
GEANT4/ROOT
HANDS-ON SESSION

Computing Workshop 9/6/2024
ericking@temple.edu

 ifarm Setup – Modules

2

● Hands-on work has been
developed with Geant4.11.2.1

● ROOT hands-on work was
developed with ROOT 6

Your .cshrc file should contain the
following:

module use /group/halla/modulefiles
module load geant4/11.2.1
module load root/6.30.04

You should see the following
successful load messages as seen on
the right.

 Cloning Hands-on Example from Github

3

- Make a working directory
for yourself

- Clone repository

- Move into cloned
directory

- Create a directory named
build

- Build your makefile
(CMakeLists.txt one
directory down)

- Build the application

git clone https://github.com/dericking/workshopGeant4andROOT

cd workshopGeant4andROOT

mkdir build

cd build

cmake ../

make

If you’ve properly cloned you
should see a screen something

like this.

4

If your application has successfully build you’ll see
something like the following:

You should now have an
executable in your directory
called ‘WorkshopExample’

 After building the application
When you execute the application
you should get the visualization of
an empty World volume.

./WorkshopExample

5

 Geometry Setup
Open up the file
src/DetectorConstruction.cc
in your favorite editor

⇒ I’ve simplified the Geant4
Basic B4c example and
cleaned up the Detector
Construction code.

To start we:

- Call NIST manager for
materials

- Define useful variables

- Construct World volume

Code above already provided.

6

 Geometry Setup - World Volume (as an example)
- Declare world size

- Use the NIST manager to
find our volumes material.

- Assign the Material to a
pointer

- Define a solid for the World

- Define a logical volume for
the World

- Place the World

- Note: This is the only
physical volume that gets a
name and is returned at the
end of Construct()

G4Box(‘Solid-Name’, halfLengthX, halfLengthY, halfLengthZ)

G4LogicalVolume(Solid , Material , ‘LV-Name’)

G4PVPlacement(Rotation, Position, LogicalVolume, ‘PV-Name’, MotherLogVol, false,
 copy-number, overlapChecker);

7

 Geometry Setup - Let’s Stick in Some Detector Material
● Fetch Polyethlene from

the NIST manager and
assign to a G4Material
object.

● Solid (Box): X/Y
dimensions 90% of the
world size; Z
dimension 10cm

● Declare logical volume,
please give it the name
“detectorLV”

● Place it at a Z position
of 85% the total
distance in the +Z
direction.

8

 Geometry Setup - Let’s Stick in Some Detector Material
● Fetch Polyethlene from

the NIST manager and
assign to a G4Material
object.

● Solid (Box): X/Y
dimensions 90% of the
world size; Z
dimension 10cm

● Declare logical volume,
please give it the name
“detectorLV”

● Place it at a Z position
of 85% the total
distance in the +Z
direction.

Your code should look something like this. See codeblock #1 in the repository directory

9

 Geometry Setup - Let’s Stick in Some Detector Material
● Fetch Polyethlene from

the NIST manager and
assign to a G4Material
object.

● Solid (Box): X/Y
dimensions 90% of the
world size; Z
dimension 10cm

● Declare logical volume,
please give it the name
“detectorLV”

● Place it at a Z position
of 85% the total
distance in the +Z
direction.

Your code should look something like this. See codeblock #1 in the repository directory

When you’ve completed this you
can return to your /build/
directory and recompile by
typing make

10

 Geometry Setup - Let’s place a radiator in front of the PE
● Fetch lead “G4_Pb”

from the NIST
manager and assign to
a material.

● Solid(Box): Same XY
dimensions as PE
solid, let this solid be
10cm thick or how ever
much you’d like.

● Same as before, declare
logical volume, give it
whatever name you’d
like

● Place it at a Z position
directly in front of the
PE.

PE=Polyethylene

11

 Geometry Setup - Let’s place a radiator in front of the PE
● Fetch lead “G4_Pb”

from the NIST
manager and assign to
a material.

● Solid(Box): Same XY
dimensions as PE
solid, let this solid be
10cm thick or how ever
much you’d like.

