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QCD and Nuclei @ Jefferson Lab

• There is a gap—perhaps a big gap—between traditional

picture of a nucleus and a QCD picture

• this gap manifests in the valence region — EMC effect

• Where to start? 4He can be consider the lightest “real”

nucleus [4HeBE = 7.1MeV/A] and EMC effect is fully

manifest [208PbBE = 7.9 , 3HeBE = 2.6 ,3HBE = 2.8MeV/A]

• 4He is a key constituent of nuclei — α clustering

• “standard candle” for QCD and nuclei

• Many foundational QCD questions to address

• Are the quarks and gluons confined to nucleon-like objects?

Does this depend on, e.g., the momentum filter x?

• What are the quark and gluon mass radii for 4He and how

does this contrast with the nucleon?

• What are the pressure and shear forces in 4He?

• Jefferson Lab is unique in its ability to bridge this gap
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A More Realistic Impression of 4He — Spatial Tomography
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QCD and Imaging of Light Nuclei

• Nuclei provide a QCD laboratory with characteristics not

avaliable from protons alone

• Program build around imaging of light nuclei would have

tremedous impact and reveal many novel aspects of QCD

• How is gluon dynamics modified by the nuclear medium?

• J ⩾ 1 targets ⇒ new PDFs, form factors, TMDs, GPDs, etc.

• Exotic gluonic components from gluon transversity PDFs

• Color transparency, hidden color, NN correlations, fast quarks

• Isospin & baryon density effects, e.g., partial restoration of

chiral symmetry and possible changes in confinement length

scales between quarks and gluons

• Key question: How does the nucleon-nucleon interaction

arise from QCD?

• Jefferson Lab’s unique capabilities for proton structure apply

equally to nuclei (e.g., luminousity frontier, polarization, etc.) 3/23
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• Key question: How does the nucleon-nucleon interaction

arise from QCD?
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“No story of modern physics is more intriguing than the history of the theory of nuclear forces.”

Ruprecht Machleidt, Weinberg’s proposal of 1990: A very personal view

3/23



Nuclei & Hall A

• Significant nuclear (adjacent) program in Hall A: Marathon,

SIDIS, J/Ψ production, SRCs, Tagged processes, SoLID, etc.

• E12-10-007: PVDIS (Souder)

• E12-09-018: Semi-Inclusive pion and kaon electro-production

(Wojtsekhowski)

• E12-10-006: Spin Asymmetry in SIDIS Transversely Polarized

3He (Gao)

• E12-11-007: SIDIS of Charged Pion (Chen)

• E12-11-112: Isospin dependence in the 2N and 3N SRCs

(Arrington)

• E12-12-006: Near Threshold J/Ψ at 11 GeV (Meziani)

• C12-15-006A: Kaon Structure Function through Tagged

DIS (Montgomery)

• Would be interesting to consider extensions of many

of these experiments to include (other) nuclear targets,

e.g., 4He, 6Li, and 7Li
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The Deuteron
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HERMES data

Deuteron b1(x) data

• The deuteron is the simplest nucleus – naively consisting of a

proton + neutron with 2.2MeV binding

• however deuteron is greater than sum of its parts, having

many properties not found in either of its primary constituents

• deuteron is also finally tuned — making it an interesting target

to isolate QCD effects

• Unique properties of deuteron:

• a quadrupole moment and gluon transversity PDF

• many TMDs and GPDs associated with tensor polarization

• Additional spin-independent leading-twist PDF called bq1 (x)

b1(x) = e2q
[
bq1 (x) + bq̄1 (x)

]
,

∫ 1

0

dx
[
bq1 (x)− bq̄1 (x)

]
= 0

• Need tensor polarized target to measure b1(x) – (HERMES)

• impossible to explain HERMES data with only bound nucleon

degrees of freedom — need exotic QCD states, 6q bags, etc.

• Hall C proposal exists but not approved (J.-P. Chen, et al.)
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Gluon Transversity PDF

[Detmold and Shanahan, Phys. Rev. D 94, 014507 (2016)]

• Transversity PDFs are associated with double-helicity flip:

∆Tg(x) ≃ A+−,−+ + A−+,+−

• helicity conservation forbids this helicity amplitude for a gluon

in a nucleon — no gluon transversity PDF in nucleon

• need J ⩾ 1, so targets such as deuteron, 6Li, . . .

