
GEANT4 & ROOT
Computing Workshop 9/6/2024

ericking@temple.edu

● Work at Temple University

● Postdoctoral Fellow
○ PhD, Physics

○ MSci, Computation/Simulation using HTP/HPC.

● Working on MOLLER
○ Moller Polarimetry

○ Ferrous Materials Backgrounds

 About Me

2

 Outline for Today

● Brief overview of C++ nomenclature/terminology I may use

● Geant4 Overview

● ROOT Overview

● Hands-on Session

3

4

 C++ Classes
● Class

○ Defines some sort of object/struct

○ Contains access/members/attributes

■ Access (public, private, protected)

■ Variables/Values

■ Constructors

■ Functions/methods that operate
on that structure/object

… headers …

class Person {
 private:
 string firstname;
 string lastname;
 int birthmonth;
 int birthday;
 int birthyear;
 SetFirstName(string fname){firstname = fname;}
 SetLastName(string lname){lastname = lname;}
 …
 public:
 Person() {}
 Person(string f, string l, int m, int d, int y) :
 firstname(f), lastname(l), birthmonth(m),
 birthday(d), birthyear(y) { }

 void printbirthdate(){
 cout << birthmonth << "/"
 << birthday << "/"
 << birthyear << endl;
 };

};

5

 C++ Classes (cont’d)
● Class

○ Defines some sort of object/struct

○ Contains access/members/attributes

■ Access (public, private, protected)

■ Variables/Values

■ Constructors

■ Functions/methods that operate
on that structure/object

… headers …

class Person {
 private:
 string firstname;
 string lastname;
 int birthmonth;
 int birthday;
 int birthyear;
 SetFirstName(string fname){firstname = fname;}
 SetLastName(string lname){lastname = lname;}
 …
 public:
 Person() {}
 Person(string f, string l, int m, int d, int y) :
 firstname(f), lastname(l), birthmonth(m),
 birthday(d), birthyear(y) { }

 void printbirthdate(){
 cout << birthmonth << "/"
 << birthday << "/"
 << birthyear << endl;
 };

};

6

 C++ Classes (cont’d)
● Class

○ Defines some sort of object/struct

○ Contains access/members/attributes

■ Access (public, private, protected)

■ Variables/Values

■ Constructors

■ Functions/methods that operate
on that structure/object

… headers …

class Person {
 private:
 string firstname;
 string lastname;
 int birthmonth;
 int birthday;
 int birthyear;
 SetFirstName(string fname){firstname = fname;}
 SetLastName(string lname){lastname = lname;}
 …
 public:
 Person() {}
 Person(string f, string l, int m, int d, int y) :
 firstname(f), lastname(l), birthmonth(m),
 birthday(d), birthyear(y) { }

 void printbirthdate(){
 cout << birthmonth << "/"
 << birthday << "/"
 << birthyear << endl;
 };

};

7

 C++ Classes (cont’d)
● Class

○ Defines some sort of object/struct

○ Contains access/members/attributes

■ Access (public, private, protected)

■ Variables/Values

■ Constructors

■ Functions/methods that operate
on that structure/object

… headers …

class Person {
 private:
 string firstname;
 string lastname;
 int birthmonth;
 int birthday;
 int birthyear;
 SetFirstName(string fname){firstname = fname;}
 SetLastName(string lname){lastname = lname;}
 …
 public:
 Person() {}
 Person(string f, string l, int m, int d, int y) :
 firstname(f), lastname(l), birthmonth(m),
 birthday(d), birthyear(y) { }

 void printbirthdate(){
 cout << birthmonth << "/"
 << birthday << "/"
 << birthyear << endl;
 };

};

8

 C++ Classes (cont’d)
● Class

○ Defines some sort of object/struct

○ Contains access/members/attributes

■ Access (public, private, protected)

■ Variables/Values

■ Constructors

■ Functions/methods that operate
on that structure/object

… headers …

class Person {
 private:
 string firstname;
 string lastname;
 int birthmonth;
 int birthday;
 int birthyear;
 SetFirstName(string fname){firstname = fname;}
 SetLastName(string lname){lastname = lname;}
 …
 public:
 Person() {}
 Person(string f, string l, int m, int d, int y) :
 firstname(f), lastname(l), birthmonth(m),
 birthday(d), birthyear(y) { }

 void printbirthdate(){
 cout << birthmonth << "/"
 << birthday << "/"
 << birthyear << endl;
 };
 …
};

9

 C++ Class Inheritance
➢ Critical part of C++ for any application

developer and this is used extensively in
Geant4 applications

● Can create a user-defined derived class
which inherits from a base class

● Allows for addition of members to the
base class.

