G4 simulation for Axial Form Factor Experiment

Yi Yu and Weizhi Xiong Shandong University (SDU) Inaugural Axial FF Collaboration Meeting Sep 14th 2024

- Overview of desired simulation framework
- Neutron energy deposition on Time-of-Flight (TOF) detector
- Beam-on-target simulation
- Task list and workforce

Overview of Experimental Apparatus

Overview of Experimental Apparatus

Overview of Experimental Apparatus

Simulation Setup for EDep in TOF

- Particle gun: neutron
 - Total energy: 1.45 GeV corresponding momentum ~1.1 GeV
 - Direction: +z direction
- Physics list: FTFP_BERT (a build-in list)
- Detector geometry
 - Module material: BC408 (a plastic scintillator made by <u>Luxium solutions</u>)
 - Single module: x-y-z = 200-6-6 (cm)
 - Module array:
 - 7 layers in z
 - Each layer: 1 module in x and 140 modules in y
 - 980 modules in total

Neutron Energy Deposition in a Single Module

- Average energy deposition: 2.43 MeV
- 90% neutrons with 0 energy deposition

Validation of TOF Module EDep

- Proton energy deposition with 10mm scintillator
 - 1.6 GeV(kinetic energy) proton: 2.02 MeV
 - 80 MeV(kinetic energy) proton: 9.09 MeV

According to LISE++ calculation, the deposition energy of 10 mm thickness of plastic scintillator irradiated by 1.6 GeV proton is 2.02 MeV and the deposition energy of 80 MeV proton is 9.09 MeV[9]. The absorbed dose is the average radiation

Simulation results: slightly larger values

2309.04164

Neutron Energy Deposition in Module Array

~50% neutrons with 0 energy deposition

Neutron Energy Deposition with Iron Plates

- Adding iron plate (2cm thickness) in front of some layers
- Average energy deposition increases by ~6MeV per iron plate.
- Neutron detection efficiency increases by ~5% per iron plate

Setup for Beam-on-Target Simulation

- Particle gun: 2.2GeV electrons along +z direction
- Physics list: FTFP_BERT (a build-in list)
- Detector geometry: LH2 target + neutron arm (magnet + TOF) filled with air
 - Neutron arm is rotated by 45° around y-axis with respect to the target

Target: LH2

Container: aluminum, 2 inch diameter, 20cm long
beam windows are 0.15 mm
thickness of the cell side wall is 0.25 mm.
Placed in a vacuum beampipe

Magnet:

•BField: 0.5T in y
•BField area (x-y-z): 34-142-100 (cm) filled with air and surrounded by iron wall in x-y direction
•Thickness of Iron Wall: 100 cm in x and y direction

•1.5 m away from the target

TOF:

•Material: BC408
•single module x-y-z: 200-6-6 (cm)
•Array of modules x-y-z: 200-840-42 (cm)
•number of modules x-y-z: 1-140-7, totally 980 modules
•15 m away from the target
•No iron plates

Hits x-y Distribution on Virtual Plane at TOF

- No energy cut applied
- Two dominant sources: electron and photon
- Number of particles is much smaller than that goes into magnet

Momentum Distributions on TOF Virtual Plane

Most of them are low momentum particles

Particle Rate vs Ek on Virtual Detectors

- No energy deposition cut on TOF module
- Most of them are below 10 MeV
- Bumps around ~100 MeV on virtual 1 but not for virtual 2

Vertex z Distributions on Virtual Plane at TOF

- Z-axis along the neutron arm
- Large fraction contributions from non-target region
- Energy deposition cut help to reduce nontarget contribution
- See many electrons generated directly from target, very odd

Event Rate and Neutron Detection Efficiency

- Events are selected with TOF module energy deposition > threshold
- Events rate are sensitive to the energy deposition cuts
- Neutron detection efficiency is not strongly dependent on cuts

Task List and Workforce

- For G4 simulation:
 - 1. Full neutron arm geometry in G4 (end of Sep.)
 - 2. Optics photon simulation for neutron TOF (Mid of Oct.)
 - 3. Migration to SBS simulation (Nov.?)
 - 4. Geometry and detector optimization
- For various MC generator (might need exclusive ones):
 - 1. Elastic ep (many such generators avilable, i.e. esepp)
 - 2. signal generator for ep->nv (need help, put should be straight forward)
 - 3. electro and photo production of pion generators from ep (need help)
 - 4. background generator for eAI (quasi-elastic, inelastic, need help)
- Current workforce:
 - On G4: Yi Yu, WX (SDU), Jimmy Caylor (JLab)
 - On generators: WX + some possible students (SDU)
- Helps are much needed and appreciated!

Backup

Vertex z distributions on virtual plane at magnet

- All the detectors are placed in vacuum
- All particles are generated at target region as expected

21

Hits x-y distribution on virtual plane at Magnet

- Total events: 1.8×10^8 electrons
- Time scale: 288ns assuming $100\mu A$
- The coordinates are rotated with the +z being direction of neutron arm
- No energy cut applied
- Two dominant sources: electron and photon

Vertex z Distributions on Virtual Plane at Magnet

- Most particles are generated at target region
- A flat distribution at non-target region

Energy Deposition and Timing

- Energy deposition for beam-on-target (BOT) simulation is generally small
- The time of BOT energy deposition peaks around 55ns with a long tail

Vertex z Distributions on Virtual Plane at TOF

(replace air with vacuum)

- Z-axis along the neutron arm
- All the detectors are placed in vacuum
- All particles are generated at magnet region
- Electrons from target no longer show up, indicate that many electrons from target may bounce into TOF through MS with air
- Should be able to reduce with proper shielding