• Jaffe & Manohar, “Nuclear Gluonometry”, PLB 223, 218 (1989)

• LoI at JLab: J. Maxwell, et al. [arXiv:1803.11206 [nucl-ex]]

• Observation of a gluon transversity distribution in deuteron

would be first direct evidence for non-nucleonic

components in nuclei

• exotic glue, ∆∆ component, etc.

• Lattice calculations find

significant gluon transversity

in ϕ meson
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Deuteron GPDs
[A. Freese, W. Bentz, and ICC, to appear 2025]

J. Carlson, R. Schiavalla,

Rev. Mod. Phys. 70

743 (1998)

J. L. Forrest et al. Phys.

Rev. C54 646 (1996)

M = 0

M = ±1

• The deuteron has a rich GPD structure

• The impact parameter PDFs provide a

spatial tomography for various x slices

• tensor polarized along z-axis — clear

donut shape

• longitudinally polarized along x-axis —

clear dumbbell shape

• These quantities provide an interesting

connection to traditional nuclear

physics results for the deuteron

• nuclear spatial densities have donut and

dumbbell shapes

• Does the gluon donut align with the

quark donut – does this change with

x? Incredible insight into NN

interaction possible
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Nuclear Structure Functions

[JAM Collaboration]

• Nuclear structure functions have four distinct features relative to

the nucleon — some easy to understand and others that continue

to challenge physicists 40 years after discovery

• Fermi motion: standard nuclear effect caused by NN interactions

• Shadowing: caused by multi-nucleon interference effects

• EMC Effect: no universally accepted explanation, common explanations

are medium modification caused by mean-fields and/or SRCs

• Anti-Shadowing: less studied, perhaps caused by flavor-dependent

Reggeon exchange or a coherent effect from other mechanisms

• Anti-Shadowing region (0.1 ≲ x ≲ 0.3) is roughly equally

dominated by valence quarks, sea-quarks, and gluons

• precision measurements in this region would shed important light

on, e.g., nuclear gluons, anti-quarks in nuclei, and flavor dependent

effects
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Spin and Gluon EMC Effects
[X. G. Wang, W. Bentz, ICC, and A. W. Thomas, J. Phys. G 49, (2022)]• To solve puzzle of EMC effect need new observables, e.g.,

gluon and spin EMC effects

• Can help distinguish between different explanations of the

EMC effect

• Mean-field and SRC make different predictions for

spin EMC effect

• The gluon EMC effect can be defined as

Rg (x) =
gA(x)

Z gp(x) + N gn(x)

• Analogous definition for gluon spin EMC effect, with, Z → Pp

and N → Pn

• Results obtained in mean-field model that describes the

EMC effect and predicts spin EMC effect

• Gluons are generated purely perturbatively

• Provides a baseline for comparison and understanding of future

measurements
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Mean-Field Calculations of Polarized Nuclear PDFs

[ICC, W. Bentz and A. W. Thomas, PRL 95, 052302 (2005)]

[ICC, W. Bentz and A. W. Thomas, PLB 642, 210 (2006)]

[J. R. Smith and G. A. Miller, Phys. Rev. C 72, 022203(R) (2005)]

[Tronchin, Matevosyan and Thomas, PLB 783, 247-252 (2018)]

• Several relativistic

mean-field calculations of

polarized Nuclear PDFs

• all calculations find

polarized EMC same size

or larger than EMC effect

• effects are as large or larger

in anti-shadowing region

• Large effects in polarized

nuclear PDFs results

because in-medium quarks

are more relativistic

(M∗ < M)

• in-medium we find that

quark spin is converted to

orbital angular momentum
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Flavor Dependent/Isovector EMC Effect?

• Why should we expect a (large) isovector EMC effect?