… headers …
#include “Person.hh”

class MyPerson : public Person {
 private:
 string fathersname;
 string mothersname;

 SetMothersName(string s){mothersname = s;}
 SetFathersName(string s){fathersname = s;}
 …

 public:

 …

};

Geant4

11

 What is Geant4?
● Geant4 is a software toolkit for particle/nuclear physics Monte Carlo

simulations
○ GEometry ANd Tracking
○ Toolkit ⇒ Geant4 doesn’t do anything on its own.

○ Applications ⇒ You build the geometry and
specify the physics

● Geometry:
○ Specify your own – basic toy models to very complex geometries.

● Tracking:
○ Internal tracking (Geant4) and Sensitive Detector / Hits Collection output

■ Get the information that you want
○ User ability to terminate tracks of no interest [time saver]
○ User specified data output

■ Generally ROOT but can be anything you want that you can code for

Useful Geant4 Documentation

➢ Geant4 Developers Guide [here]
➢ Geant4 Installation Guide [here]
➢ Introduction to Geant4 [here]

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/fo/BookForApplicationDevelopers.pdf
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/fo/Geant4InstallationGuide.pdf
https://geant4-userdoc.web.cern.ch/UsersGuides/IntroductionToGeant4/fo/IntroductionToGeant4.pdf

12

 Geant4 Framework
● Central functionality/classes in Geant4

○ Main application file – initialize run manager, classes, visualization, etc.
○ RunAction – starts and ends runs.
○ DetectorConstruction

■ In-line native Geant4 coding
● Requires a recompile for changes, simple troubleshooting.

■ GDML
● XML macro specified file read-in, very tricky troubleshooting

○ EventAction – starts and ends events, allows user specified actions.
○ SteppingAction – What to do at end of steps, allows user-specified action
○ Detectors & Hits – Assign volumes as sensitive detectors and record hit data.

13

 Run / RunAction() – Analogous to a physics ‘run’

Run

● A specified total number of events
to be simulated

● Geometry for simulation is ‘built’

● Physics processes are set
[I’ll have slide that touches on this]

➢ Once a run has started geometry
can not be changed and physics
cannot be changed.

RunAction

● BeginOfRunAction()
○ Start your Input-Output [IO] class
○ Create files, create data structures

● EndOfRunAction()
○ Close out your data files

■ ROOT files
■ Histograms
■ CSV files
■ etc…

14

 Geant4: DetectorConstruction – Materials
G4Elements

● Requires “name”, “symbol”, Z, and A
● G4Element * elC = new G4Element(“carbon”, “C”, 6, 12.01*g/mole)
● Natural isotope ratios will be added according to Z

G4Isotopes

● Can create specific isotope mixtures
● G4Isotope * isoC13 = new G4Isotope(name=“C13”,iz=6,n=7);

G4Element * elC13 = new G4Element(“C13”, “C13”, numisotopes=1);
elC13->AddIsotope(isoC13,abundance=100.*percent);

15

 Geant4: DetectorConstruction – Materials (cont’d)
G4Materials

Pre-defined list of materials available [here] or can be user-defined.

● Pre-defined → Call NIST manager, find material, assign to G4Material object
○ G4NistManager * manager = G4NistManager::Instance();

G4Material * Al = manager->FindOrBuildMaterial(“G4_Aluminum”);
G4Material * Ar = manager->FindOrBuildMaterial(“G4_Argon”);

● User-defined material → Define elements, material,
○ G4Element* el_i = new G4Element("Iodine","I", 53,126.9*g/mole);

G4Element* el_cs = new G4Element("Cesium","Cs",55,132.9*g/mole);
G4Material* mat_csi = new G4Material("CsI",4.51*g/cm3,2);
mat_csi->AddElement(el_i,1);
mat_csi->AddElement(el_cs,1);

Al and Ar
used in

later slide
example

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

16

 Geant4: DetectorConstruction – Solids

● Various solids are defined in Geant4:
○ G4Box
○ G4Tubs
○ G4Para (parallelepiped)
○ G4Sphere

■ G4Orb (solid sphere)
○ … and more.

