

THE MECHANICAL STRUCTURE OF THE PROTON AT SOLID

HENRY KLEST

Argonne National Laboratory hklest@anl.gov

Hall A Winter Collaboration Meeting January 16, 2025

PROTON MECHANICAL STRUCTURE

Proton *mechanical* structure is defined by analogy to GR via the QCD energy-momentum tensor (EMT)

 σ_{33}

 Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

 Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

 Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

Form factors

Fourier transforms of spatial distributions

"Gravitational"

Describing the energy-momentum tensor I.e. what would be seen from proton-graviton scattering

Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

$$\langle p', s' | \hat{T}^{a}_{\mu\nu}(x) | p, s \rangle = \vec{u}' \left[A^{a}(t) \frac{\gamma_{\{\mu}P_{\nu\}}}{2} + B^{a}(t) \frac{iP_{\{\mu}\sigma_{\nu\}\rho}\Delta^{\rho}}{4m} + D^{a}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{4m} + m \, \vec{c}^{a}(t) \, g_{\mu\nu} \right] u \, e^{i(p'-p)x}$$

$$P = \frac{p+p'}{2} \quad \Delta = p'-p = q-q'$$

$$r = (p-p')^{2} = \Delta^{2}$$

$$D \text{-term}$$

$$D(0) \text{ represents a fundamental property of the proton}$$

$$D(0) \text{ represents a fundamental property of the proton}$$

$$T^{\mu\nu} = \begin{bmatrix} \mathbf{T}^{\mu\nu} \\ \mathbf{T}^{00} \\ \mathbf{T}^{10} \\ \mathbf{T}^{20} \\ \mathbf{T}^{30} \\ \mathbf{T}^{31} \\ \mathbf{T}^{32} \\ \mathbf{T}^{33} \\ \mathbf{T}^{33} \\ \mathbf{T}^{32} \\ \mathbf{T}^{33} \\ \mathbf{T}^{33} \\ \mathbf{T}^{32} \\ \mathbf{T}^{33} \\ \mathbf{T}$$

6

 Proton gravitational form factors (GFFs) encode information about the matrix elements of the QCD energy-momentum tensor

$$\langle p', s' | \hat{T}^{a}_{\mu\nu}(x) | p, s \rangle = \bar{u}' \left[A^{a}(t) \frac{\gamma_{\{\mu} P_{\nu\}}}{2} + B^{a}(t) \frac{i P_{\{\mu} \sigma_{\nu\} \rho} \Delta^{\rho}}{4m} + D^{a}(t) \frac{\Delta_{\mu} \Delta_{\nu} - g_{\mu\nu} \Delta^{2}}{4m} + m \, \bar{c}^{a}(t) \, g_{\mu\nu} \right] u \, e^{i(p'-p)x}$$

$$P = \frac{p+p'}{2} \qquad \Delta = p' - p = q - q'$$

$$t = (p-p')^{2} = \Delta^{2}$$

$$D \text{-term}$$

$$Often called the last global unknown property of the proton!$$

$$em: \partial_{\mu} J^{\mu}_{em} = 0 \quad \langle N' | J^{\mu}_{em} | N \rangle \rightarrow Q = 1.602176487(40) \times 10^{-19} C$$

$$\mu = 2.792847356(23)\mu_{N}$$

$$weak: PCAC \qquad \langle N' | J^{\mu}_{weak} | N \rangle \rightarrow g_{A} = 1.2694(28)$$

$$g_{P} = 8.06(55)$$

$$gravity: \partial_{\mu} T^{\mu\nu}_{grav} = 0 \quad \langle N' | T^{\mu\nu}_{grav} | N \rangle \rightarrow m = 938.272013(23) \, \text{MeV}/c^{2}$$

$$J = \frac{1}{2}$$

- The total *D*-term provides a gateway for extraction of various mechanical properties of the proton, including:
 - Pressure distribution
 - Shear force distribution
 - Mechanical radius
 - Tangential & normal force distributions

- The total *D*-term provides a gateway for extraction of various mechanical properties of the proton, including:
 - Pressure distribution
 - Shear force distribution
 - Mechanical radius
 - Tangential & normal force distributions

- The total *D*-term provides a gateway for extraction of various mechanical properties of the proton, including:
 - Pressure distribution
 - Shear force distribution
 - Mechanical radius
 - Tangential & normal force distributions

- The total *D*-term provides a gateway for extraction of various mechanical properties of the proton, including:
 - Pressure distribution
 - Shear force distribution
 - Mechanical radius
 - Tangential & normal force distributions

HOW DO WE MEASURE THIS STUFF?

