

Progress towards a machine learning extraction of GPDs from data Eric Moffat Argonne National Lab

QGT Collaboration Temple Meeting 9-14-24

Introduction

- The goal:
 - Perform a global analysis of CFFs and GPDs from available data using machine learning
 - How do we get there?
 - Develop the machinery initially using parametric model:
 - Perform closure test using data generated from an existing model \checkmark
 - Fit to existing data (work in progress)
 - Replace parametric model with neural network (NN) model:
 - Repeat closure tests with the NNs (work in progress)
 - Fit to existing data

The machinery

All pieces are backward differentiable to facilitate machine learning

The machinery

- GPD model:
 - Utilize double distributions to guarantee polynomiality

$$H^{f}(x,\xi,t;\mu_{0}^{2}) = \int_{\Omega} d\beta d\alpha \,\delta(x-\beta-\xi\alpha) \Big[H^{f}_{DD}(\beta,\alpha,t;\mu_{0}^{2}) + \xi\delta(\beta)D^{f}(\alpha,t;\mu_{0}^{2})\Big]$$

$$E^{f}(x,\xi,t;\mu_{0}^{2}) = \int_{\Omega} d\beta d\alpha \,\delta(x-\beta-\xi\alpha) \left[E^{f}_{DD}(\beta,\alpha,t;\mu_{0}^{2}) - \xi\delta(\beta)D^{f}(\alpha,t;\mu_{0}^{2}) \right]$$

$$\tilde{H}^{f}(x,\xi,t;\mu_{0}^{2}) = \int_{\Omega} d\beta d\alpha \,\delta(x-\beta-\xi\alpha) \left[\tilde{H}^{f}_{DD}(\beta,\alpha,t;\mu_{0}^{2})\right]$$

$$\tilde{E}^{f}(x,\xi,t;\mu_{0}^{2}) = \int_{\Omega} d\beta d\alpha \,\delta(x-\beta-\xi\alpha) \left[\tilde{E}^{f}_{DD}(\beta,\alpha,t;\mu_{0}^{2})\right]$$

• For H and \tilde{H} , use existing parton distribution functions for the forward limit

- Loss function:
 - Typical chi squared function

$$\sum \left(\frac{\text{data} - \text{theory}}{\text{uncertainty}} \right)^2$$

- Optimizer:
 - Use PyTorch Adam algorithm
 - **Stochastic Gradient Descent**

Closure test

- Generated pseudodata for various DVCS observables from model GPDs:
 - GPD model:
 - Double distributions:
 - Use GK model (Kroll, Moutarde, Sabatie, Eur. Phys. J. C (2013) 73:2278)
 - D term:
 - 401 (2001)
 - Assume 10% uncertainty for all data points
- Fitted parameters (31 in total):
 - Fit uv and dv double distribution parameters:
 - For H and H, keep pdf parameters fixed and only fit profile function parameters
 - Fit the coefficients in the D term for u and d

• Use first three terms of a Gegenbauer series (Goeke, Polyakov, Vanderhaeghan, Prog. Part. Nucl. Phys. 47,

Closure test

- Monte Carlo fit:
 - Conduct multiple fits (called replicas):
 - For each replica:
 - Starting parameters are randomly sampled
 - Data values sampled from Gaussian distribution
 - Calculate average and standard deviation of all replicas

- Started with just trying to fit NN model for H GPD to H CFF pseudodata
 - Used GK model with one modification to generate the pseudodata:
 - Set the parameters of the profile functions to be the same for all flavors
 - NN model:
 - Keep the pdf portion from the GK model
 - NN models a flavor symmetric profile function

Preliminary

Preliminary

Flavor g, xi=0.34, t=-0.42, Q2=1.64 0.6 0.8 0.5 0.4 0.6 ž 0.3 -÷ 0.4 -0.2 0.2 0.1 Flavor u, xi=0.34, t=-0.42, Q2=1.64 1.0 1.2 0.8 1.0 -0.6 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 -0.2 --0.2 Flavor d, xi=0.34, t=-0.42, Q2=1.64 2.5 1.75 1.50 2.0 1.25 1.5 1.00 S 0.75 ž 1.0 0.50 0.5 0.25 0.00 0.0 -0.25 Flavor s, xi=0.34, t=-0.42, Q2=1.64 0.3 0.20 -0.15 0.2 0.10 0.05 ž 0.00 -0.05-0.1 --0.10 -0.15

Preliminary

Conclusion and Next Steps

- Summary:
 - Successful closure tests of fitting machinery with parametric model of the GPDs
 - Begun testing with NN model of the GPD. Currently troubleshooting an issue of spikes at x=xi.
- Next Steps:
 - Parametric model:
 - Conduct an analysis with real data
 - NN model:
 - Resolve the current issue

 - Use NN to further explore the impact of evolution and data uncertainty on shadow GPDs • Expand tests to allow variation between flavors, and include the other twist 2 GPDs and fit to observable level rather than CFFs