GMN/NTPE Analysis Update

Eric Fuchey

William & Mary

Hall A Collaboration Meeting, January 16th 2025

Reminder (Gordon's talk): SBS

SBS: Major part of Hall A 12 GeV program at Jefferson Lab; coupled with Bigbite for electron detection SBS form factor program GMN nTPE GEN GEN-RP GEP

• Focus on **nTPE**

Measurement;
Analysis status;
Next steps;

Reminder : GMN/NTPE

• GMN: E12-09-019 (A. Camsonne, B. Quinn, B. Wojteskhowski)

 \square simultaneous *enlep* measurement on D₂, Q² of 3, 4.5, 7.5, 10, 13.6 GeV²

 \square Separation of p and n with SBS

Reminder: GMN/NTPE

• GMN:

$$R' = \frac{N_{en,true}}{N_{ep,true}} = \frac{N_{en,gen,acc}f_{scalen}}{N_{ep,gen,acc}f_{scalep}} \equiv \frac{\sigma_{en}}{\sigma_{ep}} = \frac{\sigma_{Mott}}{\sigma_{Mott}} \frac{(1+\tau_p)(\sigma_T^n + \epsilon \sigma_L^n)}{(1+\tau_n)(\sigma_T^p + \epsilon \sigma_L^p)} = \frac{(1+\tau_p)(\tau_n(G_M^n)^2 + \epsilon(G_E^n)^2)}{(1+\tau_n)(\tau_p(G_M^p)^2 + \epsilon(G_E^p)^2)}$$

$$\square \quad \epsilon = \left[1+2(1+\tau)\tan^2(\theta/2)\right]^{-1} = \frac{\sigma_{Mott}}{1+\tau_n} \frac{(1+\tau_n)(\sigma_T^p + \epsilon \sigma_L^p)}{(1+\tau_n)(\sigma_T^p + \epsilon \sigma_L^p)} = \frac{(1+\tau_p)(\tau_n(G_M^n)^2 + \epsilon(G_E^p)^2)}{(1+\tau_n)(\tau_p(G_M^p)^2 + \epsilon(G_E^p)^2)}$$

$$\square \quad \sigma_{Mott} = \hbar c \alpha_{EM} \frac{1}{4E^2} \left(\frac{\cos \theta/2}{\sin \theta/2}\right)^2 \frac{E'}{E}$$

$$\tau_n(G_M^n)^2 + \epsilon(G_E^n)^2 = \frac{N_{en,gen,acc}f_{scalen}}{N_{ep,gen,acc}f_{scalep}} \frac{(1+\tau_n)(\tau_p(G_M^p)^2 + \epsilon(G_E^p)^2)}{(1+\tau_p)}$$
From proton data
$$\frac{(G_M^n)^2 = \frac{1}{\tau_n} \left(\frac{N_{en,gen,acc}f_{scalep}}{N_{ep,gen,acc}f_{scalep}} \times \frac{1+\tau_n}{1+\tau_p} (\tau_p(G_M^p)^2 + \epsilon(G_E^p)^2) - \epsilon(G_E^n)^2}{(1+\tau_p)^2}\right)}$$

Reminder: GMN/NTPE

• NTPE: E12-20-010 (E.F., S. Alsalmi, B. Wojteskhowski)

 \Box measurement of $\sigma_{_{en}}/\sigma_{_{ep}}$ at two beam energies, Q² = 4.5 GeV²

a neutron Rosenbluth slope;

DNTPE = Discrepancy neutron Rosenbluth slope <=> polarization data

Reminder: GMN/NTPE

Reminder: Kinematic tables

Kin	Q^2	E	<i>E</i> '	θ_{BB}	θ_{SBS}	Е	
	(GeV/c) ²	(GeV)	(GeV)	(deg)	(deg)		
SBS4	3.01	3.728	2.129	36.0	31.9	0.721	
SBS7	10.0	7.906	2.588	40.9	15.9	0.492	
SBS11	13.50	9.860	2.676	41.9	12.8	0.437	
SBS14	7.52	5.965	1.965	47.2	17.3	0.456	
SBS8	4.51	5.965	3.565	26.5	29.9	0.797	
SBS9	4.50	4.015	1.618	49.0	22.5	0.512	

• Elastic *en*, *ep* selection (done as of last update);

• Evaluation of *en*, *ep* cross section ratios from *en*, *ep* measured counts using data/Monte Carlo comparison (done as of last update);

- Subtraction of inelastic background;
- Evaluation of systematics;

Inelastic background subtraction;

□ HCal detection efficiency;

• Extraction of observables;