● See section 4.1.2 of the Geant4
Developers Guide for full list.

*Images, constructors and desc’s adapted from Geant4 Developers Guide.

17

 Geant4: DetectorConstruction – Volumes
● Geometries in Geant4 comprise

of a number of volumes.

● The largest volume is called the
World volume.

● Volumes are created and placed
inside other volumes.

● All volumes must be fully
contained in the World volume

● To create and place a volume we must:

○ Define or pick materials
○ Define a solid
○ Define a logical volume
○ Define a physical volume

⇒ The key concept here is proper volume nesting ⇐
(VolB & VolC) ⊂ VolA ⊂ World and (VolB ∩ VolC) = ⊘

World

VolA
VolB VolC

18

 Geant4: DetectorConstruction – Volumes (Cont’d)
(1) Define Shapes as previously

described:
(a) G4Box – worldBox
(b) G4Tubs – trackerTube

(2) Define logical volumes
(a) worldLog
(b) trackerLog

(3) Create physical volume

*Code examples adapted from Geant4 Developers Guide.

Previously
defined materials

G4VPhysicalVolume* physVolume = new G4PVPlacement(
 0, // rotation, 0 = none
 G4ThreeVector(0.,0.,0.), // translation position
 logicalVolIdentifier, // assoc’d logical volume
 "physVolName", // phys vol name
 0, // mother volume, 0=world
 false, // no boolean operations
 0, // copy number
 true // overlap checker
);

19

 Geant4: Particle Generator / PrimaryGeneratorAction()
Particle Generator
● Creates primary particles

● In practice, Geant4 can also be used to
specify

● Can be simple – e.g. an electron at
10.6*GeV fired off in a particular direction

● Can be far more complicated
○ Monte carlo distributions to energy

and trajectories of primaries.
○ Specific event type generator – e.g. a

Moller electron generator.
○ Outside program that can provide

the relevant primary particle
information

PrimaryGeneratorAction()

● Runs at the beginning of each event.

20

 Geant4: Event / EventAction()

Event

● An event processes all primary
particles through the geometry

● There may be more than one
primary particle

● Once the stack of primaries is
empty the event is considered over.

BeginOfEventAction():

● User can define something to
happen before next event takes
place.

EndOfEventAction():

● Sort through HitsCollections
● Fill ROOT files
● Fill histograms
● Flush or clear variables

21

 Geant4: Stepping / SteppingAction()

Geant4 SteppingAction

● Generally created as an inherited
class from G4UserSteppingAction

● SteppingAction executed at the end
of stepping

● Most useful application (IMHO):

aTrack->SetTrackStatus(fStopAndKill);

Practical Uses

● Killing particle tracks

● Save valuable computing time

○ Kill off particles of no interest

○ Kill off particles under
detection thresholds

○ Kill off particles not relevant to
simulation study

22

 Main Application File

● The main application file generally resides in the base directory of the application.

● What’s generally included
○ Typical items found in a main() script

■ How to read passed arguments/flags when the program is executed.
■ Construction of DetectorConstruction()
■ Geant4 UserAction classes initialized
■ Physics lists intialized
■ Visualization options – UIManager setup.
■ Setup for multi-threading

23

 Geant4: Additional Information – Manager Classes
● G4RunManager

○ Register your geometry
○ Register your physics lists
○ Register your particle generator

● G4EventManager – handles events, pre-/post-event user actions
● G4SteppingManager – handles steps and user-specified actions
● G4TrackingManager – handles tracks and trajectories
● G4DetectorManager – handles declared sensitive detectors
● G4FieldManager – handles declared fields

24

 Geant4 System of Units
● Use G4SystemOfUnits.hh header file

○ [C++] You can

● Values coded into Geant4 should include a unit
○ Provides consistency and eliminates unit errors

● Declaration of value:
➢ G4double beamEnergy = 10.6 * GeV;

● Conversion to unit:
➢ G4cout << hitP / MeV << “MeV” << G4endl;

25

 Geant4: Physics / Processes
● Topic is worthy of its own discussion (and I’m not the person to lead it).