● Same as before, declare
logical volume, give it
whatever name you’d
like

● Place it at a Z position
directly in front of the
PE.

PE=Polyethylene

When you’re
done and you
successfully
rebuild the
application it
should look
something like
this →

12

 Visualization - GUI
● After you successfully rebuild you have

the

● You have two terrible white wireframe
boxes together. Let’s do something about
that in the GUI.

13

 Visualization - GUI
● After you successfully rebuild you have

the

● You have two terrible white wireframe
boxes together. Let’s do something about
that in the GUI.

14

G4VisAttributes Class

- Constructor is (R,G,B,A)

- or a G4VisAttributeObject

To make the world a wireframe,
we:

- Declare a new VisAttribute
object and give it a color.

- Call the SetForceWireframe()
method passing a value of ‘true’

- Call the SetVisAttributes()
method on the ‘World’ Logical
volume

 Visualization Attributes - Hard Coded Example

15

● Set the color of the radiator to red,
or any other color you would like.

● Force wireframe is optional.
○ Without that option you can

view it as a solid.

● This isn’t wholly necessary here but
as you build complicated geometries
setting colors is extremely helpful.

 Visualization Attributes - Now you do it

You’re code should look
something like this ⇒

16

● G4AnalysisManager a simpler option
over ROOT Coding in Geant4.

● AnalysisManager ROOT output
effectively equivalent of a .csv – can
output in root, CSV, or XML
○ While uncomplicated this is

useful for simple projects

➢ In this code, histograms and ntuples
are created in the RunAction()
constructor.
○ AnalysisManager’s CreateH1()
○ AnalysisManager’s CreateNtuple

➢ Note that you create an n-tuple, then
add columns, and then let the
AnalysisManager know you’ve finished.

 G4AnalysisManager ⇒ A Simple Analysis Option
src/RunAction.cc

17

➢ At BeginOfRunAction() the
application actually opens/creates
the file.

➢ EndOfRunAction() the application
closes out the file.
○ Always be sure to close out

the file.

 G4AnalysisManager ⇒ A Simple Analysis Option [Cont’d]
src/RunAction.cc

Code from /src/PrimaryGeneratorAction.cc ⇒

● Default particle set in the constructor
○ If you want to change particles with

the default G4 /gun/particle
macro this is the easiest setup.

● GeneratePrimaries() runs at the
beginning of each event.

➢ More complicated generators are
common. You can:
○ Monte Carlo energy spectrums
○ Monte Carlo vertex positions
○ Generate multiple different particles

based on hand-derived kinematics…
○ Etc.

➢ Here, we’re just setting a point beam. 18

PrimaryActionGenerator – A Quick Review

19

Let’s run the application in GUI mode:

./WorkshopExample

In the Session prompt:

/run/beamOn 25

 Executing Macro: Run in GUI

20

Let’s run the application in GUI mode:

./WorkshopExample

In the Session prompt:

/run/beamOn 25

Default energy is 300*MeV, let’s change that
to 3*GeV.

/gun/energy 3.0 GeV

/run/beamOn 25

 Executing Macro: Run in GUI

21

Let’s run the application in GUI mode:

./WorkshopExample

In the Session prompt:

/run/beamOn 25

Default energy is 300*MeV, let’s change that
to 3*GeV.

/gun/energy 3.0 GeV

/run/beamOn 25

Let’s change the particle of the gun to mu+

/gun/particle mu+

/run/beamOn 25

Note the change in color of the primaries as
they’re positively charged (see top right img)

 Executing Macro: Run in GUI

22

We’re going to run the application in ‘batch mode’ –
no GUI.

We’ll have a nice output ROOT file that we can
quickly look at before proceeding into ROOT…

At your command line:

./WorkshopExample -m run2.mac

The -m here is specified in WorkshopExample.cc

 Executing Macro: Run beam in Batch Mode

Any questions while the simulations quickly run?