Elastic Selection

- Electron track and electron ID: Data $\Box z_{vertex} < \pm 8 cm$ n Envelope (Dat \Box electron track with \geq 3/5 hits $\Box E_{PS} > 0.2$ X expect (m) E) G "Fiducial Cut": events with projected **n** and **p** position within neutron active HCal region y_{expect} (m) • Exclusivity cut: (J. Boyd, UVA) \square W² within elastic nucleon peak;
 - Nucleon selection:

$$\label{eq:eq:calibration} \begin{split} &\square \ \mathsf{E}_{_{\mathsf{HCAL}}} > 0.1 \\ & \text{of HCAL active region;} \\ & \square \ \text{selection on } x_{_{\mathsf{HCAL}}}\text{-}x_{_{\mathsf{expect}}}, \\ & y_{_{\mathsf{HCAL}}}\text{-}y_{_{\mathsf{expect}}} < 3\sigma \ \text{(spot cuts)} \\ \\ ^{1/16/2025} & \square \ |\mathsf{t}_{_{\mathsf{HCAL}}}\text{-}\mathsf{t}_{_{\mathsf{BBCAL}}}| < 3\sigma \end{split}$$

9

MC/Data Comparison

• Comparison between data and MC including radiative corrections (SIMC):

D provides correction term:
$$R' = \frac{\sigma_{en}}{\sigma_{ep}} = \frac{(N_{en \rightarrow en})_{meas}}{(N_{ep \rightarrow ep})_{meas}} f_{corr}$$

 \square MC/data yield comparison, SBS8 (high ε):

1/16/2025

Selection Optimization

• *n/p* stability over selection cuts:

1/16/2025

Inelastic Background Subtraction

• Inelastic background subtraction:

 \square 1: Combined fit *en*+*ep* +background of data Δx

□ 2: Data background (HCal "antiselection");

□ 3: MC (Christy-Bosted) generated background

• $R_{n/p}$ consistent within 1% => systematics

HCAL Detection Efficiency

- HCal detection efficiency major source of systematic (especially for nTPE):
 - \square *n* and *p* detection efficiency expected to be similar, but not identical;
 - \square MC detection efficiency different for *n*, *p*, and varies with energy;

HCAL Detection Efficiency Non-Uniformity

- HCal detection efficiency major source of systematic (especially for nTPE):
 - D HCal efficiency from LH2 data shows non-uniformity of HCAL efficiency:
 - Larger nucleon projection footprint on HCal for higher ε kinematic:
 non-uniformity has more impact on low ε kinematic;
 - n/p cross section ratio biased for both, more biased for low ε ;

1/16/2025

HCAL Non-Uniformity:

- Mmethod to work around HCal efficiency non-uniformity: Reweight MC events with HCal non-uniformity map;
 - \Box Map efficiency along x_{expect} , y_{expect} ;
 - weight MC with relative efficiency variation;
 - **D** Improvement:
 - Apply same efficiency analysis for data, MC;
 - use ratio of η_{data}/η_{MC} ;
 - deployed in analysis;

Analysis credit: P. Datta

15

HCAL Non-Uniformity:

Reweight MC events with HCal non-uniformity map:
 Analysis of all combined SBS8 LH2 settings for map efficiency:

D Accurate for protons, not necessarily for neutrons:

 proton and neutron detection efficiency not exactly equal;

 Still working to determine a better estimation of correction for neutron;

 "Good enough" for GMN preliminary results;

 NTPE sensitive enough to HCAL efficiency that it is not satisfactory for it

 ^{1/16/2025} ♦ HCal efficiency stability between SBS8 and SBS9 to be verified

GMN/NTPE results

• GMN latest **preliminary** results (Plot Credit <u>P. Datta</u>)

does include **preliminary** estimation of HCal detection efficiency uncertainty;

includes charge exchange/FSI effect (0.5% uncertainty)
 will still benefit from a refined correction of HCal non-uniformity;
 Does include recent MC updates yet

1/16/2025

Monte-Carlo Fixes: G4SBS Geometry

• G4SBS geometry bugs fixes:

Dimensions of PS block
 (8.5 mm) not matched with
 block center-to-center
 distance (9mm)
 => "ribs" in X_{expect} Vs Y_{expect}

PS block material density out-of-date

 Scattering chamber right beam window vertical aperture too small
 HCAL MC efficiency degraded in a fraction of acceptance;

Monte-Carlo Fixes: Digitization

- Digitization parameters for BBCal readjusted to fit the data better (e.g. SBS8)
- HCal gain adjustments underway

PS gain: 2.e6 PS pedestal noise 3.0 SH gain: 7.5e5 SH pedestal noise 4.5

PS gain: 1.84e6 PS pedestal noise 3.0 SH gain: 8.03e5 SH pedestal noise 3.0

19

12/03/2024

Summary

- GMN preliminary results!
- Integration of HCal non-uniformity:

 current correction sufficient for GMN preliminary results;
 more work needed for NTPE;
- Monte Carlo fixes

BB Cal and Scattering chamber geometry fixes;
 SIMC fix (slightly insufficient angle aperture)
 Digitization parameter adjustements

- BBCal gains adjusted for all kinematics
- ♦ HCal gains to be adjusted.
- Next steps:

3rd pass of calibration for optimization of HCal and hodoscope timing;

 \square "2nd pass" of MC D(*ee*'n), D(*ee*'p), H(*ee*'p) samples;

