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Introduction and Motivation

• Vector current

J
µ
(x) =

∑
q

q̄(x) γ
µ
q(x)

∂µJ
µ
(x) = 0

• Axial current

J
µ
5 (x) =

∑
q

q̄(x) γ
µ
γ5 q(x)

∂µJ
µ
5 (x) =

∑
q

2imq q̄(x) γ5 q(x) −
αsNf

4π
Tr

(
F

µν
(x)F̃µν(x)

)
– axial current not conserved due to (i) nonzero fermion mass and (ii) axial anomaly

(Adler, 1969 / Bell, Jackiw, 1969 / Adler, Bardeen, 1969 / ...)

– axial anomaly can be derived, e.g., by evaluating J
µ
5 (x) between gluon states

– axial anomaly was intensively discussed in hadronic physics soon after discovery

of nucleon spin crisis through DIS measurements



• Pioneering work (Altarelli, Ross, 1988 (AR) / Carlitz, Collins, Mueller, 1988 (CCM) / ...)

– considering process γ
∗
+ g → q + q̄

– extracting leading power-term of 1/q
2
expansion and integrating upon x

→ calculation of local axial current

– overall conclusion: difference between measured (∆Σ) and “intrinsic” (∆Σ̃)

quark-spin contributions

∆Σ = ∆Σ̃ −
αs Nf

2π
∆G

∗ term proportional to ∆G due to axial anomaly (?)

∗ solution of nucleon spin problem ?



• Critique of pioneering papers (Jaffe, Manohar, 1989 / Bodwin, Qiu, 1989 / ...)

– main concern: result of AR and CCM depends on infrared (IR) regulator

– this concern, and need for very large ∆G, raised severe doubts

• Recent renewed interest in field

(Tarasov, Venugopalan, 2021, 2022 (TV) / Bhattacharya, Hatta, Vogelsang, 2022, 2023 (BHV))

– considered also the x-dependence as opposed to x-integrated results only

– statements include:

∗ need off-forward kinematics to capture physics of axial anomaly

∗ GPDs may have more robust connection to anomaly than PDFs

∗ anomaly manifests in pole contribution for t = ∆
2 → 0

∗ anomaly pole could challenge factorization (not stated in all papers)

– TV and BHV agree on certain aspects and disagree on others

– perturbative results are important part of TV and BHV works

• Our motivations

– revisit dependence of perturbative calculations on IR regulator

– what role is played by quark mass ?

– new insights on the “classic” AR and CCM papers ?



Parton Distribution in Perturbation Theory

• Definition of PDF

Φ
[γ
+
γ5]

λλ
′ (x) =

∫
dz

−

4π
e
ik·z ⟨g(p, λ′

)|q̄(−z
2) γ

+
γ5 q(

z
2)|g(p, λ)⟩

∣∣
z
+
=0,z⃗⊥=0⃗⊥

= −
i

p
+
ε
+ ϵ ϵ

′∗
p
g1(x)

g1(x) =
1

2

(
Φ

[γ
+
γ5]

++ (x) − Φ
[γ
+
γ5]

−− (x)
)

gluon helicity conserved

• Leading-order diagrams

plus graph with reversed arrows

on quark lines

– two diagrams contribute in different regions of x



• Result for m ̸= 0 and off-shellness p
2
< 0, for 0 ≤ x ≤ 1 (µ̄

2
= 4πe

−γEµ
2
)

g1(x;m, p
2
) =

αs

4π

[(
1

ε
+ ln

µ̄
2

m
2 − p

2
x(1 − x)

)
(2x − 1) +

p
2
x(1 − x)

m
2 − p

2
x(1 − x)

]
–

∫
dx g1(x) provides total spin contribution

• UV behavior

– g1(x) UV-divergent

–
∫
dx g1(x) UV-finite, does not depend on UV regulator

• IR behavior

– g1(x) IR-divergent, divergence regulated using nonzero m and p
2

– result well behaved for m ̸= 0 and p
2
= 0

– result well behaved for m = 0 and p
2 ̸= 0, except for endpoints x = 0, 1

–
∫
dx g1(x) IR-finite, and does depend on IR regulator



• Integral upon x

– full result∫ 1

−1

dx g1(x;m, p
2
) =

αs

2π

[
−1 +

∫ 1

0

dx
2m

2
(1 − x)

m
2 − p

2
x(1 − x)

]

=
αs

2π

[
−1 +

2√
η (η + 4)

ln

√
η + 4 +

√
η

√
η + 4 − √

η

]
η = −

p
2

m
2
> 0

– after including Nf , full agreement with CCM (1988)