• Consider the Bethe–Weizsäcker mass formula

EB = aV A− aS A
2/3 − aC

Z 2

A1/3
− aA

(A− 2Z )2

A
± δ(A,Z )

aV = 15.75 aS = 17.8 aC = 0.711 aA = 23.7 aP = 11.8

• “MARATHON data ... do not provide evidence for a sizable

isovector EMC effect” [D. Adams, et al., arXiv:2410.12099 [nucl-ex]]

• New data from DIS on 40Ca and 48Ca [Hall C]?
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Flavor Dependence Nuclear PDFs
[ICC, Bentz and Thomas, PRL 109, 182301 (2012)]• In mean-field model with isovector forces find a flavor

dependence to the EMC effect

• for N > Z nuclei, d-quarks feel more repulsion than u-quarks

and therefore u quarks are more bound than d quarks

• can explain large fraction of NuTeV anomaly

• Parity-violating DIS is particularly sensitive to isovector effects

a2(x) = − 2g e
A

F γZ
2

F γ
2

N∼Z
=

9

5
− 4 sin2 θW − 12

25

u+A (x)− d+
A (x)

u+A (x) + d+
A (x)

• momentum is shifted from u to d quarks and flavor

dependence effect largest in EMC region

• Isovector EMC effect observed by JAM in analysis of

MARATHON data

• has same sign as mean-field predictions

• PVDIS and DIS together is the best way to access isovector

EMC effect because full flavor separation is possible
13/23
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Nucleon TMDs, Diquarks, & Flavor Dependence
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• Rigorously included transverse momentum of diquark correlations in TMDs

• This has numerous consequences:

• scalar diquark correlations greatly increase
〈
k2
T

〉
• find deviation from Gaussian anzatz and that TMDs do not factorize in x & k2

T

• diquark correlations introduce a significant flavor dependence in
〈
k2
T

〉
(x)

〈
k2
T

〉µ2
0 = 0.472 GeV2

〈
k2
T

〉
= 0.562 GeV2 [HERMES], 0.642 GeV2 [EMC]
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TMDs in Isoscalar Nuclear Matter

0
0.2

0.4
0.6

0.8 0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.5

1.0

1.5

2.0

k2
T x

x
f
u A
(x
,k

2 T
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0
0.2

0.4
0.6

0.8 0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.5

1.0

1.5

2.0

k2
T x

x
f
u A
0
(x
,k

2 T
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
medium effects no medium effects

• So far only considered the simplest spin-averaged TMDs – q(x , k2
T )

• Integral of these TMDs over kT gives the PDFs and reproduces the EMC effect

• Medium effects have only a minor impact on k2
T dependence of TMD

• scalar field causes M∗ < M but also r∗N > rN , net effect
〈
k2
T

〉
slightly decreases

• fermi motion has a minor impact – analogous to x-dependence in EMC effect

• vector field only has zeroth component, no direct effect on k2
T
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TMDs of Spin-1 Targets

• A spin-1 target can have tensor polarization [λ = 0]

• 3 additional T -even and 7 additional T -odd quark

TMDs compared to nucleon

• Analogous situation for gluon TMDs

• to fully expose role of quarks and gluons in nuclei need

polarized nuclear targets (transverse and longitudinal)

with all spin projections, e.g., for J = 1: 2H, 6Li

• Spin 4-vector of a spin-one particle moving in z-

direction, with spin quantization axis S = (ST ,SL),

reads: Sµ(p) =
(

pz
mh

SL,ST ,
p0
mh

SL
)

• for given direction S the particle has the three possible spin projections λ = ±1, 0

• longitudinal polarization =⇒ ST = 0, SL = 1; transverse =⇒ |ST | = 1, SL = 0

• Associated quark correlation function:

〈
γ+

〉(λ)
S (x , kT ) ≡ f (x , k2

T )−
3λ2 − 2

2

[(
S2
L − 1

3

)
θLL(x , k2

T ) +
(kT · ST )

2 − 1
3k

2
T

m2
h

θTT (x , k2
T ) + SL

kT · ST

mh
θLT (x , k2

T )

]
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Spin-1 Target TMDs – with Nucleon Analogs

unpolarized helicity worm gear 2

worm gear 1 pretzelosity transversity

[Yu Ninomiya, ICC and Wolfgang Bentz, Phys. Rev. C 96, no.4, 045206 (2017)] 17/23



Spin-1 Target TMDs – Tensor Polarization

[Yu Ninomiya, ICC and Wolfgang Bentz, Phys. Rev. C 96, no.4, 045206 (2017)]