23

We can take a quick look at the root files:

From the command line type:

root -l B4.root

This will open up the ROOT command line

T->Draw(“trackLength”)
T->Draw(“Edep”)
T->Draw(“Edep:trackLength”)

This will draw you histograms of the data
collected by G4 into the root file

● 2 1D histograms, and 1 2D histogram

 ROOT file output

Transitioning into ROOT
[We’ll start by looking at our G4 Workshop Example ROOT File]

If the instructions on slide 2 were followed then you should be able to
access the ROOT binaries

To check this, at the command line:

root --version

You should see something like the output below

 Proper Setup Check

25

 Getting Started – Accessing Objects in a ROOT file
➢ Let’s move into the ROOT directory

of the repository

➢ Let’s copy our ROOT file here from
the G4 simulation for east

cp ../build/B4.root ./

➢ Use ROOT to load the file

root -l B4.root

➢ This will bring you to the

ROOT command prompt

26

 Getting Started – Accessing Objects in a ROOT file
➢ The file loads with object name _file0

➢ Now we can see the contents of the file.

➢ Let’s draw one of the histograms:

Edep->Draw(“HIST”)

➢ This isn’t that easy to see. We can modify
this plot

Edep->SetLineColor(kBlue)

Edep->SetLineWidth(2)

c1->SetLogy()

27

Canvas
object
name is
same as
title

 Getting Started – Accessing Objects in a ROOT file
➢ The file loads with object name _file0

➢ Now we can see the contents of the file.

➢ Let’s draw one of the histograms:

Edep->Draw(“HIST”)

➢ This isn’t that easy to see. We can modify
this plot

Edep->SetLineColor(kBlue)

Edep->SetLineWidth(2)

c1->SetLogy()

28

 Getting Started – Accessing Objects in a ROOT file
➢ We will also draw the trackLength

histogram:

trackLength->Draw(“HIST”);

➢ Note that the canvas retains its property
of having a log-y axis but the histograms
properties are default.

trackLength->SetLineColor(kRed)

trackLength->SetLineWidth(2)

trackLength->Draw(“HIST”)

29

 Getting Started – Accessing Objects in a ROOT file
➢ We will also draw the trackLength

histogram:

trackLength->Draw(“HIST”);

➢ Note that the canvas retains its property
of having a log-y axis but the histograms
properties are default.

trackLength->SetLineColor(kRed)

trackLength->SetLineWidth(2)

trackLength->Draw(“HIST”)

30

Note: If you closed your canvas then ROOT will create a new
one and canvas properties will not be retained.

 Getting Started – Accessing Objects in a ROOT file
➢ We will also draw the trackLength

histogram:

trackLength->Draw(“HIST”);

➢ Note that the canvas retains its property
of having a log-y axis but the histograms
properties are default.

trackLength->SetLineColor(kRed)

trackLength->SetLineWidth(2)

trackLength->Draw(“HIST”)

31

Note: If you closed your canvas then ROOT will create a new
one and canvas properties will not be retained.

 Getting Started – Plotting from the Data Tree

32

➢ We can also plot data from the ROOT Tree object:

B4->Draw(“trackLength:Edep”,“ ”, “ ”);

➢ Technically what it draws for you the first time is
a TGraph–the points on this are fairly accurate.

➢ We can push the draw into a histogram object H:

B4->Draw(“trackLength:Edep>>H”,“ ”, “ ”);

 Getting Started – Plotting from the Data Tree

33

➢ We can also plot data from the ROOT Tree object:

B4->Draw(“trackLength:Edep”,“ ”, “ ”);

➢ Technically what it draws for you the first time is
a TGraph–the points on this are fairly accurate.

➢ We can push the draw into a histogram object H:

B4->Draw(“trackLength:Edep>>H”,“ ”, “ ”);

➢ ROOT seems to want to draw this as a heatmap.
Let’s at least turn the color map into a log-scale

c1->SetLogz()

 Getting Started – Using the TBrowser
● You can also access the file from a

TBrowser using the command line
○ NOTE: This is cumbersome to

use over an X11 connection. On
your own machine, it’s fine.

