partial \mathcal{D}^{h_1 h_2/i}(\xi,\zeta,\vec{R}_T;\mu)}{\partial \ln \mu^2} = \sum_{i'} \int_{\xi}^{1} \frac{d\hat{z}}{\hat{z}} \mathcal{D}^{h_1 h_2/i'} \left(\frac{\xi}{\hat{z}},\zeta,\vec{R}_T;\mu\right) P_{i\to i'}(\hat{z})$$

where
$$\mathcal{D} = D_1 \text{ or } H_1^{\triangleleft}$$

use unpolarized time-like splitting kernels use transversely polarized splitting kernels

D. Pitonyak

Evolution equations for DiFFs

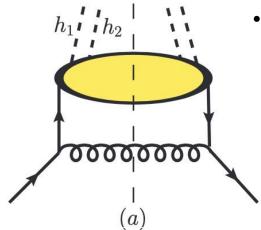


- Evolution is independent of the target (in the case of PDFs) or final state (in the case of FFs) (Collins (2011))
 - The evolution equations for the DiFFs have the same splitting functions as single-hadron collinear FFs. The only potential change is in the integration measure of the convolution integral depending on which DiFF is under consideration.

$$\frac{\partial D_1^{h_1 h_2/i}(\xi, M_h; \mu)}{\partial \ln \mu^2} = \sum_{i'} \int_{\xi}^1 \frac{d\hat{z}}{\hat{z}} D_1^{h_1 h_2/i'} \left(\frac{\xi}{\hat{z}}, M_h; \mu\right) P_{i \to i'}(\hat{z}) \longrightarrow \frac{d\sigma}{dz \, dM_h} = \int_{z}^1 \frac{d\hat{z}}{\hat{z}} \frac{d\hat{\sigma}}{d\hat{z}} D_1^{h_1 h_2} \left(\frac{z}{\hat{z}}, M_h\right) P_{i \to i'}(\hat{z})$$

D. Pitonyak

Evolution equations for DiFFs



- Evolution is independent of the target (in the case of PDFs) or final state (in the case of FFs) (Collins (2011))
 - The evolution equations for the DiFFs have the same splitting functions as single-hadron collinear FFs. The only potential change is in the integration measure of the convolution integral depending on which DiFF is under consideration.

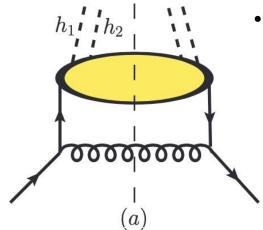
$$\frac{\partial D_1^{h_1 h_2/i}(\xi, M_h; \mu)}{\partial \ln \mu^2} = \sum_{i'} \int_{\xi}^1 \frac{d\hat{z}}{\hat{z}} D_1^{h_1 h_2/i'} \left(\frac{\xi}{\hat{z}}, M_h; \mu\right) P_{i \to i'}(\hat{z}) \longrightarrow \frac{d\sigma}{dz \, dM_h} = \int_z^1 \frac{d\hat{z}}{\hat{z}} \frac{d\hat{\sigma}}{d\hat{z}} D_1^{h_1 h_2} \left(\frac{z}{\hat{z}}, M_h\right) P_{i \to i'}(\hat{z})$$

Using $D_1^{h_1h_2/q}(\xi_1,\xi_2,\vec{R}_T) = \frac{2}{\xi} D_1^{h_1h_2/q}(\xi,\zeta,\vec{R}_T)$

$$\frac{\partial D_1^{h_1 h_2/i}(\xi_1, \xi_2, \vec{R}_T; \mu)}{\partial \ln \mu^2} = \sum_{i'} \int_{\xi}^1 \frac{d\hat{z}}{\hat{z}^2} D_1^{h_1 h_2/i'} \left(\frac{\xi_1}{\hat{z}}, \frac{\xi_2}{\hat{z}}, \vec{R}_T; \mu\right) P_{i \to i'}(\hat{z})$$

D. Pitonyak

Evolution equations for DiFFs



- Evolution is independent of the target (in the case of PDFs) or final state (in the case of FFs) (Collins (2011))
 - The evolution equations for the DiFFs have the same splitting functions as single-hadron collinear FFs. The only potential change is in the integration measure of the convolution integral depending on which DiFF is under consideration.

