
GUMP: GLUON GPD FROM DVJ/ψP

M Gabriel Santiago Work in preparation with Yuxun Guo, Xiangdong Ji, Jinghong Yang and Hao-Cheng Zhang

Theory Framework

- Want to constrain gluon GPDs from exclusive production data need heavy mesons!
- We study deeply virtual J/ψ production (DV J/ψ P) using collinear factorization at NLO with mass corrections from the NRQCD framework

$$\mathcal{A}_{\text{Hyb.}} = \sum_{i=q,\bar{q},g,\dots} \frac{e_q f_{J/\psi}}{N_C} \frac{Q}{Q^2 + M_{J/\psi}^2} \int_0^1 dz \int_{-1}^1 dx C^i(x,\xi,z,Q,\mu_R,\mu_{f,\text{GPD}},\mu_{f,\text{DA}}) \times F^i(x,\xi,t,\mu_{f,\text{GPD}}) N_{\text{amp}} \Phi_{\text{asym}}(z,\mu_{f,\text{DA}})$$

GUMP Framework

Parameterizing GPDs in terms of their conformal moments

$$F(x,\xi,t) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \frac{p_j(x,\xi)}{\sin(\pi[j+1])} \mathcal{F}_j(\xi,t) \qquad (D. Mueller and A. Schafer 2006)$$

• We can write the DV J/ψ P amplitude in conformal moment space using a Mellin Barnes integral

$$\mathcal{A}_{\text{Hyb.}} = \frac{e_q f_{J/\psi} C_F}{N_C} \frac{Q}{Q^2 + M_{J/\psi}^2} \sum_{i=u, \bar{u}, \dots} \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \, \xi^{-j-1} \left[i + \tan\left(\frac{\pi j}{2}\right) \right] \\ \times \left[C_k^{i,LO} E_{kj}^{LO} F_j^i(\xi, t) + C_k^{i,NLO} E_{kj}^{LO} F_j^i(\xi, t) + C_k^{i,LO} E_{jk}^{NLO} F_j^i(\xi, t) \right]$$

Details discussed in Yuxun's talk!

Moment Parameterization

• We are only looking at the gluon GPD H_g in the small- x_B kinematics probed by HERA data, so we can just take the first few terms in the polynomial expansion for the moments

$$\mathcal{F}_{j}^{g}(\xi,t) = \mathcal{F}_{j,0}^{g}(t) + \xi^{2} R_{\xi^{2}}^{g} \mathcal{F}_{j,0}^{g}(t) + \xi^{4} R_{\xi^{4}}^{g} \mathcal{F}_{j,0}^{g}(t)$$

The generalized form factor $\mathcal{F}_{j,0}^g$ we take to have the forward limit given by a simple PDF ansatz and t-dependence from a Regge trajectory multiplied with a residual exponential term

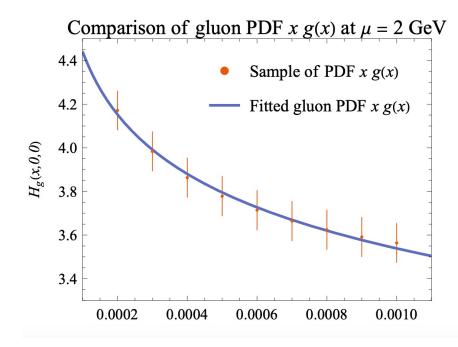
$$\mathcal{F}_{j,0}^{g}(t) = N^{g} B(j+1-\alpha_{g}, 1+\beta_{g}) \frac{j+1-k-\alpha_{g}}{j+1-k-\alpha_{g}(t)} e^{b^{g}t}$$

As explained in Fatma's talk

Input For Fits

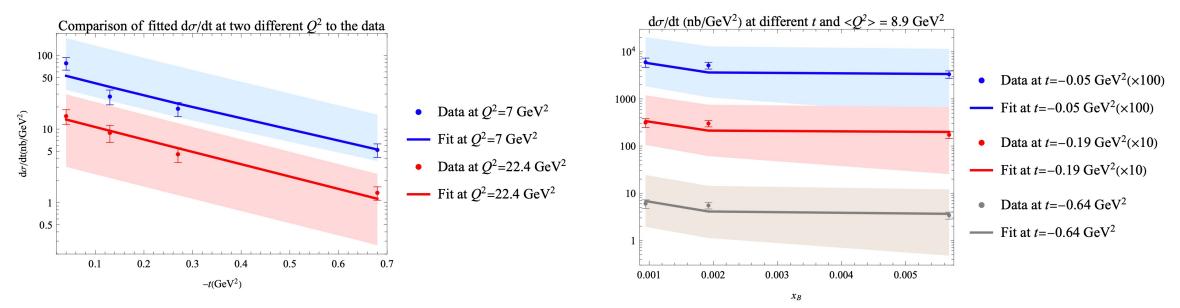
We use 17 t-dependent cross section points from H1 (2006) data

- < Q^2 > in range 7.0 22.4 GeV², x_B in range 9×10⁻⁴ 6×10⁻³, and |t| in range 0.04 0.64 GeV²
- The data has negligible sensitivity to the GPD E, so we only fit parameters coming from the GPD H: b^g , R_{ξ^2} , R_{ξ^4} as well as the amplitude normalization parameter N_{amp}
- Given the small values of x_B , we redo the fit of our forward gluon PDF parameters in a simultaneous fit, using 9 points from the JAM22 global analysis with $Q^2 = 4 \ GeV^2$ and $x_B = 10^{-4} 10^{-3}$ to constrain N^g , α^g , β^g
 - Limited number of points constraining forward limit since we have a limited number of off-forward data points
- The NLO corrections require input from the quark GPDs, so we take the best fit results from our previous u and d quark global analysis (*Guo et al* 2023) as input