- Graviton scattering would measure directly $T^{\mu\nu}$
 - Exploit the duality between the graviton and any massless spin-2 field
- D-term is a contribution to the generalized parton distributions (GPDs)
 - Measured in hard exclusive reactions like Deeply Virtual Compton Scattering (DVCS), Deeply Virtual Meson Production (DVMP)
- Extractions of *D*-term can go through GPDs, or use models to bypass them depending on the process

HOW DO WE MEASURE THIS?

The total *D*-term is related to the partonic *D*-terms by a sum rule:

$$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$$

Different exclusive processes provide access to the different partonic *D*-terms!

Up & Down quarks: Accessible via DVCS cross section & beam-spin asymmetries

$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$

The pressure distribution inside the proton

V. D. Burkert[™], L. Elouadrhiri & F. X. Girod

Gluons: Accessible via near-threshold production of J/ψ and Υ

SoLID $J/\psi!$

$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$

Determining the Proton's Gluonic Gravitational Form Factors

B. Duran^{3,1}, Z.-E. Meziani^{1,3**}, S. Joosten¹, M. K. Jones², S. Prasad¹, C. Peng¹,
W. Armstrong¹, H. Atac³, E. Chudakov², H. Bhatt⁵, D. Bhetuwal⁵, M. Boer¹¹,
A. Camsonne², J.-P. Chen², M. M. Dalton², N. Deokar³, M. Diefenthaler², J. Dunne⁵,
L. El Fassi⁵, E. Fuchey⁹, H. Gao⁴, D. Gaskell², O. Hansen², F. Hauenstein⁶,
D. Higinbotham², S. Jia³, A. Karki⁵, C. Keppel², P. King⁷, H.S. Ko¹⁰, X. Li⁴, R. Li³,
D. Mack², S. Malace², M. McCaughan², R. E. McClellan⁸, R. Michaels², D. Meekins²,
M. Paolone³, L. Pentchev², E. Pooser², A. Puckett⁹, R. Radloff⁷, M. Rehfuss³,
P. E. Reimer¹, S. Riordan¹, B. Sawatzky², A. Smith⁴, N. Sparveris³, H. Szumila-Vance²,
S. Wood², J. Xie¹, Z. Ye¹, C. Yero⁶, and Z. Zhao⁴

THE SOLID-J/Ψ EXPERIMENT Ultimate factory for near-threshold J/ψ

- General purpose large-acceptance spectrometer
- 50+10 days of 3µA beam on a 15cm long LH2 target (10³⁷/cm²/s)
- Ultra-high luminosity: 43.2ab⁻¹
- Open 2-particle trigger, covering J/ψ production in four channels: Electroproduction (e,e⁻e⁺), photoproduction (p,e⁻e⁺), inclusive (e⁻e⁺), exclusive (ep,e⁻e⁺)
- The electoproduction channel provides for a modest lever-arm in Q² near threshold

GLUON GFFS

- Extremely high statistics ^{0.5} enables precise extraction of D_g, A_g 0.4
- No longer limited by poor experimental precision!
 - More food for thought for theorists
- SoLID will let us take full advantage of what CEBAF can offer!