$$\frac{\partial D_1^{h_1 h_2/i}(\xi, M_h; \mu)}{\partial \ln \mu^2} = \sum_{i'} \int_{\xi}^1 \frac{d\hat{z}}{\hat{z}} D_1^{h_1 h_2/i'} \left(\frac{\xi}{\hat{z}}, M_h; \mu\right) P_{i \to i'}(\hat{z}) \longrightarrow \frac{d\sigma}{dz \, dM_h} = \int_{z}^1 \frac{d\hat{z}}{\hat{z}} \frac{d\hat{\sigma}}{d\hat{z}} D_1^{h_1 h_2} \left(\frac{z}{\hat{z}}, M_h\right)$$

Using $D_1^{h_1h_2/q}(\xi_1,\xi_2,\vec{R}_T) = \frac{2}{\xi} D_1^{h_1h_2/q}(\xi,\zeta,\vec{R}_T)$

$$\frac{\partial D_1^{h_1 h_2 / i}(\xi_1, \xi_2, \vec{R}_T; \mu)}{\partial \ln \mu^2} = \sum_{i'} \int_{\xi}^1 \frac{d\hat{z}}{\hat{z}^2} D_1^{h_1 h_2 / i'} \left(\frac{\xi_1}{\hat{z}}, \frac{\xi_2}{\hat{z}}, \vec{R}_T; \mu\right) P_{i \to i'}(\hat{z}) \longleftrightarrow \frac{d\sigma}{dz_1 dz_2 d^2 \vec{R}_T} = \int_z^1 \frac{d\hat{z}}{\hat{z}^2} \frac{d\hat{\sigma}}{d\hat{z}} D_1^{h_1 h_2} \left(\frac{z_1}{\hat{z}}, \frac{z_2}{\hat{z}}, \vec{R}_T\right) d\hat{z}$$

Agrees with Majumder, Wang (2004), Ceccopieri, et al. (2007), and de Florian, Vanni (2004)

D. Pitonyak

Comments on Other Results and Claims in the Literature

D. Pitonyak

➤ The original DiFF definition written down in Bianconi, et al. (2000) has the same prefactor as the single-hadron fragmentation case (see also Rogers, et al. (2025))

$$D_1^{h_1h_2/q,\text{BBJR}}(\xi,\zeta,\vec{k}_T^{\,2},\vec{R}_T^{\,2},\vec{k}_T\cdot\vec{R}_T) = \frac{1}{4\xi}\text{Tr}\Big[\Delta^{h_1h_2/q}(\xi_1,\xi_2,\vec{P}_{1\perp},\vec{P}_{2\perp})\gamma^-\Big]$$

D. Pitonyak

The original DiFF definition written down in Bianconi, et al. (2000) has the same prefactor as the single-hadron fragmentation case (see also Rogers, et al. (2025))

$$D_1^{h_1 h_2/q, \text{BBJR}}(\xi, \zeta, \vec{k}_T^2, \vec{R}_T^2, \vec{k}_T \cdot \vec{R}_T) = \frac{1}{4\xi} \text{Tr} \Big[\Delta^{h_1 h_2/q}(\xi_1, \xi_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \gamma^- \Big]$$

$$= 16\pi^{3} \frac{\xi_{1}\xi_{2}}{\xi} D_{1}^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})$$

$$= \left| \frac{\partial(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})}{\partial(\xi,\zeta,\xi\vec{k}_{T},\vec{\widetilde{M}}_{h})} \right| D_{1}^{h_{1}h_{2}/q}(\xi_{1},\xi_{2},\vec{P}_{1\perp},\vec{P}_{2\perp})$$

$$|\vec{\widetilde{M}}_{h}| = M_{h}/\sqrt{32\pi^{3}}, \phi_{M_{h}} = \phi_{R_{T}}$$

BBJR definition is a number density in $(\xi, \zeta, \xi \vec{k}_T, \vec{\widetilde{M}}_h)$ or any set of variables with unit Jacobian relative to those

D. Pitonyak

➤ Rogers, et al. (2025) define a *n*-hadron FF with the same $\frac{1}{4\xi}$ prefactor and motivate its use as "fundamental" due to the fact that is arises in a (parton model) derivation of factorization for a small mass cluster of *n* hadrons, $e^+e^- \rightarrow (h_1 \cdots h_n) X$

$$d(\xi, -\xi \vec{k}_T, \{P_h\}) = \frac{1}{4\xi} \Delta^{\{h_i\}_n} \Delta^{\{h_i\}_n} \Delta^{\{h_i\}_n} = \operatorname{Tr} \sum_X \int \frac{dx^+ d^2 \vec{x}_\perp}{(2\pi)^3} e^{ik \cdot x} \langle 0|\gamma^- \psi(x)|P_1, \dots, P_n; X\rangle \times \langle P_1, \dots, P_n; X|\bar{\psi}(0)|0\rangle|_{x^-=0}$$

