Measurement of the Proton Electric Form Factor GEp at High Momentum Transfer

Jimmy Caylor for the ${\rm GE_p}$ Collaboration Hall A winter Meeting 2025

GE_p Overview and Timeline

- Last of the mainline SBS experiments measuring the elastic form factors of the proton and neutron
- ▶ Will measure the electric Sachs form factor of the proton up to 12 GeV² with significantly increased precision at 5.5 and 8 GeV²
- Employ the use of a new electromagnetic calorimeter and coordinate detector for the electron arm
- 16 layer GEM tracker for high efficiency tracking with high luminosity
- Installation/Testing/Commissioning into February

Elastic nucleon form factors

$$\mathcal{J}^{\mu}_{hadron} = iear{N}(p_f) \left[\gamma^{
u} F_1(Q^2) + \frac{i\sigma^{\mu
u} q_
u}{2M} F_2(Q^2) \right] N(p_i)$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})} [(F_1^2 + \kappa^2 \tau F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2(\frac{\theta}{2})]$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \sigma_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\frac{\theta}{2}) \right]$$

Motivation for measuring form factors

Comparing to model predictions

- Will VMD-models (Lomon, Bjiker) describe all 4 nucleon FFs well at higher Q^2 ?
- Check pQCD prediction of logarithmic scaling of F_1/F_2 at intermediate Q^2 (Belitsky, Ji, Yuan)
- Constrain GPDs via fundamental relationship of first moments to FFs

$$\int_{-1}^{+1} dx \, H^q(x, \xi, Q^2) \, = \, F_1^q(Q^2)$$

$$\int_{-1}^{+1} dx \, E^q(x, \xi, Q^2) \, = \, F_2^q(Q^2)$$

Provide data for verifying lattice QCD predictions as they mature

Polarization Transfer Method

Measures polarization transfer to hadron from polarized electron, which is sensitive to the ratio of the form factors

$$\frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \sqrt{\frac{\tau(1+\epsilon)}{2\epsilon}}$$

- Measure ratio of proton polarization along (P_l) and transverse (P_t) to momentum transfer
- Many systematics cancel in the ratio (Not directly sensitive to P_e or A_Y)
- Measurement method less dependent on two-photon contributions than the Rosenbluth separation method
- First employed at MIT-Bates and then at JLab in their subsequent GEp measurements

Existing data for proton form factors

Polarization Transfer Method

$$f^{\pm}(artheta,arphi)=rac{\epsilon(artheta,arphi)}{2\pi}\left[1\pm A_y(P_x^{fpp}\sinarphi-P_y^{fpp}\cosarphi)
ight]$$

where \pm refers to electron beam helicity

$$A = rac{f^+ - f^-}{f^+ + f^-} = A_y \left(P_x^{fpp} \sin arphi - P_y^{fpp} \cos arphi
ight)$$

$$\frac{G_E^p}{G_M^p} = -\frac{E_e + E_{e'}}{2M} tan(\frac{\theta_e}{2}) \left(\frac{P_y^{fpp}}{P_x^{fpp}} \sin \chi_e + \gamma_p (\mu_p - 1) \Delta \phi\right)$$

 φ in degrees

Polarization Transfer Method

$$f^{\pm}(artheta,arphi) = rac{\epsilon(artheta,arphi)}{2\pi} \left[1 \pm A_y (P_x^{fpp}\sinarphi - P_y^{fpp}\cosarphi)
ight]$$

where \pm refers to electron beam helicity

$$A = rac{f^+ - f^-}{f^+ + f^-} = A_y \left(P_x^{fpp} \sin arphi - P_y^{fpp} \cos arphi
ight)$$

$$\frac{G_E^p}{G_M^p} = -\frac{E_e + E_{e'}}{2M} tan(\frac{\theta_e}{2}) \left(\frac{P_y^{fpp}}{P_x^{fpp}} \sin \chi_e + \gamma_p (\mu_p - 1) \Delta \phi\right)$$

Kinematics

- Updates made to account for differences in beam energy, beam current, target, FPP, etc.
- Acceptance covers Q² between 4.5 14.5 GEV²
- 4th kin point approved at lower Q² to complement future positron program