34

 Getting Started – Using the TBrowser
● You can also access the file from a

TBrowser using the command line
○ NOTE: This is cumbersome to

use over an X11 connection. On
your own machine, it’s fine.

● TBrowser x;

● Click on the ROOT file name, this
will expand the file like a directory

35

 Getting Started – Using the TBrowser
● You can also access the file from a

TBrowser using the command line
○ NOTE: This is cumbersome to use

over an X11 connection. On your
own machine, it’s fine.

● TBrowser x;

● Click on the ROOT file name, this
will expand the file like a directory

● Click on an object and it will display
in the window.

36

 Getting Started – Using the TBrowser
● You can click the TREE object (B4) to

expand it

● You’ll note that there are two
associated Branches

37

 Getting Started – Using the TBrowser
● You can click the TREE object (B4)

to expand it

● You’ll note that there are two
associated TBranches

● Double-clicking on a branch will
show you the contained data in the
browser window.

38

 Getting Started – Using the TBrowser
● You can click the TREE object (B4)

to expand it

● You’ll note that there are two
associated TBranches

● Double-clicking on a branch will
show you the contained data in the
browser window.

● Right-click in the margins of the
Canvas and a menu will drop down.
○ Select SetLogy (about ⅔ the

way down)
39

 Creating a ROOT Macro
You can easily execute a series of commands in
ROOT using a curly-bracketed macro of
commands.

The macro of commands can then be executed
at the terminal command line:

root -l yourMacro

Note: I typically save my macros as a .C file since it’s
generally an easy conversion adding libraries and a
few tweaks.

40

{

 // All of your ROOT stuff here.
 // Lines must end in semicolons;

}

 Creating a ROOT Macro: TGraph – Make the Graph
● Create a TGraph object

● Add points to the TGraph
○ SetPoint(n,x,y)
○ Add the points:

■ (0 , 2.1)
■ (1 , 1.9)
■ (3.5 , 5.6)
■ (5 , 22,2)
■ (6.5 , 38.0)

● Set a Marker Style (use 20), and
set marker color to blue.

● Draw with option “AP” 41

 Creating a ROOT Script: TGraph – Execute the macro

42

Your output should look like the
following:

 Creating a ROOT Script: TGraph Data Fit
● Let’s fit the graph to a

second-order polynomial, “pol2”
is predefined in ROOT.

gr->Fit(“pol2”)

● And lets set an option so our fit
parameters show up on our plot.

gStyle->SetOptFit(1111);

43

 Creating a ROOT Script: TGraph Data Fit

44

Your output should look like the
following:

This isn’t a great plot, and we can
also fix that…

 Creating a ROOT Script: TGraph Data Fit

45

This isn’t a great plot, and we can
also fix that…

● Set the Y-axis range of the plot

● Add a title to the plot using
SetTitle()
○ Takes a string in the form

“Main,X-title,Y-title”

 Creating a ROOT Script: TGraph Data Fit

46

Now, you should have something
that looks like the following:

 Fitting a Gaussian to Emulated Data
Time permitting, let’s load into ROOT

root -l molana_patterns_20419.root -e “TBrowser x”

This will automatically open up a TBrowser

● Double-click on the ROOT file

● Double-click on the TTree ‘trPatt’

You should see the following:

47

 Fitting a Gaussian to Emulated Data
● In the Local Command line, draw the

branch named “coin0” and funnel it
into a histogram called “H”

trPatt->Draw(“coinO>>H”)

● Let’s fit a gaussian curve to the data

H->Fit(“gaus”)

You should get something that looks like
the image to the right →

48

 Fitting a Gaussian to Emulated Data
We can add the fit parameters to the plot
from the menu:

Options >> Fit Parameters

49

 Fitting a Gaussian to Emulated Data
We can add the fit parameters to the plot
from the menu:

Options >> Fit Parameters

When your screen updates you should
have the Gaussian fit drawn and the
parameters for the fit listed.

50

Note: This ROOT file data comes from the Moller Polarimeter DAQ using a 3-channel emulator to stress-test the
dead time and accidentals reporting. There is nothing physical here if anyone was wondering.

