

MOLLER Overview

Brynne Blaikie University of Manitoba

on behalf of the MOLLER Collaboration

Hall A Winter Collaboration Meeting

16 January 2025

Overview

Møller Scattering

Weak Mixing Angle

MOLLER Apparatus

MOLLER Subsystems

Target

Spectrometers & Collimation

Detectors

Obtaining A_{PV}

Future Impact

Møller Scattering

- longitudinally polarized electrons incident on unpolarized target electrons
- Parity-Violating Electron Scattering (PVES)
- measure fractional rate difference in Møller scattering

Weak Interaction: does not conserve parity

Challenges:

- PVES asymmetries are ~10⁻⁶ to 10⁻⁹
- Requires high luminosity and high precision

 A_{PV} predicted to be \approx 33 ppb

Weak Mixing Angle

• "running" with interaction energy due to varying radiative corrections

- low Q² indirect probing new physics at multi-TeV
- **MOLLER** will determine $\sin^2 \theta_W$ at average $Q^2 = 0.0056 \text{ GeV}^2$ using **parity violating electron** scattering:

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = m_e E \frac{G_F}{\pi \alpha \sqrt{2}} \frac{4 \sin^2 \theta}{(3 + \cos^2 \theta)^2} Q_W^e$$

with $Q_W^e = 1 - 4 \sin^2 \theta_W \sim 0.0435$

Measurement Of a Lepton Lepton Electroweak Reaction

Key Features:

- $\mathcal{L} = 3 \times 10^{39} \, cm^{-2} \cdot s^{-1}$ $E_{beam} = 11 \, GeV$
 - $P_{beam} \ge 90 \pm 0.5 \%$ $I_{beam} = 65 \ \mu A$
- rapid helicity flip (1.92 kHz), high beam stability
- high precision polarimetry
- high power LH₂ target
- large acceptance
- systematic uncertainty control
- 344 PAC days = 8256 hours = 3 4 calendar years

 A_{PV} predicted to be \approx 33 ppb

MOLLER Goal:

$$\delta A_{PV} = 0.8 \text{ ppb} \qquad \Rightarrow \Delta Q_W^e = 2.4\% \qquad \Rightarrow \Delta \sin^2 \theta_W = 0.1\%$$

MOLLER Subsystems and Apparatus

Subsystems:

Polarized Beam Polarimetry Target System Collimation and Shielding Spectrometers Auxiliary Detectors Tracking Detectors Main Cerenkov Array Data Acquisition and Trigger

Cryostat

Vertical lifter Bellows

• Requirements:

- Minimize target density fluctuations < 30 ppm for 70 µA beam
- Maximize luminosity
 - 125 cm long LH₂ target
 - 4 kW total power
 - 5 x 5 mm² raster
 - designed using CFD (computational fluid dynamics)

LH2 pump motor

LH2 density asymmetry at 1920 Hz

Spectrometer, Precision Collimation, and Shielding

Requirements:

- full azimuthal acceptance of Møller events in high FOM region
- · separation of Møller events from elastic and inelastic e-p events
- precise collimation
 - · remove line-of-sight between target and detectors
 - "2-bounce" to minimize backgrounds
- channel for degraded beam and bremsstrahlung photons to beam dump
- shielding toroidal coils

5 toroidal magnets with 7-fold symmetry

Brynne Blaikie (UManitoba)

Hall A Winter Collaboration Meeting 2025

Coll 1: beam interceptor Coll 2: primary Coll 4: cleanup Coll 5+lintel: photon blocker

Side view of $\varphi=0$ field and tracks

100% Azimuthal Acceptance

acceptance defining Coll.2 5 m downstream of target

forward and backward (in COM)

Brynne Blaikie (UManitoba)

Scattered Electron Energy (GeV)

10

6

Lab Frame

Hall A Winter Collaboration Meeting 2025

Integrating (current mode) detectors: asymmetry measurements in both signal and background, beam and target monitoring

Tracking (counting mode) detectors: spectrometer calibration, electron scattering angle distribution and background measurements

