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Introduction
• The goal:


• Perform a global analysis of CFFs and GPDs from available data using machine learning


• How do we get there?


• Develop the machinery initially using parametric model:


• Perform closure test using data generated from an existing model


• Fit to existing data (work in progress)


• Replace parametric model with neural network (NN) model:


• Repeat closure tests with the NNs (work in progress)


• Fit to existing data
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The machinery
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• All pieces are backward differentiable to facilitate machine learning



The machinery
• GPD model:


• Utilize double distributions to guarantee 
polynomiality


• For  and , use existing parton 
distribution functions for the forward limit

H H̃
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• Loss function:


• Typical chi squared function


• Optimizer:


• Use PyTorch Adam algorithm


• Stochastic Gradient Descent

∑ ( data − theory
uncertainty )

2Hf(x, ξ, t; μ2
0) = ∫Ω

dβdα δ(x − β − ξα)[Hf
DD(β, α, t; μ2

0) + ξδ(β)Df(α, t; μ2
0)]

Ef(x, ξ, t; μ2
0) = ∫Ω

dβdα δ(x − β − ξα)[Ef
DD(β, α, t; μ2

0) − ξδ(β)Df(α, t; μ2
0)]

H̃f(x, ξ, t; μ2
0) = ∫Ω

dβdα δ(x − β − ξα)[H̃f
DD(β, α, t; μ2

0)]

Ẽf(x, ξ, t; μ2
0) = ∫Ω

dβdα δ(x − β − ξα)[Ẽf
DD(β, α, t; μ2

0)]



Closure test
• Generated pseudodata for various DVCS observables from model GPDs:


• GPD model:


• Double distributions:


• Use GK model (Kroll, Moutarde, Sabatie, Eur. Phys. J. C (2013)  73:2278)


• D term:


• Use first three terms of a Gegenbauer series (Goeke, Polyakov, Vanderhaeghan, Prog. Part. Nucl. Phys. 47, 
401 (2001)


• Assume 10% uncertainty for all data points


• Fitted parameters (31 in total):


• Fit uv and dv double distribution parameters:


• For  and ,  keep pdf parameters fixed and only fit profile function parameters


• Fit the coefficients in the D term for u and d

H H̃
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Closure test
• Monte Carlo fit:


• Conduct multiple fits (called replicas):


• For each replica:


• Starting parameters are randomly sampled


• Data values sampled from Gaussian distribution


• Calculate average and standard deviation of all replicas
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Closure test results
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χ2/Npts = 0.2303



Closure test results
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Closure test results
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Closure test results
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Closure test results 
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Closure test results 
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Closure test results 
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Closure test results 
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Closure test results 
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Neural network fit (work in progress)
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• Started with just trying to fit NN model for H GPD to H CFF pseudodata


• Used GK model with one modification to generate the pseudodata:


• Set the parameters of the profile functions to be the same for all flavors


• NN model:


• Keep the pdf portion from the GK model


• NN models a flavor symmetric profile function



Neural network fit (work in progress)
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Neural network fit (work in progress)
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Neural network fit (work in progress)
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Preliminary



Conclusion and Next Steps
• Summary:


• Successful closure tests of fitting machinery with parametric model of the GPDs


• Begun testing with NN model of the GPD.  Currently troubleshooting an issue of spikes at x=xi.


• Next Steps:


• Parametric model:


• Conduct an analysis with real data 


• NN model:


• Resolve the current issue


• Use NN to further explore the impact of evolution and data uncertainty on shadow GPDs


• Expand tests to allow variation between flavors, and include the other twist 2 GPDs and fit to 
observable level rather than CFFs
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