● Sometimes useful to create an inherited class from G4ModularPhysics

○ Helpful in more-advanced applications
■ Enabling and disabling certain physics options via local messenger (slide coming).

○ Have scintillating detectors and light guides???
■ You might want optical physics – G4OpticalPhysics

● FTFP_BERT / QGSP_BERT are commonly used lists

○ If low-energy neutron tracking is desired FTFP_BERT_HP / QGSP_BERT_HP can be selected.

 Geant4: Messengers
● Constant recompiling is a nuisance

○ Large program → Longer recompile
○ Common source of computing error

● An often implemented solution to this is
to write the application to accept
commands and values

○ This is often referred to as a ‘macro’

26

Options:

(1) Create inherited class from
G4UImessenger and use
G4UIcommand methods

(2) Utilize G4GenericMessenger to
create your own in-class messenger
options.

27

 Additional Note: C++ <iostream>

➢ Text output is a common form of debugging and sanity checking.

● The use of C++ iostream cout, endl, and cerr is strongly discouraged

● G4UImanager class has members which handle G4-defined “iostream” objects
○ G4cout
○ G4endl
○ G4cerr

 Outline
● What is ROOT?

● What are ROOT Files

● What can you do with ROOT?

● Command Line Interface
○ I’ll be painting in broad strokes as you’ll have a formal

hands-on session after this talk.

● Macros/Scripting
○ Using ROOT via macros and scripting.

GOAL: (Hopefully) Leaving you with a feeling for what you can do with ROOT and
give you a conceptual leg up for the hand-on portion of the workshop.

29

What is ROOT? (cont’d)
● General framework for data analysis developed for particle physics

○ Based on data structure we call a ROOT file.

● C++ based OOP for scalable data and simulation-data analysis
○ Remoll automatically outputs ROOT files.
○ Importing CSV data into root is very easy.

■ Great option for data collected from in-lab hardware or EPICS data at JLab.
○ Available ROOT libraries to connect to databases and dataframes.
○ If you’re a data-junkie bored on weekends ROOT is a great tool to churn through

datasets.

● Main tool that will be used for Remoll simulation analysis and MOLLER data
analysis.
○ ROOT is designed to handle large amounts of data

30

What is ROOT? (cont’d)
● Installation is generally straight forward

○ Pre-compiled binaries available on ROOT website for many, but not all
Linux OS
■ !!! Ubuntu 22 pre-compiled binaries have given me issues; you may

have to compile from scratch; after installing dependencies I had zero
problems.

⭐ Already available for you in the ifarm

● When you compile remoll you’ll also get reroot which includes
certain remoll class definitions
👉 Use reroot for remoll simulation analysis…

31

What is ROOT? (cont’d)
● (Opinion) It’s a extraordinarily easy-to-use framework for both

data analysis and data presentation

● One can convert many data types of data files into ROOT files.
○ At the end of these slides is a very simple script for converting CSV

file to ROOT

● I prefer to use ROOT for data visualization and plotting for many
different types of data (not just particle physics).

In other words ⇒ A VALUABLE SKILL TO HAVE ⇐
32

What is ROOT? (cont’d)
● (Truth) There is a learning curve.

○ Familiarity with C++ will make learning ROOT easier.
■ There is PyRoot for the python-inclined.

○ Doing things in ROOT is how you’ll learn.
■ Don’t be shy asking for help.
■ Plenty of online resources.

○ You’ll learn what you need to know as you go and eventually you’ll
become a ROOT ‘expert’.

○ This is your tool to interpret simulation results and extract interesting
physics from experimental data.

33

What are ROOT files?
Hierarchical structure of data.

⇒ Base of data structure is ‘tree’
⇒ Data tree broken into ‘branches’
⇒ Branches further divided into ‘leaves’

34

● ROOT File
↳ Data Tree #1

↳ Branch 1
↳ Leaves

↳ Branch 2
↳ Leaves

↳ Branch 3,4,5…

What are ROOT files?
Hierarchical structure of data.