- GEMs and Scintillators
- Shower-max
- Pion Detectors
- Scattered Beam Monitors
 - Large Angle Monitors
 - Small Angle Monitors
 - Diffuse Beam Monitors
 - Upstream Scanners
 - Downstream Scanners
- HVMAPS
- Main Cerenkov Detectors

Main Detector Segmentation

• 224 Detectors

- Radially split into 6 Rings
- Azimuthally split into 28 Segments
- Located 26.5 m downstream from target
 - Sufficient space for spectrometers to separate e-e and e-p peaks
- Full coverage of Møller events
- Integration and event mode data collection

Main Detector Segmentation

• 224 Detectors

- Radially split into 6 Rings
- Azimuthally split into 28 Segments
- Located 26.5 m downstream from target
 - Sufficient space for spectrometers to separate e-e and e-p peaks
- Full coverage of Møller events
- Integration and event mode data collection

r (m)

Main Detector Elements

Upper guide events Low

Lower guide events

Quartz events

Irreducible Backgrounds

- combination radial + azimuthal binning measures distribution of backgrounds for deconvolution from Møller signal
- background scattering processes may match energy-angle of Møller scattering

Tracking – GEM Rotator

Counting Mode Measurements: backgrounds, kinematics, spectrometer diagnostics, calibration

- 28 identical GEM modules
 - 4 layers of 7 GEM modules
- 14 identical trigger scintillators
 - 2 layers of 7 scintillators

Requirements:

- stand capable of rotating 51.4° (full 360° coverage) with minimum 3 stopping positions
- radial extraction of GEMs and scintillators during high current beam
- minimize mass in scattered electron path
- structure primarily manufactured with aluminium

Shower-max

Goal: second, independent measurement of Møller peak

- electromagnetic sampling calorimeter
 - higher E samples more, lower E samples less
- 28 modules downstream of Ring 5
- layered quartz and tungsten

Pion Detectors

Goal: Quantify pion background contamination in Møller signal asymmetries

- 28 identical acrylic Cerenkov detectors
 - 7 cm deep x 21 cm wide x 1" thick
- encased in Pb donut, downstream of shower-max detectors to suppress Møller electrons by > 10³

Scattered Beam Monitors

- 7 Large Angle Monitors (LAMs)
 - rate dominated by e-p elastic tail

- 14 Diffuse Beam Monitors (DBMs)
 - monitor for large false asymmetries
- 8 Small Angle Monitors (SAMs)
 - monitor for target density fluctuations, false asymmetries

Scanner Detectors

MSLLER

- 1 Upstream Scanner
 - scattered rate distribution for one sector
 - 2D scanning for integration and counting mode
 - verify both currents same distribution
 - monitor stability of kinematics and backgrounds
 - full scan complete in < 1 hour
 - 1 x 1 cm² quartz tile

- 4 Downstream Scanners
 - 1D radial scanning for integration mode
 - 50 70 cm radial scanning at 4 azimuthal locations
 - located by SAMs for the outer edge of Coll. 2
 - magnet off, 4 cm carbon target

Integrating MOLLER ADC

- Trying to measure a 33 ppb asymmetry $\simeq 0.12 \ \mu V @ 2V$
- Optimize parameters: PMT signal, ADC range, resolution (timing and amplitude)
- Selected ADC: 18 bit, 15 Msps (~14 705 882 Hz actual)
- Dynamic range: $\pm 4.096 V$
- Amplitude resolution: $\simeq 4V/2^{17} \simeq 32 \ \mu V$
- Massively over-sample within each helicity window

Measuring A_{PV}

Flux Integration from light collected in Cerenkov detectors

Calculate Asymmetry from adjacent data window pairs 10 Γ (ΛE)

$$A_i = \left(\frac{F_R - F_L}{F_R + F_L}\right)_i \cong \left(\frac{\Delta F}{2F}\right)_i$$

Remove Correlations due to beam intensity, position, angle, energy fluctuations, etc.