E_{beam}	Q^2Range	$\langle Q^2 \rangle$	θ_{ECal}	$\langle E'_e \rangle$	$ heta_{SBS}$	$\langle P_p \rangle$	$\langle sin\chi \rangle$	PAC Days	$\Delta(\mu G_E/G_M)$
(GeV)	(GeV^2)	(GeV^2)	(degrees)	(GeV)	(degrees)	(GeV)	(degrees)		
6.4	4.5-7.0	5.5	29.0	3.66	25.7	3.77	0.72	2	0.029
8.5	6.5-10.0	7.8	26.7	4.64	22.1	5.01	0.84	11	0.038
10.6	10.0-14.5	11.7	29.0	4.79	16.9	7.08	0.99	32	0.081
4.3	3.1-4.4	3.7	35.0	2.35	28.5	2.73	0.55	2	0.011

Simulated Event with GEANT4

Electron Arm

- ECal
 - 5% energy resolution
 - ~ 1 mrad scattering angle
- CDet
 - ~ 2 mm vertical hit location
 - ~ 1 mrad azimuthal angle

Proton Arm

- 2.5 T-m SBS Magnet
- 16 GEM tracking layers
- CH2 passive analyzer
- ~ 1 % momentum resolution
- ~ 1 mrad angular resolution
- High efficieny HCal

Electron arm calorimeter ECal + CDet - Under Construction

- 1656 lead glass crystals with individual PMTS for each cystal
- Good energy resolution (~5 %) allow for high threshold on elastic peak
 - Background reduction
- Crystals heated in situ to ~ 220 C to balance darkening from radiation load
- installation recently completed
 - All cables electronics in place
 - Recently completed light tighting
- Cosmic commissioning eminent

- 1656 lead glass crystals with individual PMTS for each cystal
- Good energy resolution (~5 %) allow for high threshold on elastic peak
 - Background reduction
- Crystals heated in situ to ~ 220 C to balance darkening from radiation load
- installation recently completed
 - All cables electronics in place
 - Recently completed light tighting
- Cosmic commissioning eminent

- 1656 lead glass crystals with individual PMTS for each cystal
- Good energy resolution (~5 %) allow for high threshold on elastic peak
 - Background reduction
- Crystals heated in situ to ~ 220 C to balance darkening from radiation load
- installation recently completed
 - All cables electronics in place
 - Recently completed light tighting
- Cosmic commissioning eminent

- 1656 lead glass crystals with individual PMTS for each cystal
- Good energy resolution (~5 %) allow for high threshold on elastic peak
 - Background reduction
- Crystals heated in situ to ~ 220 C to balance darkening from radiation load
- installation recently completed
 - All cables electronics in place
 - Recently completed light tighting
- Cosmic commissioning eminent

CDet - Electron Arm

- Positioned direction in front of ECal
- Provides better vertical position resolution that ECal alone → azimuthal angle constraint
- 2352 scintillator bars instrumented with 168 maPMTS
- Modules have been light tight tested and will soon be installed onto the mounting frame
- Likely to test and commission with cosmics with modules laying flat before mounting on frame

Ack R.

Marinaro

CDet - Electron Arm

- Positioned direction in front of ECal
- Provides better vertical position resolution that ECal alone → azimuthal angle constraint
- 2352 scintillator bars instrumented with 168 maPMTS
- Modules have been light tight tested and will soon be installed onto the mounting frame
- Likely to test and commission with cosmics with modules laying flat before mounting on frame

GEMs - Proton Arm

- 16 total GEM layers
- 8 in the front tracker before the analyzer
- 8 in the back tracker after the analyzer
- BigBite GEMs + 1 new layer all moved to SBS platform
- More layers in each tracker than previous experiments keeps the tracking efficiency high even with decreased layer efficiency due to increased luminosity
- All layers instrumented and cosmic data taking is underway
- New electronics bunker under construction
- Lead wall needs installed on the beamline side
 - Awaiting fulfillment from vender

HCal - Proton Arm

- 288 iron/scintillator sandwich modules
- Detector was previously used in GMN and GEN experiments
- No significant detector hardware work done to get ready for GEP
- Implemented digital trigger with FADCs/VTP
- Signal cables need to be re-routed and attached the SBS platform to allow for CDET/ECAL to move into place for kin3
- 2 PMTs and 1 HV card replaced

Target

- New 30 cm LH2 target cell designed and installed
- Expected to run at 50 uA with a 2x2 raster
- New beam exit snout installed
- Target work required the SBS magnet to be moved downstream out of the way
- SBS Magnet now in production location
- Final alignment needs to be done before beam