⇒ Base of data structure is ‘tree’
⇒ Data tree broken into ‘branches’
⇒ Branches further divided into ‘leaves’

ROOT files can contain multiple trees

35

● ROOT File
↳ Data Tree #1

↳ Branch 1
↳ Leaves

↳ Branch 2
↳ Leaves

↳ Branch 3,4,5…

↳ Data Tree #2
↳ Branches

↳ Leaves

What are ROOT files?
Hierarchical structure of data.

⇒ Base of data structure is ‘tree’
⇒ Data tree broken into ‘branches’
⇒ Branches further divided into ‘leaves’

ROOT files can contain multiple trees

ROOT files can hold other objects as well:

● Histograms
● Canvases
● Graphs
● etc

36

● ROOT File
↳ Data Tree #1

↳ Branch 1
↳ Leaves

↳ Branch 2
↳ Leaves

↳ Branch 3,4,5…

↳ Data Tree #2
↳ Branches

↳ Leaves

↳ Object(s) ...

What can you do with ROOT? [Data Visualization]
● Draw histograms

37

remoll simulation data from
ferrous materials studies.

Multiple histograms can be
overlaid to produce more
informative plots.

Or you can be very basic…

What can you do with ROOT? [Data Visualization]

38

● Draw histograms

● Draw scatter plots and
heatmaps (2D hist with color!)

3D Scatter plot of remoll
simulation data of events that
strike the collar 2 barite wall
support structure for ferrous
materials background studies.

2D Heatmap of ferrous materials
scattering PMT region
backgrounds from collar 2 barite
wall support (prelim’ simulation).

What can you do with ROOT? [Data Visualization]

39

● Draw histograms

● Draw scatter plots and
heatmaps (2D hist with color)

● Data Fitting
○ Predefined or custom

functions

Experimental data fit; here to a gaussian.

 f(x) = p0*exp(-0.5*((x-p1)/p2)^2)

Fit returns:
𝝌2 / ndf
P0 ⇒ Constant: Amplitude of Gaussian
P1 ⇒ (Gaussian) Mean
P2 ⇒ (Gaussian) Sigma

h_asym->Fit(“gaus”);

root [8] H->Fit("gaus")
 FCN=32.6596 FROM MIGRAD STATUS=CONVERGED 63 CALLS 64 TOTAL
 EDM=2.2785e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
 EXT PARAMETER STEP FIRST
 NO. NAME VALUE ERROR SIZE DERIVATIVE
 1 Constant 1.78988e+02 4.07137e+00 9.47909e-03 -1.50266e-05
 2 Mean 3.50379e-02 1.82819e-04 5.11155e-07 -1.29829e-01
 3 Sigma 9.57978e-03 1.26021e-04 1.00540e-05 -1.77126e-02

Note: Plot and text fit data not the same

What can you do with ROOT? [Data Visualization]

40

Moller polarimeter simulated data.
(almost publication plot)

Polarimetry – Moller QED asymmetry over time during CREX

Imported CSV data of computed bulk Fe wavefunctions
turned into TGraph object. (publication plot)

DE King, DC Jones, et al. – Moller Polarimetry for PREX-2 and CREX
10.1016/j.nima.2022.167506

● Draw histograms

● Draw scatter plots and
heatmaps

● Data Fitting
○ Predefined or custom

functions

● Data Visualization
○ Actual data
○ Simulated data
○ Imported data

● >> Publication ready plots <<

https://doi.org/10.1016/j.nima.2022.167506

What can you do with ROOT? [Data Visualization]

41

Moller polarimeter simulated data.
(almost publication plot)

Polarimetry – Moller QED asymmetry over time during CREX

Imported CSV data of computed bulk Fe wavefunctions
turned into TGraph object. (publication plot)

DE King, DC Jones, et al. – Moller Polarimetry for PREX-2 and CREX
10.1016/j.nima.2022.167506

● Draw histograms

● Draw scatter plots and
heatmaps

● Data Fitting
○ Predefined or custom

functions

● Data Visualization
○ Actual data
○ Simulated data
○ Imported data

● >> Publication ready plots <<

https://doi.org/10.1016/j.nima.2022.167506

Using ROOT

42

Three ways of using ROOT:

● Command Line Interface
○ Quick and dirty method of looking at data.
○ Make basic data cuts.
○ Make basic plots.

