
1/16

Finite ElementMethods for the

Evolution of Generalized PartonDistributions

Finite ElementMethods for the

Evolution of Generalized PartonDistributions

Finite ElementMethods for the

Evolution of Generalized PartonDistributions

Finite ElementMethods for the

Evolution of Generalized PartonDistributions

Finite ElementMethods for the

Evolution of Generalized PartonDistributions

Finite ElementMethods for the

Evolution of Generalized PartonDistributions

Adam FreeseAdam FreeseAdam FreeseAdam FreeseAdam FreeseAdam Freese

Thomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator Facility

September 14, 2024September 14, 2024September 14, 2024September 14, 2024September 14, 2024September 14, 2024

2/16

Evolution of generalized parton distributionsEvolution of generalized parton distributionsEvolution of generalized parton distributionsEvolution of generalized parton distributionsEvolution of generalized parton distributionsEvolution of generalized parton distributions

e

e′

p

x+ ξ x− ξ

q

p′

Q2 = −q2 : resolution scale

I GPDs governed by evolution equation:

dH(x, ξ, t, Q2)

d log(Q2)
=

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I Global analysis goal: parametrize the 3D boundary condition

H(x, ξ, t, Q2
0)

I e.g., with Q2
0 = m2

c
I Need evolution code to compare to data

I Our framework pixelizes x space—need x space evolution code.

3/16

GPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needs

I Fast, differentiable evolution code is crucial for GPD analysis.
I Fast since it’s called repeatedly.
I Differentiable for machine learning.

I General form of evolution equation:

dH(x, ξ,Q2)

d log(Q2)
=

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ,Q2)

I Numerically solve by discretizing (pixelizing) in x:

dHi(ξ,Q
2)

d log(Q2)
≈

∑
j

Kij(ξ,Q
2)Hj(ξ,Q

2)

I Becomes a matrix equation!

I Solution found via evolution matrices:

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

I Mij independent of model-scale GPD.
I ComputeM once, store it.
I Matrix multiplication is fast and differentiable.

Building kernel matricesBuilding kernel matrices

4/16

Integral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretization

I First step is to discretize the integral:

S(x, ξ, t, Q2) =

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I Kernel made up of three distributions; must be integrated separately:

K(x, y, ξ,Q2) = KR(x, y, ξ,Q
2) + [KP (x, y, ξ,Q

2)]+ +KC(Q
2)δ(y − x)

I Regular piece—just a normal integral:∫ +1

−1

dy KR(x, y, ξ,Q
2)H(y, ξ, t, Q2)

I Plus distribution piece:∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) ≡

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
+H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Constant piece (or delta distribution piece):∫ +1

−1

dy KC(Q
2)δ(y − x)H(y, ξ, t, Q2) ≡ KC(Q

2)H(x, ξ, t, Q2)

5/16

Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Kronrod quadrature.

I The domain [−1, 1] is broken into six pieces with boundaries:

−1 < min(−ξ,−|x|) < max(−ξ,−|x|) < 0 < min(ξ, |x|) < max(ξ, |x|) < 1

I x and ξ grids must be misaligned.
I 15-point quadrature used inside each region.

SR(x, ξ, t, Q
2) ≈

Ng=6×15∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

I Discretized grid {xi} and quadrature grid {yg} are not the same.
I xi- and ξ-dependent interpolation must be done.
I Interpixels are used for interpolation.

6/16

InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of polynomial interpolation:

P [y1 + y2](x) = P [y1](x) + P [y2](x)

I GPD pixelation is a sum of pixels:

H =


h1

h2

...

hn

 = h1


1
0
...

0

+ h2


0
1
...

0

+ . . .+ hn


0
0
...

1

 ≡ h1ê1 + h2ê2 + . . .+ hnên

I Interpolated pixelation is a sum of interpixels!

P [H](x) = h1P [ê1](x) + h2P [ê2](x) + . . .+ hnP [ên](x)

I Interpixels are an example of a finite element.
I In effect used previously in some PDF evolution codes, e.g., HOPPET and APFEL.

7/16

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

I Interpixel is a piecewise polynomial of fixed order.