D. Pitonyak

► Rogers, et al. (2025) define a *n*-hadron FF with the same $\frac{1}{4\xi}$ prefactor and motivate its use as "fundamental" due to the fact that is arises in a (parton model) derivation of factorization for a small mass cluster of *n* hadrons, $e^+e^- \rightarrow (h_1 \cdots h_n) X$

$$\begin{split} d(\xi, -\xi \vec{k}_T, \{P_h\}) &= \frac{1}{4\xi} \Delta^{\{h_i\}_n} \\ \text{No clear statement in which} \\ \text{3n variables this function is} \\ \text{a number density} \quad \Delta^{\{h_i\}_n} &\equiv \operatorname{Tr} \underbrace{\int_X} \int \frac{dx^+ d^2 \vec{x}_\perp}{(2\pi)^3} e^{ik \cdot x} \langle 0 | \gamma^- \psi(x) | P_1, \dots, P_n; X \rangle \\ &\times \langle P_1, \dots, P_n; X | \bar{\psi}(0) | 0 \rangle \big|_{x^- = 0} \end{split}$$

D. Pitonyak

► Rogers, et al. (2025) define a *n*-hadron FF with the same $\frac{1}{4\xi}$ prefactor and motivate its use as "fundamental" due to the fact that is arises in a (parton model) derivation of factorization for a small mass cluster of *n* hadrons, $e^+e^- \rightarrow (h_1 \cdots h_n) X$

$$d(\xi, -\xi \vec{k}_T, \{P_h\}) = \frac{1}{4\xi} \Delta^{\{h_i\}_n}$$

$$\left(\prod_{i=1}^{n} \frac{2E_i(2\pi)^3}{d^3 \vec{P_i}}\right) d\sigma = \frac{1}{z} \int_z^1 d\hat{z} \left(\frac{2E_{\hat{k}}(2\pi)^3 d\hat{\sigma}}{d^3 \vec{\hat{k}}}\right) \left(\xi^2 \int d^2 \vec{k}_T \, d(\xi, -\xi \vec{k}_T, \{P_h\})\right) + \text{p.s.}$$

Usual hard factor for the production of an on-shell massless parton

NB:
$$\hat{z} = \frac{z}{\xi} + \text{p.s.}, \ \frac{z_i}{\hat{z}} = \xi_i + \text{p.s.}$$

D. Pitonyak

The claim in Rogers, et al. (2025) is that our *n*-hadron FF definition will not arise in a factorization formula with the same hard factors and splitting functions as single-hadron fragmentation

$$D_1^{\{h_i\}_n}(\{\xi_i\}_n, \{\vec{P}_{i\perp}\}_n) = \frac{1}{4(16\pi^3)^{n-1}\xi_1\cdots\xi_n} \,\Delta^{\{h_i\}_n}$$

D. Pitonyak

The claim in Rogers, et al. (2025) is that our *n*-hadron FF definition will not arise in a factorization formula with the same hard factors and splitting functions as single-hadron fragmentation

$$D_1^{\{h_i\}_n}(\{\xi_i\}_n, \{\vec{P}_{i\perp}\}_n) = \frac{1}{4(16\pi^3)^{n-1}\xi_1\cdots\xi_n} \,\Delta^{\{h_i\}_n}$$

Note that
$$1 = \frac{(16\pi^3)^{n-1} z_1 \cdots z_n}{z} \times \frac{1}{\hat{z}^{n-1}} \times \frac{\xi}{(16\pi^3)^{n-1} \xi_1 \cdots \xi_n}$$

D. Pitonyak

The claim in Rogers, et al. (2025) is that our *n*-hadron FF definition will not arise in a factorization formula with the same hard factors and splitting functions as single-hadron fragmentation

$$D_1^{\{h_i\}_n}(\{\xi_i\}_n, \{\vec{P}_{i\perp}\}_n) = \frac{1}{4(16\pi^3)^{n-1}\xi_1\cdots\xi_n} \,\Delta^{\{h_i\}_n}$$

Note that
$$1 = \frac{(16\pi^3)^{n-1} z_1 \cdots z_n}{z} \times \frac{1}{\hat{z}^{n-1}} \times \frac{\xi}{(16\pi^3)^{n-1} \xi_1 \cdots \xi_n}$$

$$(\prod_{i=1}^n \frac{2E_i(2\pi)^3}{d^3 \vec{P}_i}) d\sigma = \frac{(16\pi^3)^{n-1} z_1 \cdots z_n}{z^2} \int_z^1 \frac{d\hat{z}}{\hat{z}^{n-1}} \left(\frac{2E_{\hat{k}}(2\pi)^3 d\hat{\sigma}}{d^3 \hat{k}}\right) \left(\frac{\xi^2}{4(16\pi^3)^{n-1} \xi_1 \cdots \xi_n} \int d^2 \vec{k}_T \,\Delta^{\{h_i\}_n}\right) + \text{p.s.}$$