Target

- New 30 cm LH2 target cell designed and installed
- Expected to run at 50 uA with a 2x2 raster
- New beam exit snout installed
- Target work required the SBS magnet to be moved downstream out of the way
- SBS Magnet now in production location
- Final alignment needs to be done before beam

Software/DAQ/Polarimetry

Software

- Finalized geometry in G4SBS included updated shielding placement and realistic placement of ECal supermodules
- Simulated background rates in GEMS
- Simulation signal rates using realistic beam energy and target placement
- Coincidence formation between electron clusters in ECal and proton tracks

DAQ

- ▶ CDet needs to be added to DAQ when signals are connected
- Lessons learned from Gen-RP → better shielding for GEM MPDs hopefully mean more stable running, also added easier diagnostics
- Polarimetry
 - Current dipole magnet power supply was not capable of current needed for 5 pass
 - Power Supply was recently replaced by DC power Needs to be tested at high current

Work Force

- Ph.D. students
 - Kip Hunt UConn
 - Mahmoud Gomina VT
 - ► Ben Spaude W&M
 - Jhih-Ying Su UMass
 - Jacob Mcmurtry UVa
 - New UVa student joining soon
- Postdocs
 - ► ~10 postdocs spending at least part of their time

Shift Schedule

- Currently have shift schedule posted from the end of February until the beginning on July
- ▶ 15 shifts required for inclusion on future GEp papers
- Will need cryo target training if not previously trained on Gen-RP (Hall C training counts as well)
- Roughly 800 shifts needed for the experiment
 - We need your help
- https://misportal.jlab.org/mis/physics/shiftSchedule/?experimentRunId=GEp-V

March/April APS Meeting Mini-Symposium

- Joint March Meeting and April Meeting: Global Physics Summit 2025
 - March 16th-21st 2025
 - Anaheim, CA
- 3 session mini-symposium on Tuesday and Wednesday
 - 2 invited talks
 - ▶ Total of 23 abstracts accepted covering past, present and future SBS program
- ► Field at large is interested in the SBS program and are looking forward to results coming soon(ish) from the first experiments

Estimated Uncertainties

Summary

- \triangleright GE_p set to start running soon (Whenever beam is ready)
 - Using the recoil polarization method to measure the elastic form factor ratio of the proton out to $Q^2 = 12 \text{ GeV}^2$
 - ► Theoretical models differ significantly at Q² greater than 5 GeV²
- New detector systems and target developed and installed
- Detector systems starting to take cosmic data
- Still Lots of work to be done to make beam commissioning go smoothly
 - Looking for new collaborators/shift takers

Backup Slides

Parasitic cosmic data taking during previous experiment

- 27 channels fully instrumented during previous experiment
- Cosmic ray data was taken opportunistically when beam was not available
- Data taking with and without amplifiers to check noise pickup
- ► Energy resolution \cong 10 % / \int GeV -> Consistent with Elastic Test from 2015 (10.4 % / \int GeV)

Example energy spectra from FADC with fits

Continuous Thermal Annealing of Crystals

- Each of the 1656 shower blocks are continuously heated to ~220 C to insure optical transparency under intense radiation load
 - > ~5 % energy resolution, ~7 mm spatial resolution
 - Tests are well underway with the fully developed heating system
 - Tests ongoing for the cooling system for the lightguides and the PMTs
- Previously completed test showed ~85-90% transparency in equilibrium and an energy resolution of ~8 % at 1.5 GeV

Increasing difficulty with each iteration

Form factor
$$\propto Q^{-4}$$

Cross section
$$\propto E^2/Q^4 \times Q^{-8}$$

Figure-of-Merit
$$\epsilon A_{_Y}^2 imes \sigma imes \Omega$$

$$\propto E^2/Q^{16}$$

Need large statistics, max luminosity and solid angle

Max luminosity -> large background Large solid angle -> small bend -> huge background

Critical to this experiment is the maturing technology of high rate tracking with GEMS

Q² increases from 8.5 to 12.0 GeV² but higher beam energy 10.5 vs. 6 GeV => a factor of 5-6 of the FOM loss, but the SBS larger solid angle helps.

GEp - Most Demanding DAQ Rate

(including accidentals)

Global OR of all ECAL sums gives ~30-50 kHz trigger rate at ~80% threshold

- Global OR of all HCAL sums gives ~4-7 MHz trigger rate at ~50-60% threshold → Too high, need kinematic correlation in the trigger!
- (NOTE: all rate estimates were done assuming 70 uA beam current and old analog logic for ECAL)

ECal cooling system