I Increase Nx without increasing interpolation order (avoids Runge phenomenon).
I I’m using fifth-order Lagrange interpolation.
I Knots at the discrete xi grid points.

I Each interpixel has oscillations.

I Oscillations cancel in sum.

8/16

Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!

I GPD at Gaussian weight points from piecewise polynomial interpolation:

H(yg, ξ, t, Q
2) ≈

Nx∑
j=1

Hj(ξ,Q
2)P [êj](yg)

I Interpolation decomposed into basis functions (interpixels).

I Integral is only over interpixels:

SR(x, ξ, t, Q
2) ≈

Nx∑
j=1

 Ng∑
g=1

wgKR(xi, yg, ξ, Q
2)P [êj](yg)


︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ, t, Q
2)

I Absorb interpixel into kernel matrix.
I Integral over interpixel independent of specific GPD.
I (Can be generalized: e.g., to adaptive integration.)

9/16

Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Presents numerical difficulties because of 1/(y − x) factors inKP .

10/16

Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)

I Do first integral via Gauss-Kronrod rule still.

I Break into same six integration regions.
I Use same fifth-order Lagrange interpolation.

I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

 Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
P [êj](yg)− δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Second integral (independent of GPD) done analytically:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
)
δij︸ ︷︷ ︸(

K
(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

11/16

Constant pieceConstant pieceConstant pieceConstant pieceConstant pieceConstant piece

I The constant piece (delta distribution piece) is trivial.

SC(xi, ξ, t, Q
2) =

∫ +1

−1
dy KC(Q

2)δ(y − xi)H(y, ξ, t, Q2)

=

Nx∑
j=1

(
δijKC(Q

2)
)

︸ ︷︷ ︸(
KC(Q

2)
)
ij

Hj(ξ, t, Q
2)

12/16

Accuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarks

I Leading order in plots.

I GK model for the examples.

I Easily get sub-percent error.

Solving the evolution equationsSolving the evolution equations

13/16

Differential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equation

I Combining pieces gives a matrix form of the evolution kernel:

Kij(ξ,Q
2) =

(
KR(ξ,Q

2)
)
ij
+
(
K

(1)
P (ξ,Q2)

)
ij
+
(
K

(2)
P (ξ,Q2)

)
ij
+
(
KC(Q

2)
)
ij

I Turns evolution equation into a matrix differential equation:

dHi(ξ,Q
2)

d log(Q2)
=

Nx∑
j=1

Kij(ξ,Q
2)Hj(ξ,Q

2)

I This can be solved using Runge-Kutta.

14/16

Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I Solution to the evolution equation, via RK4:

Hi(ξ, t, Q
2
fin) =

Nx∑
j=1

Mij(ξ,Q
2
ini → Q2

fin)Hj(ξ,Q
2
ini)

I Evolution matrix:

Mij(ξ,Q
2
ini → Q2

fin) = δij +
1

6
log

Q2
fin

Q2
ini

(
M

(1)
ij (ξ) + 2M

(2)
ij (ξ) + 2M

(3)
ij (ξ) +M

(4)
ij (ξ)

)
I Build using RK4:

M
(1)
ij (ξ) = Kij(ξ,Q

2
ini)

M
(2)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(1)
lj (ξ)

)

M
(3)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(2)
lj (ξ)

)

M
(4)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
fin)

(
δlj + log

Q2
fin

Q2
ini

M
(3)
lj (ξ)

)

15/16

Numerical results—comparison to PARTONSNumerical results—comparison to PARTONSNumerical results—comparison to PARTONSNumerical results—comparison to PARTONSNumerical results—comparison to PARTONSNumerical results—comparison to PARTONS

I Decent agreement with PARTONS.

I But we need to set Nfl = 3 to agree with PARTONS.

I GK model used in comparison.

I Leading order in plots.

16/16

The EndThe EndThe EndThe EndThe EndThe End

I Credits (code design, paper authorship)
I Daniel Adamiak
I Ian Cloët
I Adam Freese
I Jianwei Qiu
I Nobuo Sato
I Marco Zaccheddu

I Paper in preparation

I Code package tiktaalik to be released soon!
I Pending more quality tests, and example scripts.
I First release only leading order; NLO in progress.

Thank you for your time!