– expansions for small and large η (dependence on IR regulator)∫ 1

−1

dx g1(x;m, p
2
) =

αs

2π

[
−

η

6
+ O

(
η
2) ] η→ 0→ 0∫ 1

−1

dx g1(x;m, p
2
) =

αs

2π

[
−1 +

2

η
ln η + O

(
1

η
2

)]
η→∞→ −

αs

2π

– one can understand origin of

∆Σ = ∆Σ̃ −
αs Nf

2π
∆G



Local Axial Current in Perturbation Theory

• Divergence of axial current

– matrix element (P = 1
2 (p + p

′
), ∆ = p

′ − p)

⟨g(p′
, λ

′
) | ∂µJ

µ
5 (0) | g(p, λ)⟩ = −2 ε

ϵ ϵ
′∗
P ∆

D(∆
2
) → ∆ ̸= 0 needed

D(∆
2
;m, 0) =

αs

2π

[
−1 +

1

τ
ln

2

√
τ + 4 +

√
τ

√
τ + 4 −

√
τ

]
τ = −

∆
2

m
2
> 0

– expansions for small and large τ

D(∆
2
;m, 0) =

αs

2π

[
−

τ

12
+ O

(
τ
2) ] τ → 0→ 0

D(∆
2
;m, 0) =

αs

2π

[
−1 +

1

τ
ln

2
τ + O

(
1

τ
2

)]
τ →∞→ −

αs

2π

∗ for ∆
2
= 0, exact cancellation between anomaly term and fermion mass term

∗ cancellation whenever m (much) larger than any other scale

∗ impact of interplay between mass and anomaly terms for (non-local) axial current ?



– numerics for D(∆
2
;m, 0)
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– considering D(0;m, p
2
)

D(0;m, p
2
) =

αs

2π

[
−1 +

2√
η (η + 4)

ln

√
η + 4 +

√
η

√
η + 4 − √

η

]

=

∫ 1

−1

dx g1(x;m, p
2
)

∗ result strongly suggests relation between
∫
dx g1(x) and matrix element of ∂µJ

µ
5



• General structure of axial current Γ
µ
5 = ⟨g(p′

, λ
′
)| Jµ

5 (0) |g(p, λ)⟩
(using symmetry between gluons, Schouten identity, and vector Ward identity)

Γ
µ
5

∣∣
real

= G(∆
2
;m, 0)A

µ
2

Γ
µ
5

∣∣
virtual

= −
4p

2

∆
2 − 4p

2
G1(∆

2
;m, p

2
)A

µ
1

+

(
G2(∆

2
;m, p

2
) +

∆
2

∆
2 − 4p

2
G1(∆

2
;m, p

2
)

)
A

µ
2

– one form factor for on-shell gluons, two form factors for off-shell gluons

– vectors A
µ
1 and A

µ
2

A
µ
1 = −2i ε

µ ϵ ϵ
′∗
P

A
µ
2 =

2i

∆
2
∆

µ
ε
ϵ ϵ

′∗
P ∆

∗ A
µ
2 structure related to axial anomaly

∗ A
µ
2 does not exhibit a pole for ∆

2 → 0

∗ A
+
1 ̸= 0 when gluon helicity conserved

∗ A
+
2 ̸= 0 for gluon helicity flip

∗ for ∆⊥ = 0, helicity flip forbidden by conservation of angular momentum



• Using (anomalous) axial Ward identity

– relation

i∆µ Γ
µ
5 = ⟨g(p′

, λ
′
) | ∂µJ

µ
5 (0) | g(p, λ)⟩

– on-shell gluons

G(∆
2
;m, 0) = D(∆

2
;m, 0)

∗ local current fully determined by matrix element of ∂µJ
µ
5

∗ angular momentum conservation requires G(0;m, 0) =
∫
dx g1(x;m, 0) = 0

∗ D(0;m, 0) = 0 due to cancellation between anomaly and quark mass terms

– off-shell gluons (for ∆
2 → 0 only)

G1(0;m, p
2
) + G2(0;m, p

2
) = G1(0;m, p

2
) = D(0;m, p

2
)

∗ calculation provides G2(0;m, p
2
) = 0

∗ unambiguous relation between
∫
dx g1(x;m, p

2
) and matrix element of ∂µJ

µ
5

– overall, further insight into “classic” CCM results for on-shell and off-shell gluons



Generalized Parton Distributions in Perturbation Theory

• Definition (for on-shell gluons)

F
[γ
+
γ5]