Fit Results

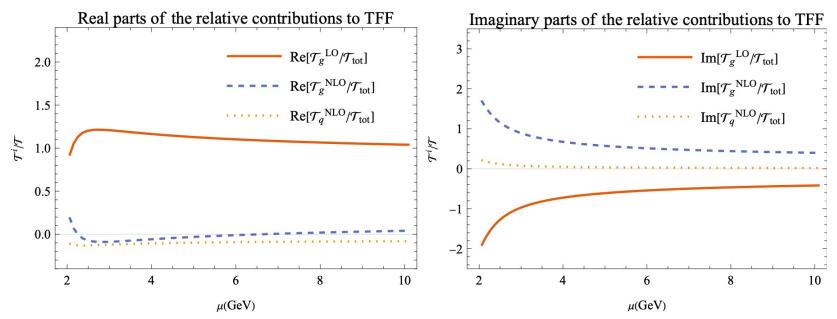
- Minimizing with Minuit2 gives $\chi^2/dof \approx 1.03$
- Only statistical uncertainties from fit, full error propagation left for future work

Best-Fit Parameters		
Parameter	Best-Fit Value	Statistical Uncertainty
N^g	1.84	0.22
$lpha^g$	1.096	0.016
α'^{g}	0.0	0.06
$R^g_{\xi^2}$	1.4	0.5
$R^g_{\xi^4}$	-0.45	0.21
b^{g}	1.91	0.11
$N_{ m amp}$	0.50	0.04

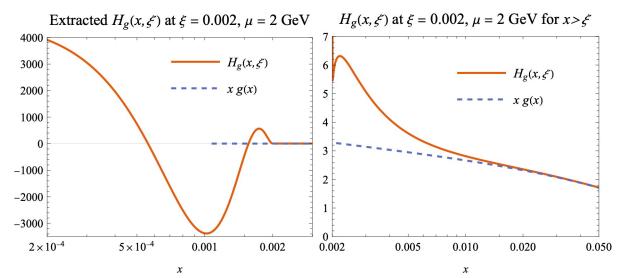

PDF Fit Results

Simple forward limit ansatz is sufficiently flexible to replicate small- x_B PDFs from JAM22 global analysis while being consistent with DV J/ψ P HERA data

Cross Section Fit Results


- For $Q^2 \sim M_{I/\psi}^2$ or larger virtualities we can describe the data relatively well
 - Lower Q² would bring in higher-twist effects and necessitate use of a full NLO NRQCD treatment due to mass corrections
- Note that the x_B dependence seen in the data strongly relies on NLO corrections in our framework

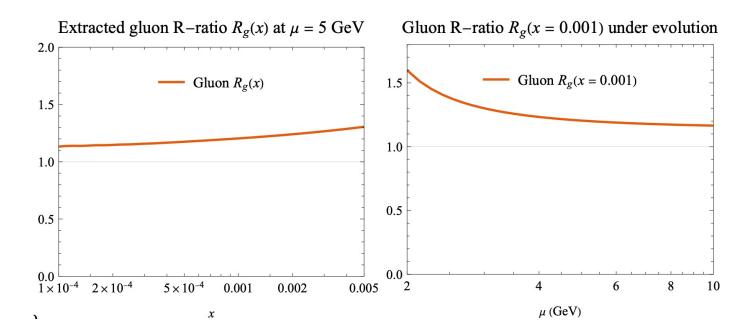
*Bands show uncertainty from varying the renormalization scale within $\mu \in [1/2, 2] \times \mu_F$ as Yuxun discussed, hinting at large higher order corrections!


Comparison of LO and NLO Contributions

- We see strong cancellations between the LO and NLO gluon contributions to the TFFs
 - A similar cancellation was seen between the NLO quark and gluon contributions to DVCS (Čuić et al 2023)
- The quarks enter only at NLO, and overall provide a small background effect relative to the gluon contributions

Extracted Gluon GPDs

- The combination of $DVJ/\psi P$ data and gluon PDF global analysis input only constrain the GPD along the $x = \pm \xi$ lines and in the forward limit, so the functional form is only well controlled in the PDF region $|x| > \xi$
- We see that the for fixed ξ the GPD approaches the PDF as x becomes large, as expected from the forward limit
- The DA like region $|x| < \xi$ shows large unphysical fluctuations due to the form of the Gegenbauer polynomials and the lack of constraints in this region
 - Need lattice input!



Skewness Ratio - R

At small- x_B it is common to approximate the GPD by a PDF multiplied by a skewness correction factor $U_{abc}(x, \xi, w, 0, w)$

$$R_g(x,\mu) \equiv \frac{H_g(x,\xi=x,0,\mu)}{H_g(x,0,0,\mu)}$$

- For both small-x and large Q^2 our extracted R_g tends toward ~1.1-1.2, deviating from unity and implying a significant skewness effect even at HERA kinematics
 - This is a similar sized correction as found in other frameworks (*Martin, Ryskin and Teubner* 2000, *Mäntysaari and Schenke* 2016, *Čuić et al* 2023)

Future Developments

- Full NLO implementation of DVCS and light vector meson DVMP for simultaneous fits
- Additional observables such as $DV\phi P$, J/ψ photoproduction, threshold J/ψ , etc. to supply further constraints and bring in more quark flavors
- Full NLO NRQCD treatment for DV J/ψ P
- Full uncertainty propagation

Conclusions

- We have performed a simultaneous fit of DV J/ψ P HERA data and gluon PDF input to constrain the gluon GPD H_g in a collinear factorization / GPD based framework
- See clear signs that higher order α_s corrections and skewness effects are important, even at fairly large Q^2 and small- x_B kinematics!
- Have NLO evolution and Wilson coefficient corrections implemented into GUMP framework – can apply to other processes!