\overline{c} CAVEAT

- \overline{c} form factor contributes to many of the mechanical structure quantities, not only the *D*-term
 - \bar{c} currently inaccessible by experiment

$$\langle p', s' | \hat{T}^{a}_{\mu\nu}(x) | p, s \rangle = \bar{u}' \bigg[A^{a}(t) \, \frac{\gamma_{\{\mu} P_{\nu\}}}{2} + B^{a}(t) \, \frac{i \, P_{\{\mu} \sigma_{\nu\}\rho} \Delta^{\rho}}{4m} + D^{a}(t) \, \frac{\Delta_{\mu} \Delta_{\nu} - g_{\mu\nu} \Delta^{2}}{4m} + m \, \bar{c}^{a}(t) \, g_{\mu\nu} \bigg] \, u \, e^{i(p'-p)x} + \frac{1}{2} \left[e^{i(p'-p)x} + e^{i(p'-p)x$$

- However, $\bar{c}_q = -\bar{c}_g!$ Total \bar{c} cancels due to EMT conservation if summing over all parton species!
 - Only shear force has no contribution from T^{ii} components of the EMT, and thus no contribution from \bar{c}

This caveat means that to extract the rest of the mechanical properties rigorously, all partonic *D*-terms must be known!

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Since we need all terms in the sum rule to extract pressure, mechanical radius, force distributions...

$$D(0) = D_g(0) + D_u(0) + D_d(0) + D_s(0) + \dots$$

Strange quarks: Can we just neglect them...?

- Large-N_c theory predicts that the *D*-term is "flavor-blind"
 - i.e. $D_u \sim D_d$ despite their different number densities, this is supported by lattice results
- Extending this argument, could $D_u \sim D_d \sim D_s$?
- Chiral quark soliton model: $D_u \sim D_d \sim 2D_s$

This would make *D*_s a non-negligible contributor to the total *D*-term, and thus **necessary for a full extraction of many of the mechanical properties of the proton!**

- On the other hand, lattice results of Hackett et al. predict D_s consistent with zero
 - Uncertainties are still large, but the results do not exclude *positive* values of D_s
- Opposite signs of sea & valence quarks is a distinct possibility, predicted by *xQSM*
- D_s > 0 would mean that strange quarks feel forces in opposite direction to up & down quarks!
 The pop-sci articles write themselves...

	Dipole	z-expansion
	D_i	D_i
u	-0.56(17)	-0.56(17)
d	-0.57(17)	-0.56(17)
s	-0.18(17)	-0.08(17)
u+d+s	-1.30(49)	-1.20(48)
g	-2.57(84)	-2.15(32)
Total	-3.87(97)	-3.35(58)

Variety of theory predictions giving very different values for *D*_s, let's measure it!

But how...?

Variety of theory predictions giving very different values for *D*_s, let's measure it!

But how...?

SoLID ϕ !

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ACCESSING THE STRANGENESS D-TERM

- Information on strangeness in the valence region of the proton is limited
 - Disentangling it from up & down requires use of specialized processes
 - e.g. W/Z exchange or kaon production in SIDIS
- Recently, it was proposed that *near-threshold* electroproduction of φ mesons could provide sensitivity to the strangeness *D*-term
 - $-\phi$ meson is very nearly a pure $s\bar{s}$ state

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UCbicago Argonne LLC

- Expected to couple strongly to strangeness in the proton
- Never measured in the required kinematic region!

DEEP NEAR-THRESHOLD ϕ **KINEMATICS**

- Deep = high momentum transfer = high Q²
- Near-threshold = invariant mass of final-state hadrons W ~ M_{\u03c6} + M_{\u03c6} ~ 1.96 GeV
- Small momentum transfer to proton = Low-|t|

- Strong sensitivity to strangeness *D*-term!

IERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 ϕ -meson lepto-production near threshold and the strangeness *D*-term

THE STRANGENESS D-TERM IN HALL C

- Proposed Measurement: Exclusive φ meson electroproduction near threshold in Hall C at Jefferson Lab (2024 LOI)
- Measure the |t|-dependence of the electroproduction cross-section using the reaction H(e, e'p) ϕ at Q² ~ 3.5 and W ~ 2.2
- Uses the missing mass technique with standard Hall C spectrometers to identify exclusive events
 - No hit from $\phi \to KK$ BR, but large DIS background!
- Theoretical Challenges:

Two points highlighted by the PAC:

- Model Dependence: Extracting D_s requires understanding the dynamics of ϕ meson production and **final-state interactions**
- Separating Quark and Gluon Contributions: Need to distinguish between strange quark and gluonic effects

2501.01582

Hall C Phi Collaboration, "Studying the Strangeness D-Term in Hall C via Exclusive & Electroproduction," JLab PAC 52 LOI (2024)

THE STRANGENESS D-TERM IN HALL C

- Measure the |t|-dependence of the electroproduction cross-section using the reaction H(e, e'p) ϕ at Q² ~ 3.5 and W ~ 2.2
- Uses the missing mass technique with standard Hall C spectrometers to identify exclusive events
 - No hit from $\phi \to KK$ BR, but large DIS background!
- Theoretical Challenges:

Two points highlighted by the PAC:

- Model Dependence: Extracting D_s requires understanding the dynamics of ϕ meson production and **final-state interactions**

 Separating Quark and Gluon Contributions: Need to distinguish between strange quark and gluonic effects

2501.01582

Hall C Phi Collaboration, "Studying the Strangeness D-Term in Hall C via Exclusive & Electroproduction," JLab PAC 52 LOI (2024)

Jobs for theorists...

- New predictions available from Hatta et al. using GPD framework in the near-threshold region
 - Typical issue for GPDs near-threshold is final-state interactions
 - FSI calculated to be 2-3 orders of magnitude smaller than production cross section for $\phi + p$ in photoproduction (S. H. Kim et al.)
- Theoretical uncertainty on cross section from this approximation is ~10% or less for ξ > 0.3!
 - Focus on high ξ

Hatta, HK, Passek, Schoenleber (To be submitted)

$$\frac{d\sigma_L}{dt} = \frac{2\pi^2 \alpha_{em}}{(W^2 - M^2)Wp_{cm}} \left((1 - \xi^2) |\mathcal{H}|^2 - \left(\frac{t}{4M^2} + \xi^2\right) |\mathcal{E}|^2 - 2\xi^2 \operatorname{Re}(\mathcal{H}\mathcal{E}^*) \right)$$

$$\begin{split} \mathcal{L}(\xi,t) \\ \mathcal$$

FIG. 4: Relative error for the amplitude \mathcal{H} from truncating the conformal partial wave expansion after the first term. Plotted quantities are defined in (40). The subscript denotes whether the leading order (LO) or next-to-leading order (NLO) coefficient function has been used. In this and the next plots, we have set $t = t_{\min}(\xi)$, $\alpha_s = 0.3$ and $\kappa = 1$.

- Predictions available at NLO for $\frac{d\sigma_L}{d|t|}$!
 - Requires our experiment to have an L/T separation (or modelling of *R*) for comparison

These predictions are valid for $\xi \gtrsim 0.4$ and $Q^2 \gtrsim 3|t|$

FIG. 1: Contour plots of ξ in the (W, |t|) plane at $Q^2 = 6 \text{ GeV}^2$ (left) and $Q^2 = 10 \text{ GeV}^2$ (right). The horizontal line is at $|t| = \frac{Q^2}{3}$.

Challenging to satisfy! Need high $Q^2 \& W < 3$

Hatta, HK, Passek, Schoenleber (To be submitted)

FIG. 7: NLO longitudinal cross section at W = Q = 2.5 GeV as a function of |t|. Left: $D_s = 0, -0.5, -1$ from top to bottom at fixed $D_g = -1$. Right: $D_g = 0, -1, -2$ from top to bottom at fixed $D_s = 0$.