λλ
′ (x,∆) =

∫
dz

−

4π
e
ik·z ⟨g(p′

, λ
′
) | q̄(−z

2) γ
+
γ5 q(

z
2) | g(p, λ)⟩

∣∣
z
+
=0,z⃗⊥=0⃗⊥

= B̃1 H1(x, ξ,∆
2
) + B2 H2(x, ξ,∆

2
)

– structures B̃1 and B2

B̃1
∆→0→

1

2P
+
A

+
1 B2 =

1

2P
+
A

+
2

– addressing the two GPDs

H1(x, ξ,∆
2
) =

1

2(1 − ξ
2
)

(
F

[γ
+
γ5]

++ (x,∆) − F
[γ
+
γ5]

−− (x,∆)
)

H2(x, ξ,∆
2
) = −

1

2ξ

(
F

[γ
+
γ5]

+− (x,∆) − F
[γ
+
γ5]

−+ (x,∆)
)

→ helicity flip



• Usage of nonzero ∆: (i) IR regulator; (ii) generates new structure

– if no other IR regulator, one cannot recover forward limit of matrix element

• Forward limit, using (additional) IR regulator

lim
∆→0

F
[γ
+
γ5]

λλ
′ (x,∆) = Φ

[γ
+
γ5]

λλ
′ (x)

H1(x, 0, 0) = g1(x)

• Comparison with local current (form factor)

(see also TV 2021, 2022 / BHV 2022, 2023)∫ 1

−1

dxH1(x, ξ,∆
2
) = 0∫ 1

−1

dxH2(x, ξ,∆
2
) = G(∆

2
) → relation with anomaly

• Our perturbative results for the GPD satisfy required constraints



• Results for arbitrary ∆
2
and arbitrary m (κ = τ(1 − x)

2
/(1 − ξ

2
))



• GPD results for m = 0 and ∆⊥ ̸= 0 (τ = −∆
2
/m

2 → ∞)

– we confirm results of BHV (2023) for H1 and H2

– H1 has logarithmic divergence for ∆⊥ → 0

– result for (anomaly-related) H2

H2(x, ξ,∆
2
;m)

τ →∞→
αs

4π


−
2(1 − x)

1 − ξ
2

ξ ≤ x ≤ 1

−
2

1 + ξ
−ξ ≤ x ≤ ξ

∗ result independent of ∆
2

∗ H2 for ∆
2 → 0 not defined

∗ result cannot be used to draw conclusion about forward limit

∗ angular momentum conservation requires H2 to vanish in forward limit

∗ no anomaly-related “pole” when approaching forward limit



• GPD results for m ̸= 0 and ∆⊥ = 0 (τ = −∆
2
/m

2 → 0)

H1(x, ξ,∆
2
;m)

τ → 0→
αs

4π



2x − 1 − ξ
2

1 − ξ
2

[
1

ε
− ln

m
2

µ̄
2
− 1

]
ξ ≤ x ≤ 1

−
1 − ξ

1 + ξ

[
1

ε
− ln

m
2

µ̄
2
− 1

]
−ξ ≤ x ≤ ξ

H2(x, ξ,∆
2
;m)

τ → 0→
αs

4π


−

(1 − x)
3

3(1 − ξ
2
)
2
τ ξ ≤ x ≤ 1

−
(ξ + x)

2
(ξ

2
+ 2ξ(1 − x) − x)

12ξ
3
(1 + ξ)

2
τ + . . . −ξ ≤ x ≤ ξ

– H1 well behaved in forward limit (quark mass acts as IR regulator)

– H2 vanishes in forward limit, which is required by angular momentum conservation

– for m ̸= 0, meaningful results in forward limit

– vanishing result for H2 can be considered the non-local generalization of

D(∆
2
;m, 0) = G(∆

2
;m, 0) =

αs

2π

[
−

τ

12
+ O

(
τ
2) ] τ → 0→ 0



Summary

• Potential imprints of chiral anomaly in polarized DIS and DVCS have been

discussed in literature

• We confirm “classic” result by CCM (1988) for DIS

• Perturbative results (for PDF, FF, GPDs) depend on IR scheme

• Going from m = 0 to m ̸= 0 qualitatively changes results

• Additional (anomaly-related) contribution arises for ∆ ̸= 0

(Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)

• Perturbative calculations show that imprints of anomaly can be seen by

(i) using off-shell photons and/or (ii) going to off-forward kinematics

• Anomaly-related contribution (∼H2) has no pole for ∆ → 0

(no challenge for factorization)

• In forward limit, H2 must vanish due to angular momentum conservation

• For m ̸= 0, H2 does vanish (cancellation between anomaly and quark mass terms)