We have a factorization formula with our new definition that has the usual hard factor

NB: for *n* = 2, this agrees with the structure of the NLO calculation of de Florian, Vanni (2004) for $d\sigma/dz_1dz_2$

 $=\xi^{2}\left/d^{2}\vec{k}_{T} D_{1}^{\{h_{i}\}_{n}}(\{\xi_{i}\}_{n},\{\vec{P}_{i\perp}\}_{n})\right.$

D. Pitonyak

- > We also mention an inconsistency in the literature between unpolarized cross section formulas for dihadron production in e^+e^- and SIDIS
 - Eq. (9) of Courtoy, et al. (2012) $e^+e^-
 ightarrow h_1h_2\,X$

$$\frac{d\sigma}{dz \, dM_h} = \sum_q \frac{4\pi N_c \alpha_{\rm em}^2}{3Q^2} \, e_q^2 \, D_1^{h_1 h_2/q}(z, M_h)$$

This is the expected result if $D_1(z, M_h)$ is defined as a number density in (z, M_h) , and also what we obtained

D. Pitonyak

- > We also mention an inconsistency in the literature between unpolarized cross section formulas for dihadron production in e^+e^- and SIDIS
 - Eq. (9) of Courtoy, et al. (2012) $e^+e^-
 ightarrow h_1h_2\,X$

$$\frac{d\sigma}{dz \, dM_h} = \sum_q \frac{4\pi N_c \alpha_{\rm em}^2}{3Q^2} \, e_q^2 \, D_1^{h_1 h_2/q}(z, M_h)$$

This is the expected result if $D_1(z, M_h)$ is defined as a number density in (z, M_h) , and also what we obtained

- Eq. (2.5) of Radici, et al. (2015) $e\,N
ightarrow e'(h_1h_2)\,X$

$$\frac{d\sigma}{dx\,dy\,dz\,dM_h} = \frac{4\pi\alpha_{em}^2}{yQ^2}(1-y+y^2/2)\sum_q e_q^2 f_1^{q/N}(x) \left[\frac{4\pi M_h D_1^{h_1h_2/q}(z,M_h)|_{\text{RCBG15}}\right]$$

This is NOT the expected result if $D_1(z, M_h)$ is defined as a number density in (z, M_h)

Therefore, Courtoy, et al. (2012) and Radici, et al. (2015) seem to be inconsistent in terms of the DiFF that is used

D. Pitonyak

➤ Our results for the unpolarized cross section for dihadron production in e^+e^- and SIDIS give exactly the formulas one expects if $D_1(z,M_h)$ is defined correctly as a number density in (z,M_h)

$$e^{+}e^{-} \to h_{1}h_{2} X$$

$$\frac{d\sigma}{dz \, dM_{h}} = \sum_{q} \frac{4\pi N_{c} \alpha_{em}^{2}}{3Q^{2}} e_{q}^{2} D_{1}^{h_{1}h_{2}/q}(z, M_{h})$$

$$e N \to e'(h_{1}h_{2}) X$$

$$\frac{d\sigma}{dx \, dy \, dz \, dM_{h}} = \frac{4\pi \alpha_{em}^{2}}{yQ^{2}} (1 - y + y^{2}/2) \sum_{q} e_{q}^{2} f_{1}^{q/N}(x) D_{1}^{h_{1}h_{2}/q}(z, M_{h})$$

Summary

- We have introduced a new definition of dihadron fragmentation functions, as well as a generalization to *n*-hadron fragmentation, that has a clear number density interpretation.
- ➤ This was justified by proving within a parton model framework certain number and momentum sum rules as well calculating cross sections in $e^+e^- \rightarrow h_1h_2 X$.
- ➤ We developed a simple prescription for how to define DiFF (and *n*-hadron FF) operators that are number densities in *any* variables of interest.
- > We derived the $\mathcal{O}(\alpha_s)$ evolution of the DiFFs, which have the same splitting functions as for single-hadron FFs.
- ➢ We showed that our new definition arises in a factorization formula with the usual hard factors from single-hadron fragmentation.
- ➢ We addressed erroneous recent claims about our work.