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Charge symmetry and the nucleon form factors
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Charge symmetry is assumed for the form factors, , etc. 
and used to find the flavor separated form-factors,  
measuring  to find  

Gu,p
E = Gd,n

E

Gp,n
E,M Gu,d

E,M

But this can broken!  One way is to have a non-zero strange form-factor, 
which breaks the “2 equations and 2 unknowns” system

Gp,Z
E = (1 − 8

3 sin2 θW) Gu,p
E + (−1 + 4
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The weak form factor provides a third linear combination:

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors 

δGu
E ≡ Gu,p

E − Gd,n
E

δGd
E ≡ Gd,p

E − Gu,n
E

So, more generally: the assumption of charge symmetry is 
crucial to the flavor decomposition of the form factors



Strange Form Factors Are Not Shown To Be Zero

3SBS Collaboration Meeting Kent Paschke  - University of Virginia September 14, 2024

Follows work from Phys.Rev.C 91 (2015) 3, 035205 
(LFWF to tie DIS and elastic measurements in a simple model) 

Flavor separation is required to understand nucleon structure implication of high-Q2 form factors measurements 
Based on charge symmetry, u ↔ d , but this is an untested assumption above Q2~0.8 GeV2  

Earlier studies at low Q2, typically more sensitive to , do not extrapolate to a tight constraint at high Q2 Gs
E

Hobbs & Miller, 2018: sFF small (but non-zero) at low Q2, but within 
constraints from data may grow relatively large at large Q2.  
How large?  Uncertainty band at Q2~2.5 GeV2 is about as large as GD(Q2)



Strange form-factors on the lattice
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These values would be significant 
contributions at high Q2

J. Green et al., Phys. Rev. D 92, 031501 (2015)

Gs
M ∼ − 0.005

Gs
M ∼ − 0.1

P.  Shanahan et al., PRL 114, 091802 (2015)

Forward-angle e-p data
Even lattice results, which looked very 

small for low Q2, do not reduce as 
fast as the dipole shape with Q2 



Parity Violating Electron Scattering
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Weak and EM amplitudes interfere:

� = |M� +MZ |2

Elastic e-p scattering with longitudinally polarized beam and unpolarized target:
γ Z0

γ 2 � |MZ |
|M� |

Expressing APV for e-p scattering, with proton and neutron EM form-factors plus strange form factors:

Previous studies were focused particularly on the static (i.e. ) properties: a strange charge radius 
or strange magnetic moment. Precision at larger  requires a new approach.

Q2 → 0
Q2

The weak neutral-current form-factor from parity violation can provide the required test of charge symmetry



The planned measurement
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Identify elastic kinematics with electron-proton coincidence 
• Angular e-p correlation 
• High resolution calorimeter for electron trigger 
• Calorimeter for proton trigger 
• Scintillator array on proton arm, to improve position resolution

• 6.6 GeV beam energy 
• electron at 15.5 degrees, proton at 42.4 degrees 
• APV = 150 ppm, 4% precision goal, so 3x1010 elastic scattering events  
• L =1.7 x 1038 cm-2/s, 10 cm LH2 target and 65 μA beam current 
• Full azimuthal coverage, ~42 msr

Aim for Q2 = 2.5 GeV2
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Experimental concept
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Preliminary design of scattering 
chamber 

He bag will reduce backgrounds 
between target chamber and exit 
beampipe

This fits in Hall C (but it’s tight)



Detector System
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HCAL  - hadron calorimeter 
• Detector elements from the SBS HCAL 
• 288 blocks, each 15.5 x 15.5 x 100 cm3  
• iron/scintillator sandwich with wavelength shifting fiber readout 

ECAL  - electron calorimeter 
• Detector elements from the NPS calorimeter 
• 1200 blocks, each 2 x 2 x 20 cm3  
• PbWO4 scintillator 

Scintillator array  
• 7200 plastic scintillators, each 3 x 3 x 10 cm3  
• Wavelength shifting fiber to MA-PMT 
• Needed for position resolution at HCAL



Fast Counting DAQ
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250 MHz flash ADC (JLab FADC250) for HCAL and ECAL readout  
Provides the pulse information for a fast,  “deadtime-less” trigger

VTP (VXS Trigger Processor)  
Running, updating sums over overlapping 
calorimeter clusters, to find ECAL+HCAL 
coincidence above threshold

One VXS crate will handle one sixth of ECAL + HCAL,  
also provide external trigger for ScintArray pipelineTDC readout

Expect ~35kHz total, ~500 Mb/s data rate,  
distributed over 6 separate crates (calorimeters) and 3 crates for scintillators  

Corresponding scintillator elements recorded in TDC (pulse time, 
time over threshold) with each trigger 



Trigger: calorimeters, with geometric coincidence
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A relatively high ECAL cut (~66% of beam energy) and loose e-p coincidence cut 
provides high efficiency and manageable data rate

ECAL > 4.5 GeV: 150 kHz

ECAL + HCAL in coincidence: 35 kHz



Elastic event discrimination
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Azimuthal angle