Near-threshold ϕ exhibits factor ~ 4 greater sensitivity to D_s compared to D_g !

$$\mathcal{H}(\xi,t) \approx \frac{2\kappa}{\xi^2} \frac{15}{2} \left[\left\{ \alpha_s(\mu) + \frac{\alpha_s^2(\mu)}{2\pi} \left(25.7309 - 2n_f + \left(-\frac{131}{18} + \frac{n_f}{3} \right) \ln \frac{Q^2}{\mu^2} \right) \right\} (A_s(t,\mu) + \xi^2 D_s(t,\mu)) \right]$$

$$+ \frac{\alpha_s^2}{2\pi} \left(-2.3889 + \frac{2}{3} \ln \frac{Q^2}{\mu^2} \right) \sum_q (A_q + \xi^2 D_q) + \frac{3}{8} \left\{ \alpha_s + \frac{\alpha_s^2}{2\pi} \left(13.8682 - \frac{83}{18} \ln \frac{Q^2}{\mu^2} \right) \right\} (A_g + \xi^2 D_g) ,$$

$$D_g \sim D_{u,d} \sim D_s?$$

FIG. 7: NLO longitudinal cross section at W = Q = 2.5 GeV as a function of |t|. Left: $D_s = 0, -0.5, -1$ from top to bottom at fixed $D_g = -1$. Right: $D_g = 0, -1, -2$ from top to bottom at fixed $D_s = 0$.

FIG. 7: NLO longitudinal cross section at W = Q = 2.5 GeV as a function of |t|. Left: $D_s = 0, -0.5, -1$ from top to bottom at fixed $D_g = -1$. Right: $D_g = 0, -1, -2$ from top to bottom at fixed $D_s = 0$.

EXCLUSIVE ϕ IN SOLID

- Large acceptance & luminosity!
 - $-\phi$ decay products can be measured directly
 - Fully exclusive, low background
 - Measure *R* to extract σ_L
 - PID from ToF, Cherenkovs
 - High statistics & continuous kinematic coverage for multidimensional measurement

PROJECTIONS

- First look at projections for SoLID
 - 43.2 ab⁻¹ (existing J/ψ proposal)
 - Fully exclusive! Detect all four final state particles: e', p', K⁺, K⁻
- Require kaons, proton to be detected in forward angle detector

PROJECTIONS

Assumption of 10% systematic uncertainty still **exhibits good sensitivity to** D_s !

CONCLUSION

- QCD EMT framework provides new insights into the structure of hadrons
 - In particular, *D*-term accesses a new & exciting set of measurable quantities
- If we ever want a complete experimental measurement of the total *D*-term of the proton, will need to measure the strangeness *D*-term
 - Can be done at CEBAF, with the right tools

SoLID provides the opportunity to measure D_g and eventually D_s , bringing us into the **precision era of proton mechanical structure!**

Let me know if you're interested in collaborating!

PID

- Range of K^{+,-} momentum from ~1-4 GeV in forward detector
- HGC will provide π rejection above 2.5 GeV
- 150 ps TOF covers 3σ π/K up to ~2.5 GeV
 MRPC would handle this better, reduce the reliance on HGC near its threshold
- Scattered proton is low momentum, typically 1-2 GeV
 - TOF should be able to handle it

ANALYSIS STRATEGY

Kaons:

- Forward detector has superior PID
 - Longer TOF baseline + Cherenkovs to reject fast pions
 - MRPC would handle PID over whole momentum range
 - SPD TOF could handle it up to where the HGC turns on
- Require kaons to be in forward detector

- Protons:
 - Large-angle detector can PID protons up to ~ 2 GeV with SPD TOF
 - Allow protons in forward or large angle detectors
- Electrons:
 - Acceptance for fully exclusive reconstruction is best when electron is at large angle
 - Require electron in large angle

FIG. 8: NLO longitudinal cross section integrated over t with $D_s = 0$ and $D_g = -1$ as a function of W at fixed Q = 2.5 GeV (left), and as a function of Q at fixed W = 2.5 GeV (right). The red dashed curve is the CLAS parametrization (56).

FIG. 6: Differential $\gamma^* p$ cross section in units of nb/GeV² at W = Q = 2.5 GeV, $D_g = -1$, and $D_s = 0$ as a function of |t|. The orange and blue bands represent the LO and NLO cross sections, respectively, with the renormalization scale varied in the range $Q/2 < \mu < 2Q$.