□ start to draft publication for PRL for GMN;

1/16/2025

J. Boyd (UVA), P. Datta (UConn), N. Lashley (Hampton U), R. Marinaro (Glasgow), A. Rathnayake (UVA), M. Satnik (W&M), S. Seeds (Uconn), Z. Wertz (W&M)

- ... and all other people actively participating to the analysis! (A. Puckett, E.F.)
- Ralph, Nathaniel, John, Sebastian, Provakar, Anu graduated (Congrats!);
- Maria, Zeke to graduate within the next 3 months;
- Anu, Provakar, Nathaniel continue analysis as post-docs;

Back up

Elastic Selection

HCAL Boundary Active Region Electron track and electron ID: ≁Fiduclal Cut" Data $\Box z_{vertex} < \pm 8 cm$ n Envelope (Dat p Envelope (Data) \Box electron track with \geq 3/5 hits Entries 13837 $\Box E_{PS} > 0.2$ Kexpect (M) E proton G "Fiducial Cut": events with Kexpect projected **n** and **p** position within neutron active HCal region $y_{expect} (m)$ y_{expect} (m) • Exclusivity cut: \square W² within elastic nucleon peak; Entries 61699 (P. Datta, 1.366 1200 Std Dev 0.3093 UConn) Nucleon selection: 1000 $\Box E_{HCAI} > 0.1$ 800 of HCAL active region; 600 \Box selection on X_{HCAL} - X_{expect} , 400 With HCAL Spot Cuts $y_{HCAL} - y_{expect} < 3\sigma$ (spot cuts) 200 1/16/2025 $\Box |t_{HCAL} - t_{BBCAL}| < 3\sigma$ 0.5 1.5 25 2 W (GeV)

23

Elastic Selection (2)

• Electron track and electron ID:

□ $z_{vertex} < \pm 8$ cm □ electron track with ≥ 3/5 hits □ $E_{PS} > 0.2$ □ "Fiducial Cut": events with projected *n* and *p* position within active HCal region

- Exclusivity cut:

 *W*² within elastic nucleon peak;
- Nucleon selection:

$$\label{eq:eq:calibration} \begin{split} & \square \ \mathsf{E}_{_{\mathsf{HCAL}}} > 0.1 \\ & \text{of HCAL active region;} \\ & \square \ \text{selection on } x_{_{\mathsf{HCAL}}} \text{-} x_{_{\mathsf{expect}}}, \\ & y_{_{\mathsf{HCAL}}} \text{-} y_{_{\mathsf{expect}}} < 3\sigma \ \text{(spot cuts)} \\ \end{split} \\ ^{1/16/2025} \quad \square \ |\mathsf{t}_{_{\mathsf{HCAL}}} \text{-} \mathsf{t}_{_{\mathsf{BBCAL}}}| < 3\sigma \end{split}$$

HCAL efficiency non-uniformity

• Addressing HCal non-uniformity:

D Adjust HCal gain in MC to reproduce data non-uniformity;

Analysis with new Vs old HCal MC gain:

issue: effect on n/p ratios unexpectedly large => to be understood!

25

GMN/NTPE results

NTPE: (John, Sebastian, Zeke)

Existing analyses very preliminary and need independent cross checks

□ Result featured in John Boyd's thesis may change with a more refined correction of HCal non-uniformity;

□ Regardless, the existing results are still too premature to be unveiled

BBCal geometry fix in G4SBS

BBCal geometry bugs

 Dimensions of old PS
 block (8.5 mm) had been accidentally kept while
 center-to-center block distance was set at 9mm => "ribs"
 in X_{expect} Vs Y_{expect}
 DS block material
 density incorrect

Scattering chamber geometry fix in G4SBS

• Scattering chamber right beam window issue:

old design that never
got updated
affected HCAL MC
efficiency in a fraction of

14" vertical clearance

BBCal response: SBS8

. . .

Data

MC after digitization, analysis

. . .

BBCal response: SBS8 MC: SH $\sigma_{_{ped}}$ 4.5 $\,\rightarrow\,$ 3.0

Data

. . .

NChan_bbps 52 gatewidth_bbps 200 gain_bbps 2.e6 ped_bbps 300.0 pedsigma_bbps 3.0 NChan_bbsh 189 gatewidth_bbsh 200 gain_bbsh 7.5e5 ped_bbsh 300.0 pedsigma_bbsh 3.0

SH tail disappeared!

Gain Adjustment

* Done for SBS9, **SBS8**:

SH: 7.5e5 * 2.344/2.189 = **8.03e5** PS: 2.0e6 * 1.136/1.235 = **1.84e6** (Resolutions in rough agreement for PS)

12/03/2024

Gain Adjustment

* Done for SBS9, SBS8:

SH: 7.5e5 * 2.344/2.189 = **8.03e5** PS: 2.0e6 * 1.136/1.235 = **1.84e6** (Resolutions in rough agreement for PS)

12/03/2024