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Background
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Large-Momentum Effective Theory(LaMET)

4

X. Ji, Phys.Rev.Lett. 110, 262002 (2013) 
X. Ji, et al., Rev.Mod.Phys. 93 (2021) 

X. Ji, 2408.03378

First-principle calculations of the x-dependence of parton distribution functions

Light-cone distribution:  

Separated on the time axis; 

Cannot be calculated on the 

lattice

Quasi distribution:  

Equal time in large-P hadron state; 

Directly calculable on the lattice

https://arxiv.org/pdf/1305.1539
https://arxiv.org/pdf/2004.03543


Quasi-distributions in CG without Wilson Line
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h̃γt(z, Pz, μ) =
1

2Pt
⟨P | ψ̄(z)γtψ(0) | ⃗∇⋅ ⃗A =0 |P⟩

The quasi-TMD matrix elements of the pion under CG are defined as

Y. Zhao, 2311.01391

https://arxiv.org/pdf/2311.01391


Quasi-TMD in Coulomb Gauge without Wilson Line

6
D. Bollweg, et al., Phys.Lett.B 852 (2024)

Compared with the GI method, CG method has much better signal, especially for TMDs.

Pion Quasi-TMDWF

Collins-Soper kernel

https://arxiv.org/pdf/2403.00664


Dependence on the Gauge Fixing Precision
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K. Zhang, et al.(LPC), 2405.14097

Pion PDF using Coulomb gauge method depends on the gauge fixing precision.

https://arxiv.org/pdf/2405.14097


Gribov Copies
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Ph. D. Thesis of Diego Fiorentini

The gauge fixing condition may have many solutions in Lattice 
QCD.

https://www.researchgate.net/publication/327060189_Non-perturbative_exact_nilpotent_BRST_symmetry_for_the_Gribov-Zwanziger_action


Faddeev-Popov operator
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The existence of Gribov copies is related to the zero mode of the 
Faddeev-Popov operator

ℱ = ⃗∇ ⋅ ⃗A = 0

δℱ = ⃗∇ ⋅ δ ⃗A = − ⃗∇ ⋅ ( ⃗Dω)

if ℳθ = 0 ,  then ⃗∇ ⋅ ⃗A = ⃗∇ ⋅ ( ⃗A − ⃗Dθ) ≡ ⃗∇ ⋅ ⃗A ′ = 0

≡
δℱ
δω

= − ⃗∇ ⋅ ⃗Dℳ

Gauge condition: δ ⃗A = − ⃗DωInfinitesimal transformation:

Variation:

Faddeev-Popov: For QED, there is no Gribov copy in Landau gauge.

* Dμabωb = ∂μωa − gf cabAc
μωb



Methodology
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Gauge Fixing in Lattice QCD
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FCG[A, Ω] ≡
1
2

3

∑
μ=1

∫ d4xAa
Ωμ(x)Aμa

Ω (x)

δFCG[A, Ω] = −
3

∑
μ=1

∫ d4x(DΩ
μabθb)Aμa

Ω

= −
3

∑
μ=1

∫ d4x(∂μθa − gf cabAc
Ωμθb)Aμa

Ω

=
3

∑
μ=1

∫ d4xθa(∂μAμa
Ω )

FCG[U, Ω] ≡ −ℜ Tr∑
x

3

∑
μ=1

Ω†(x + ̂μ)Uμ(x)Ω(x)

Continuous Theory Lattice Theory

Find stationary points of the functional value.

* AΩμ(x) ≡ Ω†(x)Aμ(x)Ω(x) +
i
g

Ω†(x)∂μΩ(x)

Find minimal points of the functional value, so that 
F-P operator (second derivative) is positive definite.



Criteria of Gauge Fixing
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Different Gribov copies can be distinguished by the difference of functional values .ΔF

Variation of the functional 

Residual gradient of the functional

δF/F < 10−8

θG ≡
1
V ∑

x

θG(x) ≡
1
V ∑

x

Tr [ΔG(x)(ΔG)†(x)]
* ΔG(x) ≡ ∑

μ
(AG

μ (x) − AG
μ (x − ̂μ))



Two kinds of impact from Gribov Copies
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Lattice Gribov noise: not separable from the statistical 
uncertainty; related to the distribution across Gribov copies. 

Measurement distortion: systematic uncertainty; related to the bias 
of strategies to choose representative from copies.