Polar angle distribution
dashed lines = offline cuts  

“sideband” analyses will help verify 
QE and inelastic asymmetries

Offline: tighten geometric cut 
with pixel hodoscope and ECAL 
cluster center

Exclude inelastic background to ~0.2%

Online: ECAL vs HCAL 
coincidence, loose time and 
geometric cut



Projected result
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If ,   ,   (about 34% of GD)Gs
M = 0 δGs

E ∼ 0.015

If ,   , (about 11% of GD)Gs
E = 0 δGs

M ∼ 0.005

GD

δ APV = ± 6.2 (stat) ± 3.3 (syst)     (δA/A = ± 4% ± 2%)
δ (Gs

E + 3.1Gs
M) = ± 0.013 (stat) ± 0.007 (syst) = 0.015 (total)

SF
F η

=
G

s E
+

τG
p M

ϵG
p E

G
s M

± 0.016This experiment (± 0.015)

The proposed measurement is especially sensitive to  

The proposed error bar reaches the range of lattice predictions, 
and the empirically unknown range is much larger. 

Gs
M

APV = 150 ppm  (if no strange FF) 



Next Step - Test Performance of Detector Concept
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electron angle 15.5°  
proton angle 42.4° 

One can position the SHMS to 15.5° 
to detect electrons, measured in 
coincidence with a prototype proton 
detector at 42.4°  

Prototype proton detector:  
• pixel array of 20 small scintillators with MA-PMT readout +  2x2 SBS HCAL blocks 
• FADC readout in spectrometer DAQ 
• 50uA on 15cm Hydrogen target at 6.6 GeV, about 2kHz rate into detector 
• test elastic identification and background rate and exclusion prototype scintillator 

at JLab  for assembly



“sFF” Strange Form Factors at High Q2
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Progress, but significant work still to be done toward beam test 
• scintillator array prototype construction (soon to start) 
• assemble and test HCAL prototype 
• simulation to select proton arm location 
• mechanical design of proton arm test stand 
• Detail DAQ configuration and prepare analysis

e−

p

 10+ years after the last sFF searches were performed, a 
new experiment is now planned for much higher Q2, 

motivated by interest in flavor decomposition of 
electromagnetic form factors



Backup slides



Triggering
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• 1200 PbWO4 crystals 
• 2x2x20 cm3 
• 5x5 grouping for subsystem 
• 240 overlapping subsystems 

• 288 iron/scintillators 
• 15.5x15.5x100 cm3  
• 3x3 grouping for subsystem  
• 96 overlapping subsystems

10
 c

m

45
 c

m

Electron subsystems Proton subsystems

Group calorimeter elements into logical “subsystems” for energy threshold and coincidence triggering 
• each polar column of detectors, overlapping with neighbors 
• sum amplitude with conservative coincidence timing window 
• compare to conservative energy threshold 
• trigger when complementary (ECAL and HCAL) subsystems are both above threshold ~ only about 35 kHz

Advantage: simplicity over dynamic clusterization, and fully sufficient for acceptance, resolution, and background



Calorimeter components
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• 288 iron/scintillator detectors, PMTs + bases 
NPS electromagnetic calorimeter

• 1200 PBWO4 scintillators, PMTs + bases 
SBS hadronic calorimeter

New detector to be built for this experiment 
• Extruded plastic scintillator block 
• Readout with wavelength-shifting fiber 
• Each fiber read by pixel on multi-anode PMT 
• 7200 blocks, each 3 x 3 x 10 cm3  
• Pipeline TDC readout ( VETROC )

Scintillator Array



Q2 dependence of Q4F1 
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Fu
1 = 2F1p + F1n − Fs

1 Fd
1 = 2F1n + F1p − Fs

1

Assuming  ~ 0.048 ⟶  ~ ± 0.17δGs
E,M ∼ GD δ(Q4Fu

1)

δGs ~ GD

• Flavor separated form factors are a crucial piece of information for GPDs / nuclear femtography. 
• So far, these have relied on poorly tested assumptions of strange quark contributions.  
• Experimentally not ruled out (at level of yellow band) and lattice calculations do not rule out 

significant contributions (at level of 1x-2x the green band)

A measurement is needed

Such a large SFF could be huge in a proton PV measurement  
 ~ ±22 ppm, ~±15% of δAPV Ans

PV

x 2.5



Error budget
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Statistical precision for APV: 6.2 ppm (4.1%)

or 3.3 ppm

Radiative correction uncertainties are small; theoretical correction uncertainty lies in the proton “anapole” moment 
If the anapole uncertainty is not improved, this would contribute at additional  4.1 ppm (2.7%) uncertainty



Scattering chamber
Cylindrical scattering chamber with large Al window to pass 15° electrons and 45° protons 

Design uses a cone with “ribs”, plus an inverted hemisphere center, windows could be as thin as 0.5mm
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Requires air gap - will use He bag (not shown) to transport beam, so open air gap is only ~50cm

Hall C Designer Steve Lassiter