• Calculations assume point-like nucleons

but nevertheless show tensor polarized

TMDs have some surprising features

• TMDs θLL(x k2
T ) & θLT (x k2

T )

identically vanish at x = 1/2 for all k2
T

• x = 1/2 corresponds to zero relative

momentum between (the two)

constituents, that is, s-wave contributions

• therefore θLL & θLT primarily receive

contributions from L ⩾ 1 components of

the wave function – sensitive to orbital

angular momentum

• Features hard to determine from a few

moments — challenge for traditional

lattice QCD methods
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Gravitational Structure of Nucleons and Nuclear Matter
[Adam Freese, ICC, Brean Maynard to appear (2025)]

⟨p′ |Tµν | p⟩ = ū(p′)
[
A(t) PµPν

M + D(t) ∆µ∆ν−∆2 gµν

4M + J(t) P{µiσν}α∆α

2M

]
u(p)

∑

i=q,g

∫ 1

−1

dx x [Hi (x , ξ, t),Ei (x , ξ, t)] =
[
A(t) + ξ2D(t), B(t)− ξ2D(t)

]

free
〈
r2
〉
C
= (0.61 fm)2,

〈
r2
〉
A
= (0.45 fm)2, D(0) = −1.08

NM
〈
r2
〉
C
= (0.66 fm)2,

〈
r2
〉
A
= (0.46 fm)2, D(0) = −1.21

• The nucleon has 3 gravitational form factors

• related to mass and angular momentum distributions

J(t) = 1
2
[A(t) + B(t)], and pressure and shear forces

• Gravitational form factors are related to GPDs

• We find (light front) charge and mass radii of:

• mass radius changes much less than the charge radius

• pressure and shear forces on the nucleon increase by around 10%

• small mass radius may help explain success of traditional NP
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Quasi-Elastic Scattering

SL(|q|) =
∫ |q|

ω+

dω
RL(ω, |q|)

Z G 2
Ep(Q

2) + N G 2
En(Q

2)

• First hints for QCD effects in nuclei came from

quasi-elastic electron scattering:

d2σ

dΩ dω
= σMott

[
q4

|q|4
RL(ω, |q|) + f (|q| , θ) RT (ω, |q|)

]

• measurements at MIT Bates in 1980 on Fe — later

confirmed at Saclay in 1984

• These experiments, and most others following, observed

a quenching of the Coulomb Sum Rule (CSR):

• despite widespread expectation that the CSR should

approach unity for |q| ≫ kF

• Observation of quenching began one of the most

controversial issues in nuclear physics 20/23



Quasi-Elastic Scattering
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a quenching of the Coulomb Sum Rule (CSR):

• despite widespread expectation that the CSR should

approach unity for |q| ≫ kF

• Observation of quenching began one of the most

controversial issues in nuclear physics 20/23
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• QE scattering is sensitive to internal structural properties

of bound nucleons

• quenching of the CSR can be naturally explained by slight

modification of bound nucleon EM form factors

• natural consequence of QCD models

• Two state-of-the-art theory results exist, both from Argonne:

• the GFMC result, with no explicit QCD effects, finds no quenching

• QCD motivated framework finds a dramatic quenching;

50% relativistic effects & 50% medium modification

• Jefferson Lab has revisited QE scattering & this impasse

will hopefully be resolved as some point

• confirmation of either result will be an important milestone

in QCD nuclear physics
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Sullivan Processes and Nuclei
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Amendolia fit

existing Jefferson Lab data

CERN data

forthcoming Jefferson Lab data

• At Jefferson Lab pion and kaon structure can be accessed

via Sullivan processes

• initial pion/kaon is off mass-shell – need extrapolation to pole

• proven results for pion form factors (Hall C)

• Can the Sullivan process be used to access quark and gluon

nuclear effects?

• Comparison between e + p → e′ + π+ + n with say

e + 3He → e′ + π+ + 3H would be interesting

• Suggestion/Question from Garth Huber at JLab 22GeV Meeting in Frascati
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Conclusion and Outlook

• Tremendous opportunity for Jefferson Lab to

transform understanding of QCD in nuclei

• GPDs and TMDs of light nuclei

• medium effects on gluon structure via J/ψ

production

• Anti-shadowing region and its A dependence

• b1(x) and gluon transversity in deuteron and 6Li

• Key physics questions: How does the

NN interaction arise from QCD? How do

quark/gluon confinement length scales

change in medium?

• Can explore these questions by imaging

light nuclei and comparing quarks and

gluons for slices in x , k2
T , and b2

T

• correlations between quarks and gluons in

nuclei provide insights into color confinement
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