G. Kalusche, et al., 2405.17301

https://arxiv.org/pdf/2405.17301


Strategies to Choose Representative in Gribov Copies
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Mother-daughter method: do a random gauge transformation 
before gauge fixing to get different copies. 

“First it”: choose the first instance of gauge fixing; 

“Smallest f”: choose the instance with the smallest functional 
value among all instances; (Fundamental Modular Region)

N. Vandersickel, et al., Phys.Rept. 520 (2012)

https://arxiv.org/pdf/1202.1491


Numerical Results
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Functional Values of Gribov Copies
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Lattice setup: 2+1 flavor HISQ ensemble by HotQCD

We have 100 configurations, do the Coulomb gauge fixing to get 8 instances on each configuration.



Quark Propagator under the Coulomb Gauge
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Both 2pt and meff show a good consistency between two strategies.

Quark Propagator: 

Effective Mass: 
Cu(z) = ⟨Tr[u(z)ū(0)]⟩

Cu(z)
Cu(z + 1)

=
cosh(meff ⋅ (z − Ls/2))

cosh(meff ⋅ (z + 1 − Ls/2))



Quark Propagator under the Coulomb Gauge

18

The behavior of error is consistent with  when varying the number of configurations . 1/ N N

z = 10 a

Quark Propagator: 

Effective Mass: 
Cu(z) = ⟨Tr[u(z)ū(0)]⟩

Cu(z)
Cu(z + 1)

=
cosh(meff ⋅ (z − Ls/2))

cosh(meff ⋅ (z + 1 − Ls/2))



Quasi-distribution under the Coulomb Gauge
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The conclusion holds for both collinear and TMD case because of 3D rotational symmetry.

Quasi-distribution: 

h̃γt(z, Pz, μ) =
1

2Pt
⟨ ⃗P = 0⃗ | ψ̄(z)γtψ(0) | ⃗∇⋅ ⃗A =0 | ⃗P = 0⃗⟩



Quasi-distribution under the Coulomb Gauge
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Quasi-distribution: 

h̃γt(z, Pz, μ) =
1

2Pt
⟨ ⃗P = 0⃗ | ψ̄(z)γtψ(0) | ⃗∇⋅ ⃗A =0 | ⃗P = 0⃗⟩



Quasi-distribution under the Coulomb Gauge

21

tsep = 8 a, τ = 4 a

Quasi-distribution: 

h̃γt(z, Pz, μ) =
1

2Pt
⟨ ⃗P = 0⃗ | ψ̄(z)γtψ(0) | ⃗∇⋅ ⃗A =0 | ⃗P = 0⃗⟩



Summary
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Summary

Gribov copies stem from multiple solutions of gauge condition; 

Two impacts of Gribov copies: noise and distortion; 

Gribov noise is undistinguishable from the statistical noise; 

No significant distortion on quark propagator & quasi-

distribution;
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Prospect

Including more strategies; 

Including more instances; 

Study the gluon propagator for the gluon parton distribution;
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Back Up
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First Gribov Region
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N. Vandersickel, et al., Phys.Rept. 520 (2012)

First Gribov Region: Faddeev-Popov operator is positive definite; 

Gribov Horizon: Faddeev-Popov determinant is zero.

https://arxiv.org/pdf/1202.1491


First Gribov Region
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Take minimum point of the functional

FCG[A, Ω] ≡
1
2

3

∑
μ=1

∫ d4xAa
Ωμ(x)Aμa

Ω (x)

δFCG[A, Ω] = −
3

∑
μ=1

∫ d4x(DΩ
μabθb)Aμa

Ω

= −
3

∑
μ=1

∫ d4x(∂μθa − gf cabAc
Ωμθb)Aμa

Ω

=
3

∑
μ=1

∫ d4xθa(∂μAμa
Ω )

* AΩμ(x) ≡ Ω†(x)Aμ(x)Ω(x) +
i
g

Ω†(x)∂μΩ(x)

δ2FCG[A, Ω] = −
3

∑
μ=1

∫ d4x∂μθaδAμa
Ω = −

3

∑
μ=1

∫ d4xθa(∂μDab
μ )θb

δ2FCG[A, Ω] ≥ 0 for ∀θ ⟹ ℳ = − ∂μDab
μ  is positive definite

In the first Gribov region



Ground State Fit of First it
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Ground State Fit of Smallest f
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