150.6

150.4

Time [ms]

150.8

151

$$(A_{exp})_i = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_i - \sum_j \left(\alpha_j (\Delta X_j)_i\right)$$

Detector Signal Helicity States . . A. A₁ A_2 A₂

 A_{PV} predicted to be \approx 33 ppb

asym

40001

-0.03347

4.6e-01

∐×10⁻

-33.1

3.324e-05

2.6e+01 / 26

4.8e+03 ± 2.9e+01

-3.3e-02 ± 1.7e-07 3.3e-05 ± 1.2e-07

Brynne Blaikie (UManitoba)

0.5

0.49

Voltage [V]

0.46

0.45

149.8

150

150.2

Future Impact: BSM or High Energy Constraints

Possible BSM sensitivities:

- massive Z' boson interactions
- dark photon / MeV level Z
- new parity violating interactions
- lepton compositeness (47 TeV)

- observe dark Z as shift in $\sin^2 \theta_W$
- effect dependent on mass of dark Z

Thank You

Appendix

Nominal Parameters

Parameter	Value		
E [GeV]	≈ 11.0		
E' [GeV]	2.0 - 9.0		
$ heta_{ m CM}$	50°-130°		
$ heta_{ ext{lab}}$	0.26°-1.2°	Error Source	Fractional Error (%)
$\langle Q^2 angle$ [GeV 2]	0.0058	Statistical	2.1
Maximum Current [μ A]	70	Absolute Norm. of the Kinematic Factor	0.5
Target Length (cm)	125	Beam (second moment)	0.4
ρ_{tat} [g/cm ³] (T= 20K, P = 35 psia)	0.0715	Beam polarization	0.4
Max. Luminosity $[cm^{-2} sec^{-1}]$	$2.4 \cdot 10^{39}$	$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
σ [µbarn]	≈ 60	Beam (position, angle, energy)	0.4
Møller Rate @ 65 µA [GHz]	≈ 134	Beam (intensity)	0.3
Statistical Width(1 92 kHz flin) [nnm/nair]	~ 01	$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
Target Poster Size [mm × mm]	~ 31 5 \times 5	$\gamma^{(+)} + p \rightarrow (\pi, \mu, K) + X$	0.3
Droduction running time	3×3	$e + Ai(+\gamma) \rightarrow e + Ai(+\gamma)$ Transverse polarization	0.15
	344 PAC-days = 8230 nours	Neutral background (soft photons, neutrons)	0.1
ΔA_{raw} [ppb]	≈ 0.54	Linearity	0.1
Background Fraction	pprox 0.10	Total systematic	11
$P_{\rm B}$	pprox 90%	Total systematic	1.1
$\langle A_{PV} angle$ [ppb]	≈ 32		
$\Delta A_{stat}/\langle A_{expt} angle$	2.1%		
$\delta(\sin^2 heta_W)_{stat}$	0.00023		

Electron Beam and Polarimetry

- 11 GeV longitudinally polarized $P_{beam} \ge 90 \pm 0.5 \%$
- 1920 Hz fast helicity reversal rate
 - pseudo-random pattern

Compton Polarimeter: continuous at production beam current

Møller Polarimeter: invasive at low beam current

Spectrometer, Precision Collimation, and Shielding

Requirements:

- full azimuthal acceptance of Møller events in high FOM region
- separation of Møller events from elastic and inelastic e-p events
- precise collimation
 - remove line-of-sight between target and detectors
 - "2-bounce" to minimize backgrounds
- channel for degraded beam and bremsstrahlung photons to beam dump
- shielding toroidal coils

5 toroidal magnets with 7-fold symmetry

HVMAPS

High Voltage Monolithic Active Pixel Sensors

- active pixel size: 80 x 80 um²
 - readout electronics, filters, amplifiers all integrated into chip
- overall detectable region size: 2 x 2 cm²
- timing resolutions: 16 ns
- peak detection rate: 30 MHz

Ring 5

- 7 chips bonded to a flex-print
- 4 strips per quartz tile
- 28 HVMAPS placed behind
- map scattered electron profile
- diagnostic purposes
- HVMAPS glued & wire-bonded to Kapton flex-print w signal and power traces
 - $R = 2.2 \times 10^{-4} \times 70/25 \simeq 600 \ kHz/mm^2 \implies \simeq 4 \ kHz/pixel$

Brynne Blaikie (UManitoba)