Using ROOT

43

Three ways of using ROOT:

● Command Line Interface
○ Quick and dirty method of looking at data.
○ Make basic data cuts.
○ Make basic plots.

● There is a GUI File Browser
○ This is perfectly fine when working locally, but

a total nuisance over X11.
✩ It’s an easy way to see file structure and plot

uncut data distributions.
○ Perhaps good for beginners.

I’ll note that this is a thing that one can do.

I don’t care for it much but it has its a
couple perks; you may like it.

 ⇐ ROOT file
 structure.

 Command line – use the same as the terminal.

Three ways of using ROOT:

● Command Line Interface
○ Quick and dirty method of looking at data.
○ Make basic data cuts.
○ Make basic plots.

● There is a GUI File Browser
○ This is perfectly fine when working locally,

buta total nuisance over X11.
✩ It’s an easy way to see file structure and plot

uncut data distributions.
○ Perhaps good for beginners.

● Macros/Scripting
○ Formal analysis – capable of complex data cuts.
○ Allows analysis work to be repeated easily.
○ Will require you to be comfortable with C++.

Using ROOT

44

Using ROOT – Command Line Interface
Command line interface uses CLING (a
C++ interpreter)

From the terminal command line you
can open a ROOT session

We execute the command root and pass
it a filename as an argument.

./reroot o_remollSkimTree.root

ROOT starts and we see that the file has
successfully opened.

Now, the ROOT command line is
waiting for instructions. :)

45

Showing example with skimmed simulated hit data from my work.
remoll files contain much more information

Using ROOT – Command Line Interface
We can look at the contents of the
ROOT file…

ROOT opened up the file and has
auto-named the object _file0

Similar to the basic Linux command
we can list the file contents using
the ls() method of TFile.

_file0->ls()

✩ We have a data tree named “T”
with the description “ferrous skim
tree 9098”

46

Using ROOT – Command Line Interface
We can examine the structure of the
data tree

T->Print()

We can see branch names in red
squares.

Total number of entries in green.

Details about the data structure in
orange.

hit.trid ⇒ Integer data type array

⇒ 30242 Entries

47

hit.id ⇒ ???

hit.trid ⇒ Track Number

hit.pid ⇒ PDG Code (particle type)

hit.mtrid ⇒ Hit mother track ID number

Using ROOT – Command Line Interface
We can perform a sampling (scan)
of the data:

T->Scan(“hit.p:hit.m:hit.x …”)

We see our branches:

hit.p
hit.m
hit.x
hit.y
hit.z

Entries are the row numbers

Not seen here is the fact that you can have
multiple values per entry.

48

Using ROOT – Command Line Interface
We can draw a sample scatter plot from
the tree

T->Draw(“hit.y:hit.x:hit.z”)

Here we are drawing the locations of the
hits on the sensitive detector in the
simulation.

This scatterplot output is a TGraph object;
it’ll look nice and clean.

In a previous slide I created a TCanvas so I
could specify a size and divide it. If you don’t
do that you’ll get a default canvas object c1.

49

 Using ROOT – Command Line Interface
We can do a little more:

T->Draw("hit.y:hit.x:hit.z>>H","hit.e > 100")

We store the contents of the draw in an object called
“H”

T->Draw("hit.y:hit.x:hit.z>>H2","hit.e < 100")

We store the contents of the draw in a histogram
object called “H2”

H->SetMarkerColor(kRed)
H2->SetMarkerColor(kBlue)

We set marker colors.

H2->Draw()
H->Draw("SAME")

And we Draw() – the second one we pass the
argument “SAME”

50

Previous plot was TGraph which is a
point-by-point plotting.

Below are two overlaid histograms; you
can see how the bins ‘fuzz’ things out.

Specifying fine binning will fix this at a
memory/drive space cost.

 Using ROOT – Command Line Interface
Quick Note:

Done something in the command line
that you’ve found useful? You can turn it
into a macro command by looking at
~/.root_hist
At the end of that file you’ll find your
latest commands.

● Copy these to a new text file
● Enclose in curly braces
● Add semicolons to the line ends.
● ROOT/CLING may be cranky about

some other minor things.

51

{
 T->Draw("hit.y:hit.x:hit.z>>H","hit.e > 100");
 T->Draw("hit.y:hit.x:hit.z>>H2","hit.e < 100");
 H->SetMarkerColor(kRed);
 H2->SetMarkerColor(kBlue);
 H2->Draw();
 H->Draw("SAME");

}
Quick notes:

kRed and kBlue are variables in ROOT that are Int_t
values. ROOT won’t like those in the macro itself.

kRed = 2 ; kBlue = 4
./reroot -l root-file.root
(TFile *) 0x0000000
re-root [1] .x macro.txt }

 Using ROOT – Macros/Scripting

52

⇒ Specific code here is
 unimportant (not remoll).

What’s important to note is:

1. Data doesn’t contain all the
immediate information we may
need.

a. Need to know if for any
recorded Entry$ if each
of the two generated
electrons makes it to the
detector.

2. Command line plotting is
limited if you need compound
data selection rules.

We can also write macros with more
‘complicated’ rules for data selection.

● This can be done for drawing
data.
○ Perhaps data you pull from

database.

● This can be done for performing
more complicated calculations
on raw data and creating a new
ROOT file with calculated data.

● This can be done to data skim the
information you want to move
from one ROOT file into a
separate smaller ROOT file.

 Using ROOT – Macros/Scripting
Creating macros by hand:

Be sure to include remolltypes.hh, this defines the hit, part, etc. data types.

● Open your ROOT file and your tree.
TFile * f = new TFile(“yourFile.root”,”<Read/Write Option>”);

TTree * t = new TTree(“YourTree”,”Some Name”);

● Declare variables to hold branch data and set your branch addresses:
Float_t someValue;

T->SetBranchAddress(“branchName”,&someValue);

… … …

● Proceed with your data selection, histogram filling, and canvas building.

53

 Resources: Extensive Documentation By CERN
ROOT Manual: https://root.cern/manual/

ROOT Reference Documentation: https://root.cern/doc/master/
⇒ Although, it’s just as easy to Google “cern root <insert-class> class reference”

ROOT Tutorials: https://root.cern/doc/master/group__Tutorials.html
⇒ Abundance of examples on histograms, graphs, data fitting, SQL-interfacing, and
(for the Python-inclined) examples using PyROOT.
⇒ And more… [plenty of stuff from beginners to advanced]

ROOT Forum: https://root-forum.cern.ch
⇒ Someone has very likely asked your question before…

54

https://root.cern/manual/
https://root.cern/doc/master/
https://root.cern/doc/master/group__Tutorials.html
https://root-forum.cern.ch

 Additional Functionality

● Plenty of available extended functionality with ROOT

○ Machine Learning libraries [TMVA]
■ https://root.cern/manual/tmva/

○ PyRoot (Use ROOT with Python)
■ https://root.cern/manual/python/

○ JSroot (A Javascript Framework for looking at ROOT files)

■ https://root.cern.ch/js/

55

https://root.cern/manual/tmva/
https://root.cern/manual/python/
https://root.cern.ch/js/

 Simple script to read CSV into ROOT file
#include<TROOT.h>
#include<TFile.h>
#include<TTree.h>
#include<TString.h>
#include<iostream>

Int_t read_csv(TString infile, TString desc, TString output){
 TFile * f = new TFile(Form("%s.root",infile.Data()),"RECREATE");
 TTree * T = new TTree("T","dataTree");
 Long64_t nlines = T->ReadFile(infile,"",',');
 cout << "Number of lines read: " << nlines << endl;
 f->Write();
 f->Close();
 return 0;
}

56

● Header information in CSV must contain
data type information followed by data:

Event/I,Value1/F,Value2/F,Value3/I, …
0,9.27577,0.12836,11, …
1,4.91736,-0.98736,8, …

● ROOT can be picky reading in csv data but is
useful.
○ Data output from hardware
○ EPICS archive output
○ etc…

● If this was written well it would just
replace the substring .csv with .root :)

⇒ You can run the following ROOT script on the
command line with:

root -l read_csv.C+'("datafile